EiffelStudio: A Guided Tour

s

Eiffel Power”

from ISE

Interactive Software Engineering

2 EIFFELSTUDIO: A GUIDED TOUR §

Manual identification

Title: EiffelStudio: A Guided ToutSE Technical Report TR-EI-68/GT. (Replaces TR-EI-38/EB.)

Publication history
First published 1993 akirst Steps with EiffelBenctiTR-EI-38/EB) and revised as a chapterHiffel: The Environmen{TR-EI-
39/IE), also available asn Object-Oriented Braronment(Prentice Hall, 1994, ISBN 0-13-245-507-2.

Version 3.3.8, 1995.
Version 4.1, 1997
This version: July 2001. Corresponds to release 5.0 of the ISE Eiffel environment.

Author
Bertrand Meyer.

Software credits

Emmanuel Stapf, Arnaud Pichery, Xavier Rousselot, Raphael Simon; Etienne Amodeo, Jérdme Bou Aziz, Vincent Brendel, Gau
Brillaud, Paul Colin de Verdiére, Jocelyn Fiat, Pascal Freund, Savrak Sar, Patrick Schénbach, Zoran Simic, Jacques Sireude,
Talbi, Emmanuel Texier, Guillaume Wong-So; EiffelVision 2: Leila Ait-Kaci, Sylvain Baron, Sami Kallio, lan King, Sam O’Connor,
Julian Rogers. See also acknowledgments for earlier versi@ifieh The EnvironmenfTR-EI-39/IE)

Non-ISE: special thanks to Thomas Beale, Eric Bezault, Paul Cohen, Paul-Georges Crismer, Michael Gacsaly, Dave Hollent

Mark Howard, Randy John, Eirik Mangseth, Glenn Maughan, Jacques Silberstein.

Cover design
Rich Ayling.

Copyright notice and proprietary information

Copyright © Interactive Software Engineering Inc. (ISE), 2001. May not be reproduced in any form (including electronic storac

without the written permission of ISE. “Eiffel Power” and the Eiffel Power logo are trademarks of ISE.

All uses of the product documented here are subject to the terms and conditions of the ISE Eiffel user license. Any other us

duplication is a violation of the applicable laws on copyright, trade secrets and intellectual property.
Any third-party products mentioned in this document are hereby acknowledged as trademarks of their respective owners.

Special duplication permission for educational institutions
Degree-granting educational institutions using ISE Eiffel for teaching purposes as par&afi¢hé&niversity PartnershipProgram
may be permitted under certain conditions to copy specific parts of this book. Contact ISE for details.

About ISE

ISE (Interactive Software Engineering) helps you produce software better, faster and cheaper.
ISE provides a wide range of products and services based on object technology, including ISE Eiffel, a complete
development environment for the full system lifecycle. ISE’s training courses, available worldwide, cover key management
and technical topics. ISE’s consultants are available to address your project needs at all levels.

ISE's TOOLS (Technology of Object-Oriented Languages and Systems) conferehtgs//www.tools-
conferences.comare the meeting point for anyone interested in the software technologies of the future.

ISE originated one of the earliest .NET products and offers a full range of .NET services and trainjng at
http://www.dotnetexperts.com

For more information
Interactive Software Engineering Inc.
ISE Building, 360 Storke Road
Goleta, CA 93117 USA
Telephone 805-685-1006, Fax 805-685-6869

Internet and e-malil
ISE maintains a rich source of information lattp://eiffel.com, with more than 1200 Web pages including onlifje
documentation, downloadable files, product descriptions, links to ISE partners, University Partnership program,|mailing
list archives, announcements, press coverage, Frequently Asked Questions, Support pages, and much more.
Visit http://contact.eiffel.com to request information about products and services. To subscribe to the ISE Eiffe| user
list, go towww.talkitover.com/eiffel/users

Support programs :
ISE offers a variety of support options tailored to the diverse needs of its customer&8&support.eiffel.com for details.

http://www.tools-conferences.com
http://www.tools-conferences.com
http://www.dotnetexperts.com
http://eiffel.com
http://contact.eiffel.com
http://www.talkitover.com/eiffel/users
http://support.eiffel.com
http://www.eiffel.com/doc/documentation.html#ooe
http://www.eiffel.com/doc/documentation.html#ooe
http://www.eiffel.com/services/university/

EiffelStudio: A Guided Tour

This document is available both locally, as part of the ISE Eiffel delivery,
and on theeiffel.comWeb site, in both HTML and PDF versions. See the
list of introductory documents
This isnot an introduction to the Eiffel method and language. Follow the
preceding link folnvitation to Eiffeland a longer tutorial.

1 OVERVIEW AND PREREQUISITES

EiffelStudio is the central tool of ISE Eiffel, letting you design, develop, debug,
document, measure, maintain, revise and expand systems using the full power of object
technology and Design by Contriét

This presentation introduces the essential properties of EiffelStudio. It will take you
through a tour of the environment, using a pre-existing example system.

What will | achieve?

Although it skips many specific or advanced facilities, this Tour will help you quickly
become familiar with the way you can use the environment for your work. After
reading it you will know the basics of working with EiffelStudio:

» Starting a project and retrieving an existing project.
» Entering new software elements — clusters, classes and features.
» Compiling your software.

* Making changes and having them immediately recompiled using the Melting Ice
TechnologyV.

» Displaying a graphical representation of your software elements, and modifying
the software through the graphical views (as well as through its text).

http://www.eiffel.com/doc/online/eiffel50/intro/
../index.html

4 EIFFELSTUDIO: A GUIDED TOUR §1

* Producing extensive documentation of your system, textual or graphical, under
many different formats such as HTML, RTF, Postscript, XMl (for e.g. Rational
Rose) and others.

* Browsing through simple or complex software systems, to find out their various
components, properties and relationships.

* Measuring quantitative properties of the software, by applying metrics predefined
in EiffelStudio as well as new ones that you define.

* Executing a compiled system, and controlling its execution through the debugging
mechanisms of EiffelStudio.

About the scope of EiffelStudio

The most important property to keep in mind as you are discovering EiffelStudio is that
it is neither just a “programming environment” nor just a “CASE tool” (Computer-
Aided Software Engineering) for analysis and design. It encompasses both of these
functions and many others. Most system builders today are used to a dichotomy
between the high end and the low end:

» At the analysis and design levels, graphical tools help you clarify your thinking
about the system, interacting with customers and end users, and devise high-level
system architectures, usually in diagrammatic form.

* Atthe low end, programming tools help you edit, compile and debug your programs.

Keeping these tools separate is, however, detrimental to the quality of the software
process and the resulting products. If they are in the hands of different teams,
communication problems may arise, leading to discrepancies between need and
realization; this can be a source of bugs or even project failure. If it's the same people
using tools of both kinds, they have to keep switching notations, tools and modes of
thinking. The use of different frameworks at both ends makes it difficult to keep the

81 OVERVIEW AND PREREQUISITES 5

high-level model and the implementation consistent; too often, a change decided at the
implementation level is not reflected back in the higher model. After a while, the
system gets into the state of disorder and inconsistency that good tools are precisely
meant to avoid.

EiffelStudio, in line with the principles adeamless developmendreversibility
of the Eiffel method, removes the gap by providing a single set of tools that accompany
you throughout a project, from the most high-level initial stages to the most low-level
aspects of implementation and maintenance.

This generality is reflected throughout the environment by, for example, the dual
use of text and graphics. As another example, you should think of the EiffelStudio
compiler not just as a tool for executing Eiffel software in its final form, but also,
thanks to its extensivealidity checkingfacilities, as a design consistency tool that
performs many verifications commonly associated with CASE tools.

Depending on your project needs, you may take advantage of EiffelStudio’s
versatility to address specific purposes:

* You may use EiffelStudio as a programming environment, with advanced tools for
compiling, browsing and debugging.

« Some people use EiffelStudio as raodeling tool only, building system
descriptions consisting only deferred(abstract) classes with no implementation,
and relying on the Diagram Tool to build, present and discuss these descriptions
through graphical views.

* You may use EiffelStudio in both capacities, taking advantage of the seamlessness
between all the affected phases.

Learning by doing
If you have access to EiffelStudio as you read this Tour, the most effective technique is
to execute all the suggested operations as you read about them.

Please execute user actions, such as clicking, only when asked to do so.

What should | already know?

This Tour assumes very little about what you know and what you don't.

It does assume that you can do simple manipulations on your platform of choice, such
as: on Windows, finding and drag-and-dropping folders and files in the Windows Explorer;
on Unix, changing to a certain directocgl] and listing the files of a directoris|.

The more you already know about object technology and object-oriented
environments, the better. But remember, if you have used other environments before,
keep a fresh outlook; EiffelStudis different, and it may take a while before you fully
understand why it does some things in a certain way.

6 EIFFELSTUDIO: A GUIDED TOUR §1

A note on platform differences

ISE Eiffel is one of the most portable environments in the industry, running in an almost
identical fashion on Windows, on the new Microsoft .NET environment, on many
variants of Unix, on Linux, on VMS.

Once an EiffelStudio session has been started, you can largely forget about the
operating system. But a few operations — mostly at the beginning, to launch
EiffelStudio — require platform-dependent mechanisms: starting a program, traversing
the file structure, selecting a file. These cases will be marked accordingly below.

Windows users should particularly note the following two conventions of terminology:

» Operating systems store files into hierarchically nested structures ttledsor
directories Although “folder” is the more common term for Windows, we will
mostly speak of “directories”. It's exactly the same thing.

» Afile has a fullpath nameused to describe how to reach it from the root of its file
system, as inc:\d1\d2\f . This example uses the Windows notation, which
separates successive components of a path name by a backward slash character
On Unix and Linux, the separator is a forward slasas in/d1/d2/f; this is also
the convention on the Internet for denoting addresses (URLSs). Most file names in
this manual appear in this Unix/Internet style. On Windows you will normally
have to use the backslash convention, although EiffelStudio also accepts forward
slashes. In any case you must be consistent: don’t mix backward and forward
slashes in the same path name. Also note that some names, such as those of object
files to be linked with your system, will be passed to outside tools — C compilers,
loaders — that may not accept the forward slash.

VMS users may similarly use either the Unix convention or the specific VMS path
naming convention.

If you are a one-platform person, just ignore, for the next few pages, all references
to any platform other than your heart’s favorite. They will quickly go away.

81 OVERVIEW AND PREREQUISITES

What should | have done first?

To run the example you must have installed ISE Eiffel and set up the environment.
Check in particular the following:

* On Windows, you must have run the installation procedure; it will have put
EiffelStudio in the Programs section of the start menu, subsection “ISE Eiffel
versiorf, whereversionis the version number, e.g. 5.0.

* The environment variabl(SE_EIFFEL must be set to the installation directory,
and the environment variabRLATFORM to the platform. On Windows this is
taken care of automatically by the installation procedure, but on Unix/Linux and
VMS you must update your path and environment manually. Throughout this
discussion the notation$ISE_EIFFEL and $PLATFORM will refer to the
values of these variables — the installation directory, and the platform. (The
Windows notation would b&ISE_EIFFEL% and%PLATFORM%.)

e On Unix/Linux and VMS, your “path” must include the place where EiffelStudio
executables reside. (On Windows the installation procedure takes care of this.)

» Also, the discussion assumes that as part of the installation you have included the
EiffelBase library, in precompiled form. EiffelBase is automatically included if
you have installed another precompiled library, such as WEL, the Windows Eiffel
Library. The installation procedure takes care of precompiling EiffelBase.

Locating the example

Please take a moment to locate the example files on your installation. They all appear
in the following directory, part of the Eiffel delivery:

$ISE_EIFFEL/examples/bench/tour

(Windows users: remember that instead of the slastur platform uses a backslash
VMS users: this is to be replaced by the VMS path naming conventions.)

8 EIFFELSTUDIO: A GUIDED TOUR §2

2 COPYING THE EXAMPLE FILES

If you are using Eiffel on a personal computer under Windows, you can
work directly on the installation directory and don’t need to make copies
of files as per the present sectiSRip directly to the next section 3.
Doread the present section and apply its instructions if you work under Unix,

or may have to share the Eiffel installation with other users, do not have write
permissions on the installation, or want to keep the installation unchanged.

If you are going to work on a copy, choose or create a directory of your own; let’s call
it YOURDIR for the rest of the discussion.

To copy all the files of the example YO URDIR:.
e On Windows, open a Windows Explorer, go to$ISE_
EIFFEL\examples\bench\tour , select all the files in that directory, and drag-

and-drop them t&'OURDIR.

. On Unix execute the shell command

cp $ISE_EIFFEL/examples/bench/tour/* YOURDIR

. On VMS execute the command

copy $ISE_EIFFEL:[examples.bench.tour]*.* YOURDIR

Once you have compiled the example under EiffelStudio, relying on the precompiled
EiffelBase library (the default), and without optimization, the contentS@URDIR
will take up less than one megabyte, including information on diagrams and metrics.

The final executable generated throudgmdlizatiori (optimized compilation)
will take only about 300 kilobytes.

Without precompiled EiffelBase you would need about 3.5 megabytes, plus about
25 megabytes of generated C code and auxiliary files. The executable in that case will
take up about 250 kilobytes,

83 STARTING EIFFELSTUDIO AND OPENING A PROJECT

3 STARTING EIFFELSTUDIO AND OPENING A PROJECT

In the rest of this Tou¥OURDIR denotes the directory where the example resides (the
original, $ISE_EIFFEL /examples/bench/tour , or a copy). Launching will use

the operating system’s mechanism for starting a program, so we look separately at
Windows and at Unix/VMS.

Launching EiffelStudio under Windows

On Windows, you can launch EiffelStudio from the Start Menu under

Programs - ISE Eiffel Version - EiffelStudio

whereVersionis the version number, e.g. 5.0. Alternatively, you can double-click on
the icon that the installation procedure will have added to your desktop (if you have
selected that option during installation).

If this is the first time you are using EiffelStudio, you may get a dialog asking for
an unlock code or inviting you to register the product. Pleassatact ISE for
registration and purchase information.

Launching EiffelStudio under Unix or VMS

To launch EiffelStudio on Unix or VMS, change directoryY®@ URDIR and, from the
command line, type

estudio

In general you can start EiffelStudio from any directory, but to make things simple for this
Tourplease make suréndeed to execute thesstudio command fromYOURDIR. (This
will allow us to use relative rather than absolute names for some of the files involved.)

mailto:sales@eiffel.com

10 EIFFELSTUDIO: A GUIDED TOUR &4

4 COMPILING AND EXECUTING ASYSTEM

EiffelStudio first comes up with a window and a dialog on top of it; the dialog looks

like this (from here on the look-and-feel will be different on non-Windows platform,
but the contents will be the same):

2§ EiffelStudio |

o
o+

& % Create a new project

Basic application (no graphics library included)
Microsoft \MET application

Graphics applicakion, mulki-plakform, wikh Eiffelvision 2
Graphics application, YWindows only, wikh WEL

Wizard Application

- Open a project

g " Open existing Ace [control file
p g Ace |]
@ " Open compiled project Browse. . |

[T Don't show this dialog at startup

M et Cancel

As this is our first project we want tOreate a new project. The three possibilities are:

“Create a new project ”, which would let you select one among the common
schemes — basic application, graphical Windows application, graphical multi-
platform application, Microsoft .NET application — and set up everything for you.

* “Open existing Ace (control file) ", which finds the setup in a control file,
called anAssembly of Classes in Eiffal Ace.

“Open compiled project ”, which will work once you have compiled a project.

84 COMPILING AND EXECUTING A SYSTEM 11

In future sessions you'll probably use the first option for a new project, as it takes care
of generating everything for you, and the third option for an existing project. Right now,

though, we want you (like an expert EiffelStudio user!) to use an existing Ace that

exists precisely for the purpose of this Tour. So please select the second option

Open existing Ace (control file)

and clickNext. This brings up a File Explorer inviting you to select an Ace file. The
file you want is, depending on your platform, one of

$ISE_EIFFEL\examples\bench\tour\Ace.mswin.ace
$ISE_EIFFEL/examples/bench/tour/Ace.unix.ace

(the first one for Windows, the second for Unix; remember i8E_EIFFEL stands
for the location of the Eiffel installation, such &s\Eiffel50 ; Ace files are normally
marked by theace file extension). For VMS, select the Unix variant.

Use the File Explorer to go to the directory $ISE_
EIFFEL/examples/bench/tour/ and select the appropriate fileaswin.ace or
unix.ace , for your platform. A confirmation window comes up:

=

- Ace file

Ips'*.EiffeIEEI'eramples"«benchktnur'\.&ce.mswin.ace Browsze. .

- Location

IE: happzhEiffelbhexampleshbenchhhour Browsze. .

The project location iz the place where compilation
files will be generated by the compiler

v Compile the generated project

k. Cancel

Click OK to confirm. This selects the Ace file and starts compilation of your project.

12 EIFFELSTUDIO: A GUIDED TOUR &4

During Eiffel compilation, a progress bar displays the successive compilation
steps, or “degrees”. The bulk of our little project is the EiffelBase library, which the
EiffelStudio installation procedure has precompiled; so just now there’s only a few
extra classes to compile, and the process is almost instantaneous on a state-of-the-art
computer. Even if you had to compile the EiffelBase classes, EiffelStudio compilation
is so fast that you would hardly have the time to read the “degree” messages; you can
see them later in compilations of bigger classes and systems.

On an IBM Thinkpad, Pentium 1ll 850 MHz, 256 MB, running Windows 2000
Professional, Eiffel compilation takes about 9 seconds for the entire Guided Tour
system including non-precompiled EiffelBase.

After Eiffel compilation completes you will see the message

System had to be frozen to include new externals.
Eiffel compilation system recompiled.
Background C compilation launched

At this stage you can start using EiffelStudio, e.g. for browsing, but since C compilation
won't take long either (about 15 seconds on our test machine), it's just as well to let it
finish. C compilation messages will appear:

* On Windows, in a new console.
e On Unix, in the window from which you launched EiffelStudio.

Why C compilation? ISE Eiffel under some circumstances uses C as intermediate code
for its compiler’s generated code, and reliesaoC compiler to process the result. On
Windows you will by default use the command-line Borland compiler (included with
the ISE Eiffel delivery); you may replace it by another, such as Visual C/C++ from
Microsoft (available directly from ISE) if you wish. On Unix you will use the resident

C compiler.

EiffelStudio reports that the C compilation has terminated:

Finish x|

Makefile translation completed successtully.
C-compilation completed successtully.

ik,

84 COMPILING AND EXECUTING A SYSTEM 13

Congratulations! You have successfully compiled your first Eiffel project. More
precisely it's been both “melted” and “frozen”. Strange terminology, you may think; in
a little while we’ll see why these compilation steps are called that way.

Executing the system

The system doesn’t do anything exciting, but let's execute it anyway. Find the execution
icon (“Run with breakpoints”) at the top of the EiffelStudio window:

Ezi ISE EiffelStudio: Cllapps'Eiffel50examplesibench®our
File Edit *“iew Favortes Project Debug Toolz Windoww Help

ﬁE = > % N &l | KD | 4 Wy i ||aclu5ters| *Features @ Search Eﬂcgntext | |

4= = Class I j Feature I o j Faormat @J
EACO @a&sa EBd=is)na
Features + - O x| | Editar

The icon for
"Run with breakpoints™

Elus_ters e |9 - 0OX||Context

-1 baze System

-3 root_cluster nare : simple

location: C:i:happsiEiffels0hexsmplesibench’ to
ace file: Cihapps'Eiffels0hexamplesihench’ to

It would be OK too to use the neighboring icon to the left, “Run without breakpoints”,
since we haven't set any breakpoints. Click either icon to execute the system.

This little application doesn’t use graphics or anything fancy but simply creates
some objects and displays some information. Output done using the default Elffel I/O
(from the EiffelBase classedNY and STANDARD_ FILES) goes to a console. On
Unix/Linux and VMS it's the window from which you started EiffelStudio. On
Windows it’'s by default a new console window that comes up when and if the system
does its first output operation, and stays up:

14 EIFFELSTUDIO: A GUIDED TOUR 85

= | Chapps Eiffel5s0examplesibenchitour EIFGEHWY ¢ -0l x|

ISE Eiffel spoken here

Calling a voutine of class HEIR
Showing an attribute of class HEIR

In class PARENT

Meszage numbher 1

Press Return to finish the execution..._

The messagePress Return to finish the execution ” would not appear if you
executed the system from outside of EiffelStudio, for example from a command line.
Its purpose within EiffelStudio is clear: to let you see the console output; without it, the
console would go away at the end of execution. (None of this applies to
Unix/Linux/VMS since there is no new console window to get rid of.)

If before closing the console window you look at the main EiffelStudio window
(by moving away the console window) you will notice that it looks different from
before, since it now shows the fields useful in monitoring execution and debugging. But
we’ll look at this later. For the moment just dismiss the console by following the advice
to “Press Return ": hit the Return or Enter key.

5 ALOOK AT THE PROJECT DIRECTORY

Before we proceed with the facilities of the environment, let’s take a look at the way
EiffelStudio organizes project files.

With EiffelStudio, you build projects. Most projects yield an executable system,
although you can also build a project just to define a library for use by such systems.

Every session is relative to a project; you can start a new project from within
EiffelStudio by going to thé-ile — New Project menu, but pleasdon’t select that
menu entry nowas we have many more things to do with our current project first.

85 A LOOK AT THE PROJECT DIRECTORY 15

Every project has groject directory which will contain the files generated and
managed by EiffelStudio. The project directory may also host some of the source files
containing your Eiffel classes, the Ace (control file), and external software written in
other languages, but that is not required; the source files may reside anywhere. Some
users, in fact, like to put nothing else than the EiffelStudio-generated files in the project
directory; this separates user-managed and system-managed files, and can facilitate
configuration management, backups and porting.

In this simple Tour, things have been set up so that all the files of interest, source
texts as well as generated ones, will appear in the project dire¥t@tyRDIR (either
$ISE_EIFFEL\examples\bench\tour or the copy that you have made). Go to that
project directory using the Windows explorer asxcacommand, and look at its contents
(usingls on Unix/Linux):

& Capps Eiffel50'examples'benchttour

J File Edit “iew Fawvorites Toolz Help
J s Back + = - | ‘Qhsearch [Folders C 4History | = W2 % | Ed-
JAWVESS] CrappsEitfelslexamplestbenchitour
1 e = MName | Size | Type Madiifie
"D (. [EFGEN File Folder SMEI200
LS EAce.mswin.ace 1KB ACEFile SIEF20C
tour EAce.unix.ace 1 KB ACE File 2500
Eheir.e 1 KB Eiffel zource T1HAE
Select an item to view its description. B invalid.e 1 KB Eiffel source T1HME
_ Egarent.e 1 KB Eiffel zource 115581 E
ee alsn: K] simple epr 296 KE EiffelStudio Project File SH7I20
Documents &]testrant & 1KB Eiffel source SLLE
Metwark
Computer
1]
8 ohject(s) 295 KA LD my

The contents of thi¥OURDIR directory include the following:

» First you see a number of files with the extensic® for “Eiffel”. heir.e,
invalid.e and others. These are the Eiffel source files, each containing one class.
The recommended convention is to store a class of n@ab®SS NAME into a
file of nameclass_name.e, where class_name is the lower-case version of
CLASS NAME; here, fileheir.e contains the clagdEIR and so on. As you may

16

EIFFELSTUDIO: A GUIDED TOUR 85

remember, Eiffel is case-insensitive, but the standard convention for class names
is to write them in all upper case. Calling the fitdass name.e is only a
recommendation, not an obligation; but yane required to store one class per file.
This keeps things simple and facilitates project and configuration management.

You also notice two files with aace extension. These are the compilation control
files. The reason there are two is that this example has a Windows version and a
Unix/Linux version. As you remember, the Ace files for this example were
available as part of the delivery; we used them to compile the project. In most
practical cases, however, you won't need to build an Ace; if you useGheste

a new project ” option of EiffelStudio (remember the first screen on pd§g
EiffelStudio will build the Ace for you; if you change the Preferences during a
session, EiffelStudio will update the Ace. When you become an experienced Eiffel
developer you can also edit the Ace file directly; Aces are written in a simple
Eiffel-like notation calledLace (Language for Assembling Classes in Eiffel). If
you like you can take a peek at Lace by opening the releast file with a text
viewer or editor now (but don’t make any change); it shouldn’'t be hard to
understand what it’s all about. But that’s not really necessary at this stage.

Next you see a file callesimple.epr . This is the Eiffel Project Repository, hence
the extension. Any successful compilation of a project will produce a project of
this kind, system _name.epr. To open an existing project when you start
EiffelStudio (this was the optionOpen compiled project ”in the initial screen

on pagel0), you will just select the correspondirepr file.

Finally you will notice a subdirectory calldaiFGEN, for “ElFfel GENeration”.
EIFGEN is created and maintained by the compiler to store information about
your project, including generated code for execution. EiffelStudio manages your
project in such a way th&IFGEN can always be re-generated if need be; this
means in particular that if things go wrong for any reason and you want to make a
fresh start you can always delete this directory and.¢pe file and recompile
your system, recreating a nds¥FGEN in the process. This also means that you
should not add any files into this directory, or modify any of its files, since a later
compilation is free to change or regenerate whatever it chooE#SGEN.

Later on, we will see that EiffelStudio may generate three more subdirectories of the
project directory: Diagrams, if you produce graphical system diagrams;
Documentation , if you request system documentation, for example HTML; and
Metrics , if you perform measurements on your system. Other than these directories,
EIFGEN, andsystem_name.epr, EiffelStudio will not touch anything in the project
directory, so you may safely add and change whatever files and subdirectories you like.

86 STARTING TO BROWSE 17

You seldom need to look intBIFGEN, although you should know that it’s there.
Right now if you check the contents of the project directdd@URDIR (using the
Windows Explorer on Windows, thés command on Unix, or some equivalent
mechanism), you will see thaEIFGEN has been created, itself with some
subdirectories, includingV_Code which contains the generated cod#/ (for
“Workbench” — we’ll see the reason later). Feel free to browse through it if you like,
but don’t change anything.

By the way, we are now done with any platform-specific instructions. Everything
in the rest of this Tour, other than the graphical look-and-feel, will work the same across
all EiffelStudio platforms.

6 STARTING TO BROWSE

It was important to take a look at how EiffelStudio stores your project, but unless your
idea of fun is to poke around directories to look at compiler-generated files that’s not
really the exciting part yet. Among the most innovative aspects of EiffelStudio is a
unique set of facilities tbrowsethrough a software system.

Browsing styles

Browsing — traversing the structure — is particularly important in object-oriented
development and especially in Eiffel because of the speed at which you can construct
sophisticated class structures, making use of inheritance, genericity, the client relation
and information hiding, and subjecting features to all kinds of adaptations — renaming,
redefinition, undefinition, effecting — that are key to the expressive power of the
software, but call for smart tools to keep track of what's going on. EiffelStudio’s tools
are second to none. Among their key properties:

* You can choose many different ways of browsing: sometimes you knonatme
of a class or feature, and will get to it just by typing it; sometimes you want to
traverse the system through its cluster-subclusteucture often, you see a
reference to element (class or feature) in the text of another element, and just want
to get to it by following that reference, likelayperlink You'll be able to use all
these techniques, and alternate freely between them.

* The browsing facilities are always available. There is no “browser” in EiffelStudio;
you just browse when you want to, by looking at the information you need. You can
do this while editing, debugging, or performing any other of the analysis, design,
implementation, extension and maintenance tasks of system construction.

18 EIFFELSTUDIO: A GUIDED TOUR 86

* Although classes are stored in files and clusters in directories, you can for the most
part forget about the file system. Unlike most environments, which let you
manipulate files containing software texts, EiffelStudio lets you concentrate on
your development objects- the units that make sense for you: features, classes,
clusters, systems. You think in terms of those conceptual units, and don’t have to
worry about where they are stored. Most of the time, you'll just forget about files
and directories.

* You can produce manyiewsof the development objects. For a class, you may see
the full text, the interface only, the inheritance structure, the clients, the features,
and many other views. You can even disptagphical views along with textual
ones. All these are fully browsable; you can go from one to the other as you please.

A Development Window

Let's see how this works. First, take a look at the EiffelStudio window:
8 ISE EiffelStudio: Capps Eiffel50iexamplesibenchitour =1l =l

File Edit “iew Favorites Project Debuy Tools Window Help

EE = @ % B = | ETER | & Hn W ||aclusters| ol Features @ Search | [}Context | |

= = Classl VI Featurel j Farmat @J

EA®O de&dd @ Ma

Features + - O » || Ediar -0
Features Class

Clusters @ @ | 9 - 0 x| | Context - Ox

tl hage System

-0 raot_cluster — simple

location: C:happs\EiffelS0%examplesibench) tour
ace file: C:happs\EiffelS50%examplesibench) tourh Ace.msvin,

Clusters Root class | Context
TESTROOT (root_cluster): make

1| | +

Output | Diagraml Class | Featurel Metricsl

If some parts are too small, just resize the window to arrive at something like what's
on the figure. When it first comes up, EiffelStudio initially uses a fairly small window,
because it's designed to run on a 800x600 display, although of course a bigger display
is recommended. But as soon as you have resized it, EiffelStudio will come up, in the
next session, with the size you've set.

86 STARTING TO BROWSE 19

You can see four panes, marked on the figikesatures , Class, Clusters , Context .
There will be others, such &earch, and you can remove any of them, excE€pdss,
at any time to make room for the others.

So far we have talked abouteEiffelStudio window”, but in fact that’s not correct.
What you see i®ne“Development Window’, of which you can have as many as you
wish. Some people prefer to use a single development tool, avoiding screen clutter; others
don't think twice about having lots of windows, taking the “desktop metaphor” to its full
conclusion (some non-computer desktops are quite cluttered). There are many ways to
start a new Development Window; for example if you look at the entries iRitkanenu
atthe top left— don't select any of these entries yet, just look — you'll see, among others,
New window , which would create a new Development Window.

Whether you have one Development Window or many, each may haveagés
an element of the system: system, cluster, class (the most common case), feature, run-
time object. This simply means that the tool displays information about that element.

Retargeting by name

Our first example screen was targeted to the whole system. To retarget it to a particular
class, you can just type the class name — if you know it — into the Class Field at the
top left:

EI‘ ISE EiffelStudio: Chapps Eiffelsl'examples'benchitour
File Edit “iew Favorites Project Debug Toolz Window Help

i | cll”ID | H ||aclusters|*Features 'a

Peature I j Format I
B @ Correygia SR oM

* | | Editor

Features + =

Class field

Let's use one of the most basic classeSR/NG from the Kernel Library of EiffelBase.

Bring the cursor to the Class Field, click to make it active, tgp@éig (or STRING)

and the Enter key. As shown on the next figure, this retargets the tool toXT&¥8/G.

Note that you didn’t have to worry about where the class resides in the files of your
computer. Also, the Class Field will now show the target’s class n&@A&/ING, in

upper case, since that is the standard Eiffel convention for class names. It doesn’t
matter, when you enter the name into the field, whether you use lower or upper case, or
some mix; EiffelStudio will show the name back in all upper case.

20 EIFFELSTUDIO: A GUIDED TOUR 86

[Ii STRING in cluster base.kernel {(precompiled} = |EI|5|

File Edit “iew Favarites Project Debug Tools Window Help

E =@ 4 NE | SR | o B ||ac|usters| o Features QSEarch [E}context | B

4= =) Claz: ISTHING j Fealurel j Farmat EL)

EACDQ EeaiélalmBEF=ac A

Featurez + - O X| | Editar - O
=3l Inttislization +|| indexing B
o make -
E@ Initialization description: [

o remaks Fequences of characters, accessible through integer indices
o make_from_stril in & contiguous range.

= make_from_c—lll 1"
d I I 3 F] I I

Clusters @ ® | & - 0O X || Context

El hase Syatem
=27 root_cluster

a -
X 4

nEne siwmple
location: C:happs\EiffelS0)examplesibench)tour
ace file: C:yappsh\EiffelS0)exawplestibhench) cour’ Aoe.mswin, ace

Root class
TEZTROOT (root_cluster): make

4| | »

Output I Diagraml Clasz I Featurel Metricsl

The Development Window is now targeted to cl&BRING. Each of the four panes
contains a tool:

* Features Tree, top-left: a tree view of all the features of the class, grouped by the
feature categoriesn(tialization , Access, ...) as they appear in the class.

» Editing Tool, top-right: the source text of the class, editable. For the moment the
pane is too small to display much of interest — it only shows the very first few
lines — but we’ll enlarge it when we need to modify class texts. (NORING,
though, as it’s not the kind of class you want to change during your first session
with EiffelStudio, so just wait a bit.)

* Cluster Tree, bottom-left: a tree view of the clusters of the system.

» Context Tool, bottom right: a bag full of neat tricks. At the moment it just shows
some general information about the system (where it resides, the name of its root
class TESTROOT), but more generally it's there to give you all kinds of
interesting views of the system, through the various tabs at the boRatput ,
Diagram , Class, Features , Metrics .

86 STARTING TO BROWSE

21

A peek at diagrams

There’s indeed a lot in the Context Tool, too much to see right now, but to feed our
curiosity let’s just take a peek at the Diagram View. Clickfhagram Tab at the bottom:

The DiagramTab

Outpu 1! Clazs | Featurel Metricsl

This displays a class diagram in the Context Tool:
=0l x|

File Edit “iew Faworites Project Debug Tools Window Help

D4 NE o = | 4 i ||ﬁclusters|*Features G search |EﬂContext |

A= = Class ISTHING VI Featurel j Farmat @
BEADOddids BBF=a0a
Features + - O x| | Editar - a
= Intislization a|| indexing =]
s make —
=14 Inttislization description: [

o remake Segquences of characters, accessible through integer indice

ol make_from_sti in a contiguous range.

- make_from_c 7

o from_c - -
CH I _l_I | | D
Clusters @ @ | & . O x| | Contest - o X!
@8 boss x| tee>taloeF|pit|og o [/ B
-3 root_cluster

*®
INDEXABLE
G,H-= INTEGER

| |

Output Diagram I Class I Featurel Metricsl

If nothing appears in the Context Tool when you click the Diagram Tab, that’s because
you are using an installation that has already been modified from the default settings.
Select the menu entiyiew — Merge Context Tool ; this will display the diagram

as shown. We'll see the explanation for this behavididnlatingthecontext”, pages8.

22 EIFFELSTUDIO: A GUIDED TOUR 86

The diagram is cropped to the available area; to get the whole picture, resize the window
from the bottom-right corner. You can now see the inheritance structure:

=L}
'L L8 k3 iy e et | Lo [
= o Dl [i x| Yumm | B IR
HFo dHEE D3F=aa 98
,’T' - Lol ms .o
rdadta sk 1y n
o ey =
B it - '
o e I HEE K K
- T T N
o ey
e
£ —] Bl siwiea T i s u
Llsted WE 5 s 00| Coei - oK
'J‘:_'__m_ X o wfa FEeT oS g BRI o (1 E
" IMRECEANLE PEREANLE ™ e e T EADCHAE ™, —
i ey T ANHARLE -_:;.-._-q:'r.m-.m._i:__ Py e | TR NANBLEE :I
— — g & e ey
- I i
e T P e
— —ga— "'.:1:=': _—
ST
e
el —
S ETARG PATH ST
1] 1 ﬂ
=] Ll | ¥ | s |

The red arrows shomheritancerelations:STRING inherits fromINDEXABLE and so

on. We'll see later how to display the other key inter-class relatbant, but it's not
particularly interesting foSTRING. The default placement of the classes is quite good

in this case, but if you don't like it you can change it; your changes will be retained the
next time you bring up this diagram, in this session or a later one. (That's part of the
information theDiagram directory keeps.) It will also be used in Web diagrams if you
choose to generate an HTML form. To move a class bubble, just use standard drag-and-
drop. For example you may move everything to the left and make the figure more compact:

Lomienl p BN
e e e A FEE 0 g L NN o T =]
{ E;_'T”%".ﬂﬁbﬂ:: :.___' |f’.mi£ 3 \.E"""‘E"‘_-‘ E*”i‘“_"-f.
fﬁ, _-"fr':_srlj:n:.t.]l"-
- 1T -
e -
-'_'_'_'_,—I—'- — —

——
-~ = 3 =
S TRING_MANDLER

Dpi e [Camt | P [oo |

86 STARTING TO BROWSE 23

Later on you will learn how to use the Diagram View not just to display system

structures graphically but also to build and modify systems. EiffelStudio indeed
integrates the functionality of a CASE (Computer-Aided Software Engineering)

workbench, seamlessly integrated with the programming facilities. But for the moment
this peek at the Diagram View is enough, so let’s get back to browsing.

Retargeting from the Cluster Tree

Your first browsing action used a class of which you knew the nai&/NG. What

if you don’t know what'’s in the system and want to explore it? Among other techniques,
you can let the Cluster Tree, in the Cluster Tool at the bottom left of the Development
Window, guide you through the system’s structure:

[Ii STRING in cluster base.kernel {(precompiled}

File Edit “iew Favarites Project Debug Tools Window Help

E =@ 4 NE | SR | o B ||aclusters|*Features QSEarch [Ehcar

<@ =P Clasz: E;TF:II-JG j Fealurel j Fi
EACDQ EeaiélalmBEF=ac A

Featurez + - O x| Editar

=3l Inttislization +|| indexing

- edf make

E@ Initialization description: [

o remake Sequences of characters, accessible

- make_fram_stri
oo maks_from_c =

in a contiguous range.
]"
4]

Alusters 0 @ |0, %O X

Contest

H-C0 baze
=27 root_cluster

@X |} i >t A 2H@G|w L
£ £
INDEXABLE RESIZABLE
&, H-> INTEGER. [G]
ree

An Eiffel system, as you know, is organized into clusters, which you can structure
hierarchically into subclusters. Here we see the top two clusterse, containing the
EiffelBase library; androot, containing the few classes specific to our Guided Tour
system. Let's go intobase, ISE’s open-source library of fundamental reusable
mechanisms. Click the little sign to the left of its name; this expands the first level of
the base cluster, to show its four subclusteeszent for event handlingkernel for the
Kernel Library, structures for the Data Structure Library, arglipport for additional
supporting mechanisms.

The Cluster

24

EIFFELSTUDIO: A GUIDED TOUR 86

The most extensive of these EiffelBase libraries

+ remake
i--offm make_from_stri
ool make_from_oc -

o | b

Clusters & ® |9 - OX
=8
tl event
Iil kernel
&0 structures
: tl sUppart
EI root_cluster

=

[y
=

6 |

sisucture, which contains

implementations of major data structures and algorithms of computing science. Click

the+ next tostructure to see its own subclusters:

o remake
- o make_from_ztri

o make_from_c
l | b

Clusters 0 ® | 9% - 0O X

SOES
-0 event

Iil kernel

=00 structures
EI ACCESS
El cursor_tree
-2 cursors
El dizpenser
El iteration
-2 list

El =&t

El =ort

-2 storage
-0 takle
El traversing
=27 tree

F-C0 support

{20 root_cluster

raEE

If you initially don’t see as many details as shown on this figure, you may get them by
resizing the window, moving the vertical pane boundary, and possibly scrolling.

86 STARTING TO BROWSE

25

The EiffelBase Data Structure library and its subclusters are described in the book

Reusabl&oftware Let's go to one of the most frequently used subclustatsgontaining
implementations of list structures. Click thenext tolist. This time, since listis a terminal

cluster, it's not subclusters you'll see, blassesidentified by small ellipses:

o from_c

hd | KT

Clusters & @ | %

- O X || Cor

The ellipse, or “bubble”, is indeed throughout EiffelStudio, as in the Business Object
Notation (BON, the underlying graphical convention), the distinctive symbol for classes;

B0 base

&0 event

=20 kernel

=00 structures

-0 access

-0 cursor_tree

&0 cursars

&0 dispenser

-2 iteration

=07 st

----- @ ARRAYED_CIRCULAR
----- @@ ARRANED_LIST
----- i@ BI_LINKABLE

----- @ CHAIN

----- @ CRCULAR

----- @ DYNAMC_CHAIN

----- @ DYNAMC_CIRCULAR
----- @ DYNAMC_LIST

----- @ FIXED_LIST

----- @ LINKABLE

----- @ LINKED_CIRCULAR
----- @ LINKED_LIST

----- @ MULTI_&RRAY _LIST

----- @ PART_SORTED_LIST

----- @ PART_SORTED_TWO_WAY _LIST
----- @ SEQUENCE

----- & SORTED_LIST

----- @ SORTED_TWO Wway LIST

----- @ TWO WAY CIRCULAR

----- @ TWO_WAY _LIST

-0 et

-

remember the larger bubbles showing classes in the Diagram View a few moments ago.

http://www.eiffel.com/doc/documentation.html#rs

26 EIFFELSTUDIO: A GUIDED TOUR 86

Our second technique for retargeting a Development Window to a class (other than
typing the class name as we did before) is to click the class in the Cluster Tree. Do this
now: click LIST in the tree. It doesn’t matter whether you click on the class name or
the adjacent bubble. This retargets the tool to cld$§. Because the Context Tool is
still in Diagram view, it will display the inheritance structure for the new target class:

= [1L1]

i Rl v o Smes by Goed P HEg
B BE « - & B i e (i et |] Comnt | |

= et |2 2] Fasmme | =] et i) 4 0) @
AN P HERE BEd==2 92

A AREATRE_CRCLLE 13

i AFELVET [T TR
1

il [LA | =

L i ——

R ._‘_.-"# B ’tf\-: _\--.?_'——___
————

A LR

A YRR CHA -~ “"-\._\ e B
L Lo T .-"-ff- 0y -\""“-H__h_

A DAYMLMAC LT 2 .
. P LT R P e ® -

o LA DTN LT .'.m-‘lﬂ_ p { F:-IRT_i.-'IRT.ELI_

T § nn ' i !

i LD LET — I_ e R . TR ~4i§ = PART ¢ ll:l-ﬂ"-'lh"l:"_l il

=" i —

- um
o LT (T -
i R ki i| |]

L N e e S

While this view is being produced you may see (or just get a glimpse of, if your
machine is fast) messages indicating that it's producing the diagrarh/$F. In a
moment we’ll switch views in the Context Tool as we won't need the diagrams.

As the tool is now targeted tb/ST, the Class Field at the top left now shows the
name of that class, exactly as if we had typed that name, the way we diGWRIWG
in the previous method of retargeting.

Moving back and forth

Here now is a third way to retarget. Towards the top-left part of the Development
Window there ardBack andForth buttons, which will enable you to revisit classes
already seen during the current session:

86 STARTING TO BROWSE 27

EII LIST [G] in cluster base.structures.list (precompiled)

File Edit “iew Favaorites Project Debug Tools Window Help
= @4 &= | SR | &5 By ||aclusters| o Features QSearch [Fhcontext | B
= Class II_IST j Featurel j Farmat £

Features + - 0O X || Editor
@ Comparison indexing
I i The Back button

@ Status report

description:

"Eequential lists, without commitment to a pa

Click the Back button. This retargets the tool to the class you visited previously:
STRING. TheForth button, immediately to the right @ack , becomes active. Click
it to retarget back ta/ST.

Note that all buttons of the interface have a “tooltip”: if you move the cursor on a

button,without clicking , and wait a second or so, a small message comes up, explaining
the purpose of the button. You may try this now ori@aek andForth buttons.

The Target History

As a fourth way to retarget — there are more, and after this one we’ll stop counting —
you can also use the Target History menu, which you can bring up through the little
arrow to the right of the Class Field:

CI‘ LIST [G] in cluster base.structures.list (precompiled}
File Edit “iew Favortes Project Debug Tools Window Help

EE = & & B E | B | & M CIusters|iFeatures @ Search | [}cContest | B

@ =P Class ILIST }aturel j Farmat EL)
ADO @& Ea @aef>=ana

Featurez + E ditar

EI @ Comparisan indexing

- iseae Arrow for the Target| History menu

EI @ Status repoart description:

If you cI|ck this arrow — the little black triangle — you will see a menu of all your
recent targets. Doing this now will only show the two classes visited sGTERING
andL/ST, but later on there will be more entries. By default EiffelStudio remembers 10
classes; this is one of the settings you can change later if you wish, through the menu
Tools - Preferences . (There’s no point in doing this now.)

Adding to Favorites

If you find yourself often needing to examine a particular class, you can add it to your
“Favorites”, similar to the favorites, also calléokmarkswhich you use to retain
interesting pages in a Web browser.

28 EIFFELSTUDIO: A GUIDED TOUR 86

It's easy to add the current target — currentlyST — to your Favorites. Do it
now: go to theFavorites menu and selecAdd to favorites . Now display the
favorites; one way is to go back to that same Favorites menu and stheet
favorites . The Favorites Tool appears below the Cluster Tree:

1= L1
T R W B T Gy GG e bl
BFed NE « - & i i P laass fd et |2 }oomene: | [
el] =] remes | e 8 @ 10
FANLEEE EHFsa 8
= 1 3

[(it R T Bk ——— s
I CHAR
oAyt
The Faworites Pane]
¢ TET
L] —
S
- T 5 e g, S L
4 ”T) e Il
Dt :L‘Elm Irhn.l+|llllll.|

This also means one more way to retarget a Development Window: click a class in the
Favorites Tool.Twoways actually, since even if you don’t see the Favorites Tool the
class will appear in thEavorites menu and you can select it there.

Right now we don’t need the Favorites Tool, so you can get rid of it by either
selectingHide favorites in theFavorites menu or clicking the little Close icon at the
top right of the Favorites Tool:

| -l LLI
i I = Closs Favories: Pame ican

Starting a new tool

With all the techniques seen so far, you were able to retarget the current Development
Window to a new class. As noted, you may also wish to have two or more Development
Windows targeted to different classes; this is useful to keep track of several things at
one. A simple way to start a new tool on a class is to find the class somewhere in the

interface anatontrol-right-click it.

86 STARTING TO BROWSE 29

Here, for example, the diagram in the Context Tool shows, at the top, a yellow
bubble for the clas€HAIN, a parent oL./ST. (You can see it for example on the next-
to-last figure.) Go to that bubble and control-right-click it, that is to say, click with the
rightmost button of the mouse while holding the CONTROL key on the keyboard. This
starts a new Development Window, targeted to the chosen Clegs/V-

L him bt b) p— =
Fim 2 Ve Feeodem Peed [Ty Fedre Sl
B aF = W =] - B i Baias o remon O S | oo | [l
= = l.l-||||.-.-'-'. x| Flrnll_ ﬂ P | [E] 3 O) 0
EANG JdERE BHHF== 148
Frgwm o LT e
- S|l imaexira _I
o o =
i mr 3
o b lar meq oW
t" — 131 ¥ =
¥
s | '_E|-I| | ﬂ_—l
Cpppey @ (% - 0|l fayper . OK
=+ 5
_'E‘f_l'ﬂ Ll |'l|-i-||ﬂ-r-:l|

The place where we found the claS$/AIN in the original tool (the one targeted to
LIST) was the bubble representing the class in the Diagram View. But that’s just one
possibility. A general principle of EiffelStudio isemantic consistencywhen you

want to work with a development object — a class, a feature, a cluster — you can grab
it wherever it appears in the interface, and in whatever format it is displayed: you might
have spotted it be in the Diagram View, in the text of a class in the Editing Tool, in the
Cluster or Feature Tree, or in any of the class documentation formats that we will soon
see; and the form under which you found it may be text — the name of the class in a
text document — or some graphical representation, such as a class bubble in a diagram.
These variants don’t matter: if the class or other development object catches your fancy,
you can do whatever operations make sense for it, such as Control-right-click to start a
new development object targeted to it, or any of the other operations we’ll see next.

While you are at it, try a couple of other ways to create a new Development
Window. Go toFile — New window ; this creates a new tool, untargeted. The title bar
says ‘Empty development tool #1 . You can get the same effect by clicking the
Create New Window icon, leftmost on the top row of buttons, just belbue®. The
corresponding keyboard accelerator is CTIRL-

30 EIFFELSTUDIO: A GUIDED TOUR §7

7 CLASS VIEWS

We haven’t even looked at a class text yet, but it's important anyway to see how
EiffelStudio provides you with numerous, complementaswsof your software. The
Context Tool is the primary place to look for such views.

We’'ll need just one Development Window for the moment, the one that was targeted
to LIST. You can get rid of the others by closing their windows (through the top right cross
mark on Windows and the equivalent in other window managers), or thfelegh. Close
— but don't select “Exit” which would take you out of EiffelStudio altogether!

If you don't see a tool targeted #0ST, just retarget one, as you know how to do this
now, for example by typing the name followed by Enter in the Class Field at the top left.

Firstlet’s give ourselves more space. Right now we don't need the Cluster Tree and Feature
Tree panes. Get rid of them by clicking the corresponding buttons on the top toolbar:

T T T N Lot

i R v Peoben Sees bbb ek e

coesmm . | - & @ Yiws Lo B
-r-q-l’l-i -II'-nn.- =| s (1] il (01 @
DA UEHEE BHF==
o = - =

E
I The Clusters and Features bufbons

1
B R | dEmeraps Lant

You can get these panes back later by clicking the same buttons again.

Another way to hide a pane is to click its Close icon, the little cross mark highlighted
(for the Features Tree pane) on the left in the last figure.

Two panes remain, showing the Editing Tool and the Context Tool.
(@1 ot e —— =l0isl

e EE View Probii MBS WLy Tk FEDee HEl
BEedEE - - By | o Preoeny O sewch |]conss |1
= =% Cm . 2] P | 2| Foma|i] i) 1
TANp PEHEE P22 S8

Lo -3
e L Rlen] j

dppoTapnLon

=Hewpemnlial isia, WLURAA il bmeal BE & g E s LA §E i el

Loy st « B W]

o e o A ST LR LA ol T =]

=
¢ CHAR
T T

87 CLASS VIEWS 31

Make sure the Context Tool pane is large enough; you can resize the window and, if
necessary, narrow down the Editing Tool pane since we don't need it for the moment.
Don’t worry, though, if the Context Tool shows only part of the diagram, as it does on
the last figure, since we will now use the Context Tool to display information other than
the diagram, by selecting the corresponding tabs.

The Class Tab

The first tab we’ll look at is the Class Tab. You'll find it at the bottom of the Context Tool:

The Class Tab

~

Metrics

Dutput Diagra ‘. eature

This gives you access to many forms of information about the current class — the target
of the Development Window. A set of buttons at the top of the Context Tool enables
you to display a number ofiews of the class. The currently highlighted button
indicates the default viewAncestors . You can see the others’ names by moving the
cursor over the various view icongithout clicking, and reading the tooltips.

BEA0 s maur=na

E ditcr
indexing

The View buttons

description:
"Zequential list

EAH|vh e+ +E+*+‘@

ithout commitiment to a particular repre:

p—
Text | | Exported
Flat Externals
Contract Once and constants
Flat Contract Deferred
Ancestors Routines
Descendants Attributes
Clients Suppliers

The view currently displayediyncestors , shows the inheritance structure that leads
to the current targeL,/ST.:

32 EIFFELSTUDIO: A GUIDED TOUR §7

CI‘LIST [G] in cluster base.structures.list (precompiled}) 2 _|EI|1|
File Edit “iew Favarites Project Debug Tools Window Help

ig = > % . -E| | T | j{, | H | &CIusters *Features QSEarch EﬂCnntext | .

4= =) Claz: ILIST j Fealurel j Fnrmat EL)
EARO EEEs araE=0a
E ditar - O
indexing =]
—
description:

| "Secquential lists, without commitment to & particular representation' I_ILI
4 3
Context - Ox

BEAEvARS + & & @ E
Ancestors of clazs list
LIST [3]
CHAIN [G]
CURZOR_STRUCTURE [G]
ACTIVE [G]
BAG [G]
COLLECTICN [G]
CONTLINER [G]
LT
IMNDEXAEBLE [G, H -> INTEGER]
TAELE [G, H]
BAG [G]...
SEQUENCE [G]
ACTIVE [G]...
BILINELR [G]
LINELE [G]
TRAVERZAELE [G]
CONTLINER [3]...
LINELE [G]...
FINITE [G]
BOX [G]
CONTLINER [3]...
SEQUENCE [G] ...

Dutputl Diagram [Class IFeatureI Metricsl

This shows that /ST is an heir of CHAIN which itself, as an example of multiple
inheritance, is an heir CURSOR_STRUCTURE, INDEXABLE, and — twice, as

an example ofepeatednheritance —SEQUENCE. If, because of direct or indirect
repeated inheritance, a class appears more than once, the display doesn’t repeat its
ancestry the second and subsequent times; the omitted repetition appears as just three
dots,..., as illustrated here for the second occurrencé&Add, ACTIVE and others.

As you may have guessed, all the class names that appear on this display, by
default in blue, can function as hyperlinks: you can use any one of them to retarget the

87 CLASS VIEWS 33

Development Window to the corresponding class. This will be another major

retargeting mechanism. But let's not pursue it for the moment and instead continue
looking at the documentation views.

Next toAncestors is Descendants , which will give you the descendants of a
class in a similar format:

[0 1 bt bt ackisa b eSS loi wj
i e Vs Gl REe D ah PiGEe HEg
EFes N E - E L - T T t.m Sl | [l
o G .01 2] Pt | =] Pt [1 6 £ 0
DA ddEE 9EF== a8
1P AR -
dEoTT apn LaRT

"Mewmernl lal JiSLE, ik lanik el menl bo 8 oAb ieeieg pEprees Al i =
4] | =
Larirsi = 0 ®|

B0 P Al e e
I‘m-d-r-:-_vlﬂwlr

TiALC L =]
LIHERT T 19
LIHEEE _TREEE [|3]

LimeEr- 4t jdj
IF T ! k T FiFA®
TED W FTED_AET [3 TP ERARLT |
LIRS FRICK T > CCEPARERLE]
i : Ik T i T FLET OON LBLE
FAET S0ET I L]
...... el
LIMETT TECE |
NTERACTENE L i
RLTIVE 151
ACTOON SOO [|TVEMT BATA f aTH T
FILTI_KNRAY T I
AREETED LIET [
AFHLETEDL TFEE
ik Bl SET 1
EL i
LERAT] 1 I
KET_ECETE T [\ - LT COEPARLELE
Fi o ETE T ja E B Ll
LIST [& SR RADLE|
TEl:_T#C Bk @ EFdRLNLE] .
s nir 13
™ WLT <IRCWLAR |
FLZE T |3
Lk THEL [d]

[e

The progeny ot /ST, as you can see, is just as impressive as its ancestry.

Let's now look at the other formats, starting from the left. The first button,
Clickable , gives the class text. It's essentially the same information as appears in the
top Editing Tool (whose pane was reduced to its bare minimum in the last few pictures,
showing only the first three lines or so), but with some differences:

* The top Text view is editable. In fact it's EiffelStudio’s primary tool for entering
software texts. The botto@lickable view is just a view; you can’t change it.

34 EIFFELSTUDIO: A GUIDED TOUR §7

* The Text view retains the formatting of the class text the way it was typed in; the
Clickable view is automatically formatted —ptetty-printed — according to
the standard Eiffel layout rules.

* TheClickable view does not include comments inside routine implementations
(do andonce clauses), although it does retain features’ header comments.

* As part of the pretty-printing, thé€lickable view uses colors and fonts to
distinguish keywords, identifiers, comments and other syntactical elements. You
can change the fonts and colors, like many other elements of the interface, through
Tools — Preferences . (Now’s not the time.)

This view is called “clickable” because, as we’ll see later, every syntactical element on

it is a hyperlink, which you can use for browsing. Here is the beginning ol 186
class text irClickable view:

e EE YVier Feaisd NEed [y GEl Finee Heg
BEesIRNE . B | B o o) famdh | Zlteo | [l
#= = Cliws .7 =| Pt | = P (31 @ £ £
FATNDEHEEE BRI T8

e -j
e LRl L

iporripnian
“Hewpemnl Al |IsLE, wihlasl romesileeal G0 & gl ieadel EpEess Al inT -

il | &
[

BOAE ARl e
Vi sl b s b
LEZEXLERG

n: "Ssqeercied liscr. withaer ormmitmans o W FALT LTUINT CAQTEFESDE
"Ems peeper ot eped od clane”
i JiE, BefEs e

11 il i»
R e

.. . A

T e US| e 1

87 CLASS VIEWS 35

After Clickable comes thé-lat view button. The layout of the result is similar:

-] .I
00 VAm & "¢
it e b i
oy ; | o |
mats -
A,
-
=hs
isCarred
w1
. ||
L] | LI |
[[y [|

The flat form of a class is the reconstructed class text including not only what’s declared
in the class itself but also everything that it inherits from its ancestors, direct or indirect.
This applies to the flat form’s features, which include ancestor features, but also to
contracts: the flat form’s invariant includes all clauses from ancestors’ invariants, and
the preconditions are expanded to takquire else andensure then clauses into
consideration. (Th&iffel Tutorial explains these notions in detail.)

As a result, theFlat view shows the class text as it might have come out had
inheritance (what a horrible thought even to contemplaietpeen available to write it.

The first two features appearing in the above disptaysor andfirst, are indeed
inherited from ancestors, rather than declared/iiT itself. Note how EiffelStudio,
when producing the flat form, adds a line of the form

-- (FromCLASS_OF_ORIGIN)

to the header comments of inherited routines, to document where they come from.

The flat form is an important notion of object technology, making it possible to
understand a class by itself, regardless of the possibly rich inheritance structure that led
to it. Looking at the Flat view oL/ST, you may note how few of its properties come
from the class itself; most of the interesting work has been done in ancestotd,Snd
just adds a few details.

If at any time you want to search for a certain pattern in the views displayed, click the

Search button at the top of the window, or type CTRL-A self-explanatory Search

Tool will come up, with various options suchMatch caseandWhole word

../language/tutorial.html

36 EIFFELSTUDIO: A GUIDED TOUR §7

Next come two essential documentation vie®@sntract andFlat Contract . Based

on Eiffel’s principles of Design by Contract, they document the interface properties of
a class. Unlike the previous two, they do not show actual Eiffel texts, but information
useful for client classes.

Here is the beginning of ti@ontract view for our example cladsST:

1= 1]
i R Ve DB Pweol Doy Ml WdndSe e
BEEesdlE « - & il | Bose Frewrn) St | [owaa [l
= o Chani [P & o |) Fema 7 B &0
TAMDp UHEE REF=2 a8
3 - o
TR -
drowraph iany
"Heapessilal 1lals, SEileril eoeemilmenl Ge 8 pailisales pepeessiali
=l
[) ox
Bdy@ VAml ¢4
Limriges b o oy b
BN LA
] "Sequaninl Lisce; wich RE pac ar cup W
- e ar el -
e IS4, Bedasiee
s i el AR
LA LS
wna: 2001 D LAz D0 A
Beviad [N]
i6
[ol CLETHRL] | EIL B i
(4
- - miiE Pr = [
I
P 1akE an
BasiL il
r=
miE Lheis
& Torch bd imdas + 13 =

D | G Gigey [Pt e |

The contract form (also known as tebkort form of a class) is the class text deprived

of any internal detail to retain interface information only. It discards any feature that’s
not exported (available to all clients); for the retained features, it discards the
implementation —do or once clause — but retains the header (feature name,
arguments, results), the header comment, and the contracts (precondition,
postcondition, invariant) minus any contract clause that refers to a non-exported feature
and hence would be useless to clients.

87 CLASS VIEWS 37

As you will know, particularly if you have read the bo@lject-Orientecoftware
Constructionthe contract form is the preferred way of documenting software elements,
especially reusable components, as it provides clients with just the right level of
abstraction: precise enough thanks to the type signature and the contracts; clear enough
thanks to the header comments; and general enough since it omits implementation
details that are irrelevant to client programmers (and might lead them to write client
code that won’t work any more if the implementation changes).

In practice you will often want to use, instead of thentract view, the next one,
Flat Contract , also known as “flat-short form” and “interface form”, which applies
the same rules to the flat form rather than to the original class. This means it shows
information on all the features of the class, immediate (defined in the class itself) as
well as inherited, whereas the short form, non-flat, only considers immediate features.
TheFlat Contract view provides the complete interface information for the class. Try
it now on clas4./ST.

The next two buttons are for tfencestors andDescendants views, which we
have already seen, showing classes connected with the target through one of the two
inter-class relations, inheritance. After them co@ients andSuppliers , to list the
classes connected through the other relation, client. ClickinGlieats button shows
the (empty) list of clients of/ST:

Context

& BV ALeel |+ ¥+ ¢ 0K
Clients of class list
Clients of class LIST [G]:

No class of this system directly usetST as client, although some use its descendant
ARRAYED_LIST. Now click the next button to see tBeppliers of LIST:

Context

BEAH VANl F e wmE

Suppliers of class list
Suppliers of class LIST [G]:

BECOLELT
INTEGEER

The only two classes thalST needs for its own algorithms are basic types from the Kernel
Library, BOOLEAN and/INTEGER. In Eiffel, as you may remember, all types are defined
by classes, even those describing such elementary values as integers and booleans.

http://eiffel.com/doc/oosc/

38 EIFFELSTUDIO: A GUIDED TOUR §7

Feature information in the Class View

Let’s resist the natural urge to go see now what the cladéESGER andBOOLEAN
look like, and instead continue our survey of views. The remaining views will all
display information about thieaturesof the class. The first of themtributes , lists

the attributes. It's not very interesting forST, a deferred class with only one attribute
— you can check this for yourself by clicking tgtributes button — so let’s look at
the next one. Click th&outines button now to display information about the routines
of classLIST:

Contest - Ox
) AW Aeel| #[F # ¢ wK

Routines of class list

Class CONTALINER [&]: -

changeshle comparison criterion: BOOLEAN
compare objects
compare references
empty: BOOLEALN

Class COLLECTION [G]:
extendible: BOOLELN
fill {(other: CONTAINER [&])
iz inserted (v: G): BOOLEAN
prunsble: BOOLELN
wipe out

Class BAG [G]:
extend (v: G)

Class TABLE [G, H]:
bag put [(v: G)

Class ACTIVE [G]:

replace (vi &)

-
1| | »

Dulputl Diaaran [Class IFeatureI Melricsl

The sections of this display group routines according to the ancestarsSat —
including LIST itself — that first introduced them; for example (second and third
sections)extendible originally comes fromCOLLECTION and extend from BAG.
Much of the benefit of this display comes from its support for browsing: all the colored
elements, representing classes and features, will be “clickable” hyperlinks.

88 PRODUCING AND EXPORTING DOCUMENTATION 39

The remaining Class View buttons all display information in the same format. Each
selects a specific subset of the target class’s features. The last two selected attributes and
routines. You can now try any of the others by clicking the corresponding button:

» Deferred features: abstract features which don’'t have an implementation in the
current class, only in eventual descendants. Try thid f8iT; you'll see that this
deferred class indeed has a number of deferred features.

« Once and constants : constant attributes, “once functions” which provide
shared objects (close to the “singleton” pattern), and once procedures which
provide a convenient initialization mechanigmST hasn’t any.

 External features, implemented as calls to routines, macros or other elements
implemented in other languagéd$ST hasn't any.

 Exported features: those available to all client$ST has quite a few.

All the views you have now learned to produce were alotagseslt’s also very useful

to obtain information about what happens to yteatureghroughout the classes where
they appear. This will be the purpose of theatures Tab of the Context Tool. But
before we look at it let’'s see how to do more with the Class View facilities just seen, by
exporting them to the outside world: to the Web, to a text processing tool, or in fact any
other tool.

8 PRODUCING AND EXPORTING DOCUMENTATION

Software development is, most of the time, cooperative work. You must tell the rest of
the team what you're up to, and find out what they can offer you. Bring in distributed
development — increasingly common these days, with some people working at
headquarters, others at home, others traveling, an offshore team half a world.away
— and the problem becomes even more critical.

EiffelStudio provides unique facilities to make such distributed development possible
in a safe, effective, harmonious way. Some of the key criteria are:

40 EIFFELSTUDIO: A GUIDED TOUR §8

* You must be able to export the information easily to the World-Wide Web, the
most general and widely available interaction mechanism.

» The documentation must li@ithful to the software. Because of the ever-changing
nature of software, this goal is impossible to satisfy unless the documentation is
extractedfrom the software — as opposed to the traditional approach, still
perpetuated by many CASE tools, of treating the two as separate.

 The task of updating the documentation after a software change must be
straightforward and automatic.

* It's not enough to support HTML; many other formats are useful too.
» Users must have the ability to adapt the mechanism to supefbrmats.

* For existing formats, they must have a way to tune the output easily to any specific
style standards, company policies, local variants.

EiffelStudio’s documentation generation satisfies all these requirements.

Documentation filters

Let's see how documentation works by starting to generate it for our Guided Tour
system — which really means for EiffelBase, since that’s what it mostly consists of.
The HTML resultis available as part of the present documentation (we’ll tell you where
in just a minute), so you don’t have to regenerate it unless you want to. Indeed we’ll
show you when to clickCancel if you are happy with the pre-generated version. But
let’s get started anyway to understand the principles and possibilities.

Click the following menu entry, used to generate documentation:

Project — Documentation

This is the next-to-last entry in th@roject menu. The last one, by the way,
Export XMl ..., is directly relevant too: it will make it possible to export information
in the standard XML representation for UML, for consumption by third-party products
such as Rational’s Rose. But for the moment we choosBtmementation entry to
start the Eiffel Documentation Wizard.

88 PRODUCING AND EXPORTING DOCUMENTATION

41

The Wizard starts with a list of available output formats, also chltecs:

[ﬂ Project documentation . = | I:Ilil

Select format for output

ASCI

AL
PostScript
RTF

Tex1

Tex2

bauiled

Ccayenne

COM

cool_jex
documentation
eiffel

kitenl
html-clazssic
html-zstyleshest
index

traoff

Cancel Presvious

Fitish |

The filter names correspond to major documentation formats which EiffelStudio
supports by default. Among the most important, listed here in rough order of
appearance in the list:

* ASCII: plain text, no formatting codes.

» eiffel : essentially the same as ASCII; useful if you want EiffelStudio to pretty-
print your class texts and replace the originals, as explained below.

. MML: internal format for Adobe FrameMaker.

» Postscript : to generate Adobe Postscript output, suitable for printing on a
Postscript printer, display on a Postscript previewer such as Ghostscript, or
distilling to Adobe PDF.

42 EIFFELSTUDIO: A GUIDED TOUR §8

« COM: to generate class specifications in the form of an Interface Description
Language (IDL) interface for Microsoft's COM component model.

* RTF: Microsoft’s Rich Text Format, used in particular for Windows “Help” files.
* TeX1, TeX2: two variants for Donald Knuth'sgX processing format.

« COM: to generate class specifications in the form of an Interface Description
Language (IDL) interface for Microsoft's COM component model.

» troff : if you already know what this is, congratulations (or condolences), you've
been around the industry for a while. This is a traditional text-processing format
available on Unix systems. Also works for titeoff variant.

* html-classic : HTML, no style sheets. The next variantjth style sheets, is
strongly recommended unless your colleagues will be reading your
documentation with Mosaic 1, vintage 1993, or Netscape 2, Vintage 1995.

* html-stylesheet : HTML with style sheets. This is particularly attractive for Web
publishing not only because the output makes full use of style sheet capabilities
(fonts, colors, layout, formatting) but also because it becomes trivial to change the
look-and-feel to support any style you or your users like, exfé@r generation,
simply by editing the style sheet file.

Not only do these predefined filters provide support for a number of important industry
formats; better yet, if you wamnotherformat not represented on the list, or would like

to adapt an existing format to your own style preferences, it’s easy to define a new filter.
The list that EiffelStudio displays comes from the files witHfia extension that it finds

in a subdirectory of the installation:

$ISE_EIFFEL/examples/bench/filters

To define a new filter, simply add a file to this directory. Filters are expressed in a simple
notation called EFFHiffel Filter Formai), general enough to support a wide variety of
tools for text processing, project management, Web publishing etc. The best way to
define a new filter is usually to start from an existing one and adapt it. You will find the
specification of EFF at the end of this manual, TAPPENDIX: WRITING
DOCUMENTATION FILTERSWITH EFE THE EIFFEL FILTER FORMAT”, 19,

page 144

88 PRODUCING AND EXPORTING DOCUMENTATION

43

Generating an HTML record of your project

Let's select the most obviously attractive of the predefined filters: HTML with
stylesheets. Click the linetml-stylesheet in the list to make it active, then click
Next at the bottom of the Documentation Wizard window. The next window appears:

=

Select clusters to generate docurmentation for
Exclude: Include:

hasze

haze.event

haze kernel

haze.structures
hasze.structures access
hasze.structures cursars
baze structures cursor_tree
baze structures dispenser

- haze structures teration
e | haze structures list
£ hase structures zet

baze structures zet strategies
haze.structures zort

haze structures storage
haze.structures table

baze structures traversing
haze.structures tree

baze support

root_cluster

Cancel Frevious Finizh

This is to let you decide which clusters of your system the documentation will include.
Initially all clusters — down to the level of nested subclusters, for example
base.structures.list — appear in theénclude list on the right; but you might want

to exclude some standard libraries or other clusters from the documentation.

To move a cluster from the right column to the left one, click it to select it, and
click the left arrow button; for the reverse, use the right arrow.

44 EIFFELSTUDIO: A GUIDED TOUR §8

You can play with moving a couple of clusters back and forth, but for this Tour
we’ll want to generate everything, including EiffelBase, so make sure that in the end all
clusters appear in the right column, as on the last figure. TherNaiak

Generating Metatags from Indexing entries

The next step of the documentation wizard asks you to select indexing entries:

_ioix

Select indexing itemz to include in HTML meta tags
Exclude: Ihclude;

statusz keywwords
date description
revizian copryright
notice
infarmation
instructions
libbrary

licenze

=S0urce

- info

note

£ wearning
names
ACCEsS
contents
representation
zize

traversal

Eiffel classes, as you know, may start withladexingentry that enables class authors

to include documentary information in any category they like. It is standard (and part
of the official style guidelines) to include a the very least an entry of the form
description: Descriptive text in every class. The earlier displays of classST
showed that entry, which readseéquential lists, without commitment to a
particular representation “.

You may have noted that the purpose of Eiffélisexingclauses is, conceptually,
similar to that ofmetatagsin HTML. Metatags carry information which Web page
visitors do not normally see in the browser; this information is available, however, to
search engines and other tools that explore and classify Web pages. So it seems quite
appropriate to generate metatags flonexingentries.

88 PRODUCING AND EXPORTING DOCUMENTATION 45

The dialog illustrated in the last figure lets you select the entries you wish to
transform into metatags. It appears only if you have selected an HTML filter. It lists all
thelndexingtags found anywhere in the system; those on the right will be retained for
metatags. Initially th&xclude list on the left contains three tags conventionally used
— at ISE and other Eiffel sites — for interfacing with configuration management tools,
and hence of internal interest only.

There is no need to change the default selection, so just\aiak

Choosing a level of detail

The next step of the Documentation Wizard lets you specify what kinds of documents
you want to generate:

[4] Project documentation _ Ol x|

Select the farmats to uze

v &lphabetical class list

<

¥ &lphabetical cluster list

[v Cluster hierarchy

[v Cluster charts

[T Cluster diagrams [may take a long time 1]

[¥ Chart
¥ Relations
v Text

[Flat

[T Contracts

Cancel Previous M et Finizh

46 EIFFELSTUDIO: A GUIDED TOUR §8

This is a very important facility since it gives you control over how much you want to
publish about the properties of the software:

* You may want to publisheverything source included, for example on your
Intranet for a group of developers working closely together on the same classes,
or on the Internet for open-source software.

* You may want to publish only thimterfaces(Contract or Flat-Contract views).
This is not necessarily to protect proprietary information; even if you don't care
about showing your source code, it is usually too detailed for client
programmers, especially in the case of libraries. If various teams work on
separate parts of a project, what each releases to the other should usually be the
specification, not the implementation.

* You may of course want to publighoth the text and the interface, and let the
recipients use the version that best suits their needs for each use.

* You may want to publish thdiagrams showing the structure in graphical form.
Note the warning — which we are about to ignore — telling us this may take a while.

* The class list, cluster list, cluster hierarchy view, cluster chart (following the
conventions of BON) are also optional.

The dialog shown on the last figure lets you specify the exact combination you wish.
The figure indicates the default options.

This time, if we generate anything, we’ll generate everything. Please dfigtle
boxes (the generation won’t occur until the last step) and &liekt to move to the next
dialog of the Documentation Wizard.

Specifying cluster views

The next dialog only appears when you have asked to generate diagrams:

E.D Project documentation — | I:Ilﬂ

Select the diagrams to generate

Cluster | Wiy 1=

haze event DEFALILT Select a cluzter to dizplay available views

base kernel DEFALLT

base structures CEFAULT =

base structures access DEFALLT

base structures cursors DEFALLT

base structures cursor_tree DEFALLT

base structures dispenser DEFALLT

Lmmm s mdwemm B mdioe mSEC Al T ha etk

i | ¥
Cancel | Previous | Finizh |

88 PRODUCING AND EXPORTING DOCUMENTATION 47

Although we didn’t use this possibility yet, the Diagram view lets you define different
subviews of any cluster. One view might show inheritance only, the other client links
only; one might include all classes, the other hide some library classes. The last dialog
shown will allow you, for any cluster, to select a subview other than the default for the
generated diagram.

Here we only have the default view, so just chikxt.
Generating
The last dialog simply asks you where you want to generate the result:
|:.£| Project documentation ;|g|5|

Select directom to generate the documentation in

C:happzhEiffela0hexamplezhbenchibours D ocument ation Browsze. ..

Click "Finizh' to generate the documentation,

Cancel Previous [et Finizh

By default, as shown, EiffelStudio will produce the documentation in a subdirectory —
created for the occasion, if it doesn’t exist yet — of the project directory:

Project_directory/Documentation

You may, however, select any other location you like. In the case of HTML generation,
as here, EiffelStudio takes great care to use oelgtive hyperlinks so that you can
move theDocumentation directory around, for use either on a file system or on your
Web site, with the guarantee that the hyperlinks will work — as long as you move the
entire directory together.

To continue the Guided Tour, you dot need to complete the generation now unless
you want to. The generated HTML is available in a subdirectodex-09A of the
directory where you are reading this document (if electronically from the ISE Eiffel
delivery), and also in the corresponding directory on the Eiffel site, at
http://www.eiffel.com/doc/manuals/intro/environment/Documentation.

The naméndex-09A is used here for the needs of this manual. The default name is,

as notedDocumentation .

48 EIFFELSTUDIO: A GUIDED TOUR §8

If you are happy with looking up one of these pre-generated directories rather than
producing your own, clickancel on the last dialog.

If you prefer to produce your own, click “Finish”. For our example system the process

takes 7 minutes on the Thinkpad configuration mentioned earlier, and generates a 48

megabyte documentation directory.

Browsing generated documentation

Let’s take a peek at the generated documentation. If you are reading this electronically

in HTML or PDF you can see the generated documentation inirtdex-09A

subdirectory of the documentation. Since you can browse the HTML files of that

subdirectory at your leisure we’ll just take a quick look to get familiar with the basics.

Next to every figure you'll find a link labeleBrowser linkenabling you to see the

corresponding page directly in your browser. The link will open in a new browser page.
Make sure you have a browser with full support for style sheets, such as Internet
Explorer 4 or later, Netscape 4 or later.

We start with the root of the generated documentaiioiex-09A/index.html
. Browser link

; simple documentation - Microsoft Internet Explorer ;Iglll

J File Edit V“iew Favaorites Toolz Help ﬁ
J 4=EBack ~ = - &)) | iChsearch [Ge|Favorites & History ||%v =) - L]

J Address I@ CappsEiffelsiexamplesbenchitour Documentstiontince:: html j oo

-

Automatic generation produced by ISE Eiffel

Clister hierarchy m I

[This figure shows a
System Web browser, not an
name: simple EiffelStudio window]
location: Clapps\Effeld0lexamplestbenchitour
ace file: Clapps\Eiffeld0ezamples\benchitour'dce mswin ace

Root class
TESTROOT (ROOT_CLUSTER): mcke

Top-level clusters
BASE
ROOT_CLUSTER

Cluster hierarchy m I

-- Generated by ISE Eiffel --

For more details: www eiffel com

index-09A/index.html

88 PRODUCING AND EXPORTING DOCUMENTATION 49

This root page shows overall information about the system. The top set of links,
repeated at the bottom, enables you to browse the system from its list of classes, its list
of clusters, or the cluster hierarchy; note the box lab&edo , which provides a built-

in search engine, enabling you to type any class list and go directly to the corresponding
page. Let’s look at the class list: click the lohasses at the top left.

. Browser link

; simple class dictionary - Microsoft Internet Explorer _ ||:||ﬂ

J File Edit “iew Favorites Toolz Help ﬁ

J iBack ~ = - 7t | ‘Qhsearch [Ge|Favorites & Histary | By S - v

J Address I@ Clapps Eitfelsiiex amplesbenchitour Documentstion\zlass_list Hml j Ao

Automatic generation produced by ISE Eiffel

Classes Cluster hierarchy m I
Web browser, not an

Classes EiffelStudio window]
ACTION SEQUENCE [EVENT DATA -= TUPLE create make end]

—— L sequence of actions to be performed on call

[This figure shows a

ACTIVE [

—— “Aciive' data structures, which at every stage have
—— a poszibly undefined °“current item''.

—— Basic access and wodification operations apply to the current item.

ACTIVE INTEGER INTERVAL

—— Contiguous integer interval that calls an action sSegquence
—-— when it changes.

ACTIVE_LIST[(]

—— Zegquential, one-way linked lists that call an action
—-— segquence when an item is remowved or added.

ANY

—— Project-wide universal properties.

= |

This shows the beginning of the list of classes, alphabetically sorted. You could click
any class to get the corresponding information, but wait; we’ll look at individual classes
in a moment. Instead, clickluster hierarchy to see the overall organization of the
system into clusters:

index-09A/clas_list.html

50 EIFFELSTUDIO: A GUIDED TOUR §8

......Browser link

; simple cluster hierarchy - Microsoft Internet Explorer ;lglﬂ

J File Edit “iew Favorites Toolz Help ‘]

J iBack ~ = - at | ‘Qhsearch [Ge|Favorites & Histary | By S - L]

J Address I@ Clapps Eitfelsiiex amplesbenchitour Documentstion\zluster_hierarchy html j e
=]

Automatic generation produced by ISE Eiffel

(R Cluster hierarchy m I

[This figure shows a

Clusters Web browser, not an
BASE EiffelStudio window]
BASEEVENT
BASEKERNEL
BASESTRUCTURES
BASE.STRUCTURES.ACCESS

BASESTRUCTURES.CURSORS
BASESTRUCTURES.CURSOR_TREE
BASESTRUCTURES DISPENSER
BASESTRUCTURES ITERATION
BASESTRUCTURES LIST
BASESTRUCTURES.SET
BASESTRUCTURES.SET.STRATEGIES
BASESTRUCTURES.SORT
BASESTRUCTURES.STORAGE
BASESTRUCTURES. TABLE
BASESTRUCTURES TRAVERSING
BASESTRUCTURES. TREE
BASESUPFORT
ROOT_CLUSTER

(R Cluster hierarchy m I

-- Generated by ISE Eiffel --

For more details: wrw. eiffel com

[-]
|'@ ’_ ’_ |@. Iy Computer 4

Note the convention for denoting nested clust&A8SE, BASE.STRUCTURES,
BASE.STRUCTURES.LIST. Click BASE.STRUCTURES.LIST to see details of
the List cluster of EiffelBase where (under EiffelStudio) we had found the ¢&#SE
used as example in the preceding sections:

index-09A/cluster_hierarchy.html

88 PRODUCING AND EXPORTING DOCUMENTATION 51
_Browser link
; cluster base.structures.list - Microsoft Internet Explorer ;Iglil
J File Edit V“iew Favaorites Toolz Help ﬁ
J EBack ~ = -) at | iChsearch [Ge|Favorites & History | EN- S - L]
JAddf'BSS I@ Clappe Eiffelsiiexamplesibenchitour Documentstionthaseistructureslistinde: himl j {'{)Gn

Automatic generation produced by ISE Eiffel

Clister hierarchy m I

ARRAYED CIRCTULAR[T]

ARRAYED LIST[(F]

BI LINKABLE [(7]

CELL 7]

CHAIN[]

CIRCTULAR [(7]

DYNAMIC CHAIN[G]

DYNAMIC CIRCTLAR [(7]

DYNAMIC LIST[(]

RIXED LIST[]

LINKABLE [(7]

LINKED CIRCTLAR[F]

LINKED LIST[(]

LIST[]

MULTT ARRAY LIST[]

PART SORTED LIST[(7 - PART COMPARABLE]
PART SORTED TWO WAY LIST[-» PART COMPARABLE]
SEQUENCE [7]

RIS FICMERSY o S AndAanrm

[This figure shows a

Cluster Web browser, not an
BASE.STRUCTURES LIST {diagram) EiffelStudio windo W}
Supercluster
BASESTRUCTURES
Classes

-

This indicates the relations of the cluster to others in the hierarchy, and its list of classes.
Again you could click any class name but instead note the mefdiagram) next to

the cluster name near the top. Remember that when generating the documentation we
elected (Choosinga level of detail’, page45) to generate everything, diagrams
included. Hadn't we checked the corresponding check box,(thegram) link

wouldn’t be there. Click it now to get the generated diagrams:

index-09A/base/structures/list/index.html

52

EIFFELSTUDIO: A GUIDED TOUR §8

....Browser link

/3 Cluster base.structures.list - Microsoft Internet Explorer 101 =l

J File Edit V“iew Favaorites Toolz Help ﬁ

J EBack ~ = -)) | iChsearch [Ge|Favorites & History ||%v =) - L]

J Address I@ ClappsiEiffelaexamplesbenchitourDocumentstion'basestructureslistdiaoram hitml j ?GU

Automatic generation produced by ISE Eiffel

Clister hierarchy m I

Web browser, not an
EiffelStudio window]

LINKABLE
[G]
*®
DYNAMIC CHAIN
[G]

The output is a diagram showing graphically the classes of the cluster and their
inheritance relations. All EiffelStudio-generated HTML diagrams use the PNG
graphics formatHortable Network Graphigssupported by all recent browsers.

The class bubbles in a diagram are all hyperlinks. To see the HTML

documentation for our old friend the claséST — which you could also obtain by
clicking its name on one of the preceding diagrams, or typing it irGbeo field —
just click its bubble (left on the figure, third from the top):

index-09A/base/structures/list/diagram.html

88 PRODUCING AND EXPORTING DOCUMENTATION

53

; LIST Chart - Microsoft Internet Explorer

__.Browser link

J File Edit V“iew Favaorites Toolz Help

J EBack ~ = -)) | iChsearch [Ge|Favorites & History ||%v =) - L]

J Address I@ Capps Eiffelsiexamplesibenchitour Documentstion basetstructuresistlist_chart himl

Automatic generation produced by ISE Eiffel

deferred class [This figure shows a
LIST[] Web browser, not an

EiffelStudio window]

General
cluzter: BASESTRUCTURES LIST

Ancestors
CHAIN [

{Jueries
infix "@" 3 INTEGER): [like item] &
after: BOOLEAN
bafore: BOOLEAN
changeable comparison_criterion: BOOLEAN
cauni INTRGER
cursar: CURSOR
duplicate (p INTEGER) [like Curvent] LIST [(F]
exhausted: BOOLEAN
extendible: BOOLEAN
first: [like item] &
Jar_all (test: FUNCTION [ANY, TUFLE [(7], BOOLEANT): BOOLEAN
Jull BOOLEAN
has (v [like ifem] i BOOLEAN
i th (3 INTEGER): [like item] &
index: INTEFER
index_af (v: [like item] &, i INTEGER) INTEGER

The display shows key information on the class, in a form called the “Chart format”
listing the ancestors and then the features, divided@ueries (shown in part on the
figure) andCommands . Note that all class hames and feature names are hyperlinks,
which would lead you to the appropriate place in a class text.

description: "Segquential lists, without commitment to a particular representatic

index-09A/base/structures/list/list_chart.html

54 EIFFELSTUDIO: A GUIDED TOUR §8

The top row of hyperlinks now includes class formats corresponding to those we
discovered under EiffelStudi6LASS VIEWS”, 7, page30): Relations (covering
ancestors, descendants, clients, suppliers,), Tk, Contracts , Flat contracts .

Click Flat contracts to see the full interface of the class:

e Browser link

; LIST Flat contracts - Microsoft Internet Explorer

J File Edit “iew Favaortes Todlz Help

J Epack o= - () ot | Qhsearch (G Favorites & 4History ||%- = - P

J Address I@ Cappe EiffelsDexamplesbenchiourDocumentation baseistructureslistlist_flatshort.html

Automatic generation produced by ISE Eiffel

Flat
contracts LIST

description "Sequential lists, without commitment to a particular representati

indexing
status: "Eee notice at end of class [Thfs ﬁgure shows a

Web browser, not an

access: index, cursor, membership EiffelStudio window]
contents: generic

date: "SDate: 2001704730 19:00:43 &"
revision "SRevision: 1.14.4.5 5"

name s hst, sequence

deferred class interface

LIST[]
feature —— iccess

cursar. CURSOR
—-— Current curscor position

-— (from CURSOR_STRUCTURE,

first: like iiem
—— Item at first position
—— [(from C&‘lfN}
require —— from CHAIN
not empty: not is_empty

We’'ll stop this brief review here but you may continue browsing through the HTML
pages if you like. Note how closely the appearance of the class texts, flat forms, contract
forms, diagrams and other forms of documentation matches the corresponding formats
under EiffelStudio.

index-09A/base/structures/list/list_flatshort.html

89 BROWSING FEATURES 55

Although we suggest staying with the standard, you can easily change any
convention that doesn’t match your own preferences:

* For the EiffelStudio appearance, Usmls - Preferences .

e For the HTML appearance, if you know about Cascading Style Sheets (CSS) for
HTML, edit the style sheetlefault.css . You will find this file in the generated
documentation directory; alternatively, to ensure the changes are applicable to the
generated documentation of all future projects,dadaults.css in the directory

$ISE_EIFFEL/examples/bench/filters

after backing it up. For more profound changes in the structure of the generated
HTML, you may also backup and edit the Eiffel Filter Format fieml-
stylesheet.fil inthe same directory. EFF is described in an apperdixgagel44).

The documentation generation mechanisms, using HTML or other formats, let you

publish your designs, at the level of detail you desire, on an Intranet, the Internet, or as
part of documents you release. They are an important part of the power of ISE Eiffel

for quality software development.

9 BROWSING FEATURES

Let us get back to EiffelStudio. We won’t need a browser any more for this Tour, so you
may close any browser window (other than tugrentwindow if you are reading this
in HTML!) opened to look up the generated documentation in the previous section.

Before studying the documentation generation we saw how to display properties
of classeslt’s also interesting to explore the propertiesf@ftures Let’s look at this
now, through the Feature View.

Your Development Window should still be targeted to clasST, from the last
view, Routines , that you displayed on it (padg&8). If you've lost it, just retarget a
Development Window to this class.

If the Features Tool is not visible, bring it back by clicking theatures button
on the top toolbar, used earlier to remove it:

P | =11

I R Vit PhedBi SEEE Dy e
Cueomd . | &4 SR s
= ¥ Chivi [HIR =] Foiss hema|f] W O @
TANHEEE BHP=2
|:rll- - t 3 -

[=TT =T TR] I j

- s The Clusbers and Featares Buthons

(Another way is through the menu entfiew — EiffelStudio bar .)

56 EIFFELSTUDIO: A GUIDED TOUR §9

Targeting to a feature

The list of features, organized by feature clauses, appears on the left:

Beed BE - =L

ﬁdmﬁmln—JHﬂ_ﬂdﬂﬂ:ﬂ
FATO EHEE E¥F=2 48

o

L= -d =R '.'.hll

s Losw. BEITHIRCW

ool spden. murscca wembacohuys
ik EidE pERsi i

OhTE: CREACE] EOOLS DR ED LEiEDiAl 4=
covipion: “Phavistan; boas.d4.5 F

4] |

P
o wr "EapEsiiLa] |LELA, FilRdal saeslleeid LB & pRELEEUIAT §EFPEAEaLEE laRT
o bt
B ir"—"-"' FoateE: "Ses mccice et and af cleas®
h

o

- B3R

i S
B0 @ WA el W
Hu.lﬂl:dl\‘.—ﬂ'.':mh 14] - EI

srrrzabile TOWMRRCADIE FriEE-lary BOOLENT
e olijerss
SRR DL RS

anprpr DaedLELH

Tlmms COLLECTICN |G] 2

k

The class only has a few immediate features because most of its interesting features are
inherited. Make sure the Editing Tool is tall enough (as on the above figure) and click
the featurdorth, the last one, in the Feature Tree on the left. This makes the feature the

Editing Tool’s current target, and scrolls the text to its declaration:

e B) ol B i miE EY RS B R
I R vee Phesdd R Dehg Ml BiaEe HE

CEeBE . - | &8 Mo $rmun {nwn [Dres W

) - BT
AN JHEE BEF=a A

(R S
- Cirmmemn dortk 1

+'_..' - Brww = ey pomivicar if ms oEee pamitiae

camsre thes “exiaspked' will b ot
o wr drTerped

BICE LEEL
movesd foorrih: imdex o pld dndes + L
L1 H

(Lo TRE L]

rafars_dedinivion: tedare = jindas = djz
nftar definivoon: afcar = fupdec = coRnt s g2

Lo

'-Eﬂﬁﬂ VAR # /P dm

Iﬂl (25 1 l.IIII.F 9] &

TR mpacizan crieaciae: BODLEM

89 BROWSING FEATURES 57

Note how both of the top target fields are now filled: the first one shows the target class,
LIST, and the second one shows the target feafturms,
Basic feature information

Now let's look at the feature views. Click the Feature Tab at the bottom of the Context Tool:

a

The Feature tab

end —— class ALCTIVE

| Dutputl Diagram [laszc% | Feature etricsl

This brings up basic information on the selected feature in the Context Tool:

T TP T T T -lixi
i R Wi Dhemb yERT S OO e e
BEEsesBE - - N i By | i reses 0] Sead [lowas | [l
= e |- =| Fosim | =] Fewat. o] P [2 20
TANp P EEE P2 98
- - ﬂH'.tE =
e s :
o s B .
T seberaaced’ will ke tres
| o 1T
| 4w (]
|~ Bl Cam e ameeend maved_fores: drshe LE
E o]
......... il |
fors definition: bedcos =
adnar e Lap: mfnar wdan o L
=|
o - o
il e L
L v o b Py o lam P21
wa
=
.-.-\.u--. Trém LEWEL
L= .:_ L
datsrred
(] -'\- i
—l
T Ty e

The bottom Context Tool shows one of the Feature views, by déf&ailt The flat view

of a feature, similar in concept to the flat view of a class (gzig)egives the full text of

a feature, taking into account any inherited precondition or postcondition clauses. Here
the feature as declared in the class appears in the top Editing Tool, with no precondition
and anensure then postcondition clause. But it's a redefinition of an inherited
feature; the flat view in the bottom Context Tool shows the full precondition, inherited
from the ancestat/INEAR, as well as the postcondition franiST.

58 EIFFELSTUDIO: A GUIDED TOUR §9

Flat is just one of the available Feature Views, shown by the buttons on the Feature
View toolbar:

Implementers
Callers Ancestor versions
Descendant
Flat Versions

Text Homonyms

Chntex |

TEIE s A F

Text gives the feature text, fully clickable.

Who calls this feature?

NexttoFlat is Callers . Try it now by clicking the corresponding button (the following
figure and the next only show the Context Tool, where the views appear):

(] o3

GIE G ¥ AW

i oo b o o oy LFET

DAFCL CEDm LIST -
LEST

rh from AREATER _CCRCTLAD
FEiih [iis FITES _LIST
FLEEE LEET

th from LTMELN CTRCELLN

[e
ch from RFRAFER LLY
AERATES [IRCHL

AEPATRY Liad

FELTI_KRFAT_LIST

SAE Troa LERLATEN BTEE
ch from RFRAYEF SE
ch from LIHELE LIST

KCTI0H SEGETITE

g | Do | Qs Py [b |

89 BROWSING FEATURES 59

This view shows all the places in the system that call the routine, or one of its
redefinitions. Such information can be invaluable for debugging in particular. The
successive paragraphs correspond to the various versiofostbfin classL/ST, its
ancestors and its descendants. Reading from the top we see that:

e The version fromL/ST is called inLI/ST itself by the functioris_equal.

* The version fromLIST’s descendanARRAYED CIRCULAR is not called
directly in this system, although @ould be called through dynamic binding (on
an entity declared of typé /ST but dynamically attached to an instance of
ARRAYED CIRCULAR).

e About 60% downjorth from ARRAYED LIST, a version in another descendant
of LIST, is called by two routines o0ARRAYED_CIRCULAR, one routine of
ARRAYED LIST, and two routines a¥/ULTI_ARRAY LIST.

* Also note, in the following entry, that after renamirf@th is calledback in the
descendamRRAYED STACK.

What happens to my feature through the inheritance hierarchy?

Now click the next view buttoimplementers :

o - ME
HE #=a¥Y AP

T | o el b ol o LST

(BT T

This is a very useful view, showing all the ancestors and descendantS®fthat
provide a separate versionfofth, including the original introduction of this feature in
LINEAR and subsequent redeclarations (redefinitions or effectings). The mention
(version from) signals the version applicable to the current class, H&E

Since all class and feature names on these views are hyperlinks, you can display
any of the listed versions in a new Development Window by control-right-clicking it
(we will see shortly how to display it in theametool). Control-right-click on the
feature nameorth on the line that read8/ULTI_ARRAY _LIST forth (line 4). This
brings up a tool targeted to the routifeeth from MULTI_ARRAY _LIST, so that you
can see the implementation of the routine in that class:

60

EIFFELSTUDIO: A GUIDED TOUR §9

o T . R s [= (571}
i--rl:uﬁ AT LT E‘HH HH—EH oo
!ﬂm‘ EEII EEF== A
- = |
pun m| oreh i =
=l Cepicsion - BI¥e CHLFST CO MIND mitian. L sap
A dmi s Il
-:-u-r'ln- S EEEl_AliAYi BPRLETED_LIET [4] =l
T i
I"""J'" i mat e sEpey chan
- CHCCMED WITEY 1% MO IWNGDCEED
T oerceri_srrey: farch:
o o e = B wsar el _sinag. alis) Lhsn
ot LE BOT W W LGNC_ bl Chas
~ =] BOLIVE DY RTLIVE. T
S 5 s TRV SEEE. EE AT .
1 B8 rwch il 4] |
- e

You can get rid of this new Development Window (just close it, but don't exit
EiffelStudio!) and come back to the original Development Window, where we still have

two unexplored viewsAncestor versions andDescendant versions

first of these to obtain the ancestor version®ah from LIST:

. Click the

BT

ot :
0O =&V AS
b v st o 0 chia LT

HiNCEX§ DowEal: @z
LIAT facch

Yersimm Ecom clmea LIOT
ERRATTR _CIBSELLN Fia il

Peraiom Crom Slmel CiBCriis
FINED LIST foores

Varpiem froe clses FIEER LOAT
uINFED_TIRCTLAR fzceh

Veiniis P #lA4S CTECELLE
TG0 Wil CiSiFiim coote

Versdca from clmas CTRIDLLS
FART _SORTEDR LIST Eccrh

Vergiom from cless LDET
BORTES_LIET Fiais

VTR Eroe 2lkEN Liws
HENARLC LIST fextk

Marpiom froe clmes LINE&E
ATLTI_RFEAT_LIWT focth

wepsiom [ioe 5lmad FITI_LERET LEET
BRRLTLE LiZE zooik

Vernico from SJmaN ARRETLD LIST
KRFATER STRIK bwch

Vergimm frow cless AFEETED_LIET
ERRATTR_EET Fidih

Variios Frok Slasn dBRpYEn LIST
LENFES LIST fcoru

Yarpicm frox clmes LIHEED LIST
ECTIOH_FECITNCE fzcch

WeEpE i i a4 LINERE: %
LEwES BTLCE fx

Vermica froe clsas LINEED L2537
LOSKED DIEE drerth

Yergim fcom clees LINEED LOET
LEWKED_EET Faiilh

WrROE PO S1kAN LiNRED LEST
[HTERECTIVL LIST cocin

ERT

Jor = o g Y e

810 RETARGETING THROUGH PICK-AND-DROP 61

The format is self-explanatory: for each ancestot (8T that has a version df/ISTs

forth feature, it indicates the name of that feature — which could be something else
thanforth as a result of renaming, although here this happens only in descendants, not
ancestors — and the version of the feature applicable to the given class.

The list is labeledHistory branch #1 because in the case of feature merging
(combining several features inherited from different parents, in conformance with the
rules of the language) there could be more than one history branch.

The next buttonDescendant versions , similarly tells you all that happens to
a feature in the descendants of the current class.

Who has the same name?

The last buttonHomonyms , displays all the features of the system which, related or
not to the current feature by redeclaration, have the same name. You can then explore
any such feature to see if the relationship is more than casual.

In any system or library that takes advantage of inheritance and its associated
mechanisms — renaming, redefinition, effecting, undefinition, multiple and repeated
inheritance, polymorphism, dynamic binding — the feature browsing facilities that we
have just explored are invaluable to track what happens to features. What makes them
even more precious is their connection with the rest of the browsing and documentation
capabilities, especially the pick-and-drop which we will now study.

10 RETARGETING THROUGH PICK-AND-DROP

You now know quite a few ways of retargeting a Development Window to a
“development object” — a class or a feature — but haven'’t yet seen one of the most
important: “Pick-and-Drop”, which lets you pick a development object that you have
spotted anywhere in the display, and retarget the current tool, or another, to it.

Trying Pick-and-Drop

We restart from the last state, with a Development Window target to fe&itifeof
classLIST. The next figure shows the whole window; it should be exactly what you
see as a result of the last operations. We’ll useftheestor versions view of the
Feature Tab.

If for some reason the window doesn’t look like the next figure, it's easy to reconstruct
it: make sure both the Cluster tree and the Feature tree are visible (if not, click the
corresponding buttons as recalled on p&fgk target the tool to clask/ST; target it
further to its featurdorth by clicking that feature name in the Feature tree; make sure
both the top-right Editing Tool and the bottom-right Context Tool are visible; in the
Context Tool, select theeature Tab and itsAncestor versions format.

62 EIFFELSTUDIO: A GUIDED TOUR 810

. T E— Aol
i R vew bl hEeol bebig Well Ve Heg
EFsslE - k. A hﬂnm"ﬂuﬂmm_}m.l.
o 20 Chews |17 =] Fomirn [=] P (7] 4 1 1
FANM dEEE DEFS= A8
L SRR - 8]

| — crTh im =|

s w_smsl

B et bt cirwrs b o’ wi

[SIars dECinlLica: perare IirelEs =
mizar cafioitzcn: sfcar = fipdex = connt & B

. b 1 ==l
=i) cwrm_ s Cordiend - K
= [ey i RN

= K Sepeere e e e e L R T T T |

e &
=
i AR Eilandary Drkias N1
e et
el | FREE
i L Lan fr
EFELTEDN SSECIILER For

e Fecrian Erow clasw LIMELE
St o

1™ Y] T e s []

In the Context Tool at the bottom right, the second entry reads

ARRAYED_CIRCULAR forth

referring to the version of featurérth in class ARRAYED CIRCULAR. Let's
assume you want to see what that version actually is. It suffices to retarget the tool to
it. Of course you could type or copy-paste the class ndRBAYED CIRCULARin

the Class field at the top of the window, and the feature né&m@é in the adjacent
Feature field. But this is too much work; after all, you have just seen a reference to the
feature, through its name as it appears in the Ancestors version format, so it's natural
to use it directly from the graphical interface.

As we've seen before, you could control-right-click on the feature name at the
place where it appears; this would create a new Development Window targédtethto
from ARRAYED_CIRCULAR. Butyou don't necessarily want a new window. Instead
you can use Pick-and-Drop to retarget the current window.

810 RETARGETING THROUGH PICK-AND-DROP 63

Here is how it works. Position the cursor on the desired feature reference: the word
forth in the line ARRAYED _CIRCULAR forth. Right-click, that is to say click the
rightmost mouse button, amdlease the button immediately That's right: you use a
simple click, and dmot maintain the button down.

Now move the mouse a trifljthout pressing any button

Descendant werzionz of feature forth of class LIST

-] dispenser
-0 teration
=33 list

----- @ ARRAY
----- @ LRRAY

..... il Bl LIMK LIZT forth ‘f_,_/_/+
..... i CE_LL Version frow class LIS

..... & CHAMN ARRLYED CIRCULAR mj

Historv branch #1

..... i CIRCLL, Verzion from class CIRCULAR
----- @ CYMAM FIXED LIST forth

----- @ DAk Version fromw class FIXED_LIST

The cursor has changed into a new shape, a cross representing the type of development
object that you have picked, a feature. For a class, as you may have guessed, it would
be a small ellipse (“bubble”). Each kind of development object that you may create and
manipulate during your work with EiffelStudio has its distinctive icon.

The display reflects that you havpitked the featureforth. Now you cardropit at
any appropriate place to retarget the corresponding tool. In fact you can drop it right
where itis, in the Context Tool of the current Development tool. To droprigist-click
again. (That is to say, as before, press the rightmost mouse button and release it
immediately.) This achieves a “drop”, and retargets the Development Window to the
chosen featureforth from ARRAYED CIRCULAR. The retargeting affects both the
Editing Tool and the Context Tool, which keeps its current vidwgestor versions
in the Feature Tab). We'll see shortly how to give them separate targets if that's
preferred.

64 EIFFELSTUDIO

: A GUIDED TOUR 810

" I L | Y P B -y

BN E - 5 || e s G S |[orec 0
= i [L =] P |

TAND dEEE SBF> T8

slres|fi 2 @ 6 @

TR x| b
- iyl =] Sortk 1a
o Fx_stwr_wr n

Boen CULETT LD CHINE LLEE
bl a B TN TR P
LELTEA| & LAUNTE | Erus
o i ol —

prmrsdncd facch:

sf mranderd_sfrerc vhen

ey il sLmiwband_sioag !
x| & Daild

(aksi O & % - OK 1= Fid =]
] ST o JI

5 O cwrm ma Corsiand

=S R AYAS _
P I:i-m_hnud_ ol o e RFRLYTS: CCLE AR,
Elaary bGramas i

o B | ||| AFRNTED_CERCULEE fare

G Tpreian frow clase CIFCTLEF

oowwsd ootk e owred: icld drdees = cawmi

ILIE

¥ 1

TR Bl [[TR

How Pick-and-Drop works

The Pick-and-Drop mechanism is very simple. It consists of three steps:

* Pick step: find the development object you want to pick, right-click it, release the

mouse button.

* Move step: move the mouse to the desired drop p@ithout pressing any button

» Drop step: right-click (again releasing the button immediately) at the drop position.

During the Move step, you can at any ticencel the whole operatiorsimply through

aleft-click.

The Move step is actually optional: if the current position is a valid drop target, as
explained next, you can drop immediately after the pick without moving the mouse.

810 RETARGETING THROUGH PICK-AND-DROP 65

Pebbles, holes, drop targets and type compatibility

The Pick-and-Drop mechanism relies on the metaphqgretbles and holesWhen

you pick a development object, the cursor changes into a “pebble” whose shape
represents the type of the development object: cluster, class, feature, run-time object
You may then drop it into a “hole”, which can be a window, a tree view entry, or a hole-
shaped icon. This performs the appropriate action such as retargeting a tool.

In the same way that Eiffel is a typed object-oriented language, the Pick-and-Drop
mechanism is typed: you can only drop a pebble into a compatible hole. For example you
may drop a class pebble into a Development Window, to retarget it to the chosen class.

In Eiffel, type compatibility is not necessarily type identity, but is governed by
conformance based on inheritance and polymorphism: to an entity of type
POLYGON, you may assign not only an expression of that same type, but also one of
type RECTANGLE, if class RECTANGLE inherits from — conforms to — class
POLYGON. Similarly, EiffelStudio considers that the development type “feature”
conforms to “class”; this means you may drop a feature into a Development Window
targeted to a class; this will retarget the tool to the feature’s class and the feature itself,
with the text of the class scrolled to the position of the feature.

In the Pick-and-Drop example — fdorth of ARRAYED CIRCULAR — you
did not have to go to a new target: the current window was a valid drop target, so you
just dropped right away. In such a case you don’t even have to move the mouse; Pick-
and-Drop is just a matter of two right-clicks.

This is similar to adouble-click, a commonly used interaction technique, but
without the stress of the usual double-click, which requires you to wait no more than a
specified time — typically half a second or so — between the two clicks. With Pick-
and-Drop the effect is the same whether the second click follows the first after one tenth
of a second or two days.

66 EIFFELSTUDIO: A GUIDED TOUR 810

Multiple tools

In the previous example we pick-and-dropped a feature to its own tool. You can also
pick-and-drop to a different tool.

Try this now. Bring up a new Development Window by choosing the menu entry
File - New window (unless you already have a second Development Window open,
in which case you can simply reuse it). Make sure the two Development Window do
not overlap too much, so that you can see enough of each. In the first Development
Window, pick a class (right-click it). Move the mouse to the Editing Tool of the second
Development Tool. Drop the class by right-clicking again. The tool retargets itself to
the chosen class.

Many people like to take advantage of this possibility to keep two or more
Development Windows open, and pick-and-drop frequently from one to the other when
they see a development object of interest and want to know more about it, without
losing its original context.

Clickable formats

A good deal of the power of Pick-and-Drop comes from its connection with the various
views of the Context Tool — Class Views, Feature Views, Diagram View. As was
mentioned when we saw these views, all the feature and class names or other graphical
representations that appear in these viewskekable; this means that you can select

any of them as the source of a Pick-and-Drop.

As a result, you can quickly traverse a system and get to its essential properties by
displaying the information of a class in any of the many available views — the contract
and flat contract of a class, its routines, its attributes, its clients, its ancestors, the
ancestor and descendant versions of a feature, and so on — then wherever you see a
feature or class name follow the corresponding link. Tgrisximity-based form of
browsing, combined with the other techniques seen earlier, provides considerable help
when you are dealing with a large, possibly complex system, and want to master its
intricacies, be it for development, testing, debugging, maintenance or revision.

Other places where you can pick development objects include the class bubbles in
a Diagram View, and the icons representing classes and features in the Cluster Tree,
Feature Tree and Favorites list.

810 RETARGETING THROUGH PICK-AND-DROP 67

Semantic consistency

An important property of the pick-and-drop mechanism, shared by its cousin the right-
click mechanism, has already been mentioned in this chapter: semantic consistency,
which guarantees that the operations you can perform on a class, such as pick-and-drop,
only depend on thelevelopment objedb which you are applying the operation. It
doesn’t matter where you picked the object — in any development tool under any view
— and in what form: textual, as a class or feature name; graphical representation, as a
class bubble in a Diagram View; or an icon, for example in the Cluster Tree, Feature
Tree, Favorites list.

The pebble that you see during the Move step of Pick-and-Drop represents the
underlying development object — such as a class or a feature — regardless of how you
got to it.

Behind the Pick-and-Drop conventions

Pick-and-Drop works differently from the usual Drag-and-Drop present on many
computing platforms. The usual Drag-and-Drop retains a role within EiffelStudio (to
move class bubbles around in the Diagram view) and you may of course have to use it
for operating system functions such as copying files. But the key EiffelStudio operation
is Pick-and-Drop. This technique is motivated by careful consideration of ergonomics
and user comfort. In particular:

* Pick-and-Drop is much less stressful. Drag-and-Drop requires you to maintain
pressure throughout the move, being careful not to drop on the wrong place. With
Pick-and-Drop there is no stress: you click and release; get a drop from your coffee
cup if you like (optional step); move the cursor with no pressure from your fingers
or on your mind; make sure, at your leisure, to find the right drop place; and right-
click again on it. At the end of the day, after many such operations, the stress
reduction can make a real difference.

* With Drag-and-Drop, it's easy to lessen the pressure involuntarily and drop on the
wrong place. The consequences can be damaging, especially since in such a case
you may wellnot knowwhere you dropped the element; after all, that wasn’t
intentional. It is possible, for example, to lose files that way. With Pick-and-Drop
this is much less likely to happen.

* Pick-and-Drop makes it easy to cancel the operation if you change your mind: just
left-click anywhere. With Drag-and-Drop you have to find an invalid place to drop;
this may be difficult, or even impossible! (Sometimes pressing the Escape key
works, but this is not universal.)

If you are new to ISE Eiffel you may find Pick-and-Drop surprising at first. We trust
you will join the ranks of ISE Eiffel users who consistently rate it among the most
convenient features of the environment.

68 EIFFELSTUDIO: A GUIDED TOUR 810

Isolating the context

In all the examples so far, the Context Tool was targeted to the same target as the
enclosing Development Window and its Editing Tool. You can retarget the Context
Tool separately, for example by pick-and-dropping a class or feature into it; but the next
time you retarget the Development Window as a whole the Context Tool will follow.

This is calledmergedbehavior, meaning that the target of the Context Tool is
merged with the target of the enclosing Development Window and Editing Tool. It's the
default behavior, appropriate for your first steps with EiffelStudio.

As you become more proficient with the environment, you may not want this
behavior any more: you might prefer the ability to retarget the window and its Editing Tool
while keeping the Context targeted to its previous target. This enables you to see, in the
same window, information on two different classes, and is calidatingthe Context.

The choice between merged and isolated behavior is a matter of taste; let’s see how
you can change it, so that you can set your own preference.

To change the behavior, choose the menu entry

View - Isolate context tool

After this, the entry will change tdiew - Merge context tool , so that you can later
revert to merged behavior. Under isolation behavior, try pick-and-dropping a class or
feature into the top Editing Tool; then pick-and-drop a class or feature into the bottom
Context Tool. You will notice that each of these operations retargets the affected tool,
but not the other.

Customizing the view

If you will often alternate between the merged and isolated behaviors, you can use the
Merge/lsolate button of the top toolbar. This button mot present by default on the
toolbar, so this is a good opportunity to take a quick look at the user interface
customization mechanism, which you can use later to tailor the interface to the exact
form you need. Select

View - Toolbars - Customize standard toolbar

(The adjacent entry i€ustomize project toolbar which provides complementary
capabilities under a similar form.) You see a list of available buttons:

810 RETARGETING THROUGH PICK-AND-DROP 69

[£] customize toolbar x|
Awailable buttons Dizplayed buttons _Dk
== Separator iECreate & nEsw windon =
2| Dpen a neswy editor wwindowy ﬁ Open a file el |
ﬁﬂOpen & neswy context window i’h Create a new class
&Create a newy cluster % Create a new feature
P Remove & class o a cluster from [save
Showihide Favorites Ldd - | @Send to external editor
I Shorehice Windows = Separatar
E |zolateMlerge the context toal fro 2- Femove | x7 Unda
ERaise all weindowes u Redo e
EMinimize all windows = Separator
ShPrint the currently sdited text 3 cut
ES Copy Up |
(A Paste
— eyt ht o
| | 4 | | _rl_l 4|
Test option; IPut azzociated text on the right of buttons j

The icons in the list on the right are currently displayed in the toolbar, but not those on
the left. Among the latter you see (fourth from the bottom on the left-side list)
Isolate/merge the context tool . Select it by clicking; this makes thadd —>
button active. Click this button to move the Isolate/Merge icon to the list of displayed
icons. It becomes the first item of the list, which is fine for the moment. (Later on you
can change the order of buttons in the toolbar if you like, by usindgJihe@ndDown
buttons.) ClickOK. The toolbar of your development tool has a new button:

EI‘ ARBRAYED _CIRCULAR [G] in cluster base.structures.list

File Edit “ieww Fawvorites Project Debug Toolz Window Help

= @ 4 N ‘Elﬂ L= | & M H||&Clusters|*Feat

4= = Class |sRRAYED_CIRCULAR | Feature |
New button: = g o g s a8 ma s o= da
Isolate/Merge - —

Featurez + - O x| | Editar
context —

il standard_move « | | indexing
+ standard_off

i-of standard_remo description:
o standard_remo: "Circular chains implen
P el mbomelmee] o

You can now use this button to switch, for the enclosing Development Window,
between the isolated and merged behaviors of the Context Tool.

70 EIFFELSTUDIO: A GUIDED TOUR 810

Context memory

If you start repeatedly retargeting the Context Tool — especially under “isolated”
behavior — you will notice the following properties:

* In most cases, pick-and-droppinglassto the Context switches the view to the
Class Tab, and pick-and-droppingf@atureswitches to th&eature Tab.

» Theview displayed in each case — for exampleestors for theClass Tab and
Flat for theFeature Tab — is default view for the corresponding Tab.

The many paths to retargeting

As a conclusion to this review of Pick-and-Drop let's recapitulate the various ways
we've seen for retargeting a whole Development Window or a tool to a class:

How to retarget Same window/| Where described
tool, or new?

Type class name, then Enter, in class | Same “‘Retamgeting by

field at top-left of tool name”, page 19

Choose class in Cluster tree Same “‘Retamgeting from
the Cluster Tee”,
page 23

Choose class in Favorites Same “Adding to
Favorites”, page27

“Back” button Same “Moving back and
forth”, page 26

“Forth” button Same “Moving back and
forth”, page 26

Pick class from history list Same “The Tamget
History”, page 27

Pick-and-drop: right-click on class nam¢ Existing “How Pick-and-Drop

or graphical representation found in an] window/tool (of | works”, page 64

tool, then move, then right-click. drop target)

Control-right-click on class name or New “Starting a nev

graphical representation found in any to tool”, page 28

811 RECOMPILING AND EDITING 71

11 RECOMPILING AND EDITING

So far we have relied on existing class texts. Fascinating as it may be to explore
excellent software such as EiffelBase, you probably want to write your own too (with
the help of the reusable components in the Eiffel libraries). EiffelStudio provides a
built-in editor — as well as the ability to use some other editor if you prefer — and
sophisticated compilation mechanisms.

Recompiling

When we started, we compiled the example system. Let's recompile it, just to see. We'll
see compilation entries in th&oject menu, but the easiest for the moment is to use the
compilation button in the Project toolbar, the lower toolbar in the Development Window:

EI‘ ARRAYED CIRCULAR [G] in cluster base.structure

Fil= Edit %ieww Favortes Project Debug Toolz: wWindow Help

@T:-Eﬁ C ‘@lﬂ = | & Na H||&Clusters|*Fea

@ =) Class [ARRAYED_CIRCULAR | Feature |
— RAJ O EEE EuFoaMa
Cﬂmpllatlﬂﬂ Featurez + = 0O = || Editor
button + standard_move « | | indexing
- o standard_oft
+ standard_rema: description:
+ standard_remo "Circular chains implel
Looolle ctandard rames

Click this button. You haven’t changed anything in the project since it was compiled
(you were not supposed to!), so EiffelStudio will very quickly detect this and finish
compilation. On our test platform this takes less than a second. Now of course we
should see what happens if you do change something.

Editing

We don’t want to touch EiffelBase classes (and in fact can't, since it is used in
precompiled form), so let’s focus on classes of our small root cluster. In the Cluster tree
on the left, expand clusteoot_cluster and click classPARENT to retarget the
Development Window to it.

Make sure that the Editing Tool is big enough to display the text of the class:

72 EIFFELSTUDIO: A GUIDED TOUR 8§11

' ERpio T]] Ll - S 1= 1]
i BE vEw Pkl S0 Dy Ed P HER
FhOE++EE - - B 3 fpoeies P rsaum Gl e | Choeeac [l
da = Clawi [arEi =] Frsa = Feea |10 B &0
TAND P HEE BEF=2 T8
LT I .=
| = B Pirveedi e i | £ lnam FRRENT fnacacs b
o wwis |
ek eI p——
AN
par pericg (°ln cissw FRFAMHT™
|-|| | -I T ik
(labvi B % . OK
+ L] Eaieb
{0 B roce_comin e
i - ravm T
PITEECiEg | TRamEEg ¥, |
T - -

el TFE FTEC =

Crvsst « AW

I PECEE d

et [l | T | Fstrn | by |

The Editing Tool hosts a text editor which you can use to change the class text. Here
the routinedisplay starts by outputting a simple message; let’'s precede it by another
line of display to check that we affected the outcome. We’ll want to add the following
two lines just after thdo, before the first two instructions of the routine:

io.put_string (" THIS IS SOME ADDED TEXT")
io.new_line

They are very similar to the current first two lines of the routine, so you can just use
copy-paste: select the first two lines with the mouse, copy them using GTRit-

Copy from theEdit menu), then paste them just after tteeusing CTRLYV (or Paste

from the Edit menu). Add or remove tabs to align with the rest of the routine, and
change the string tdHIS IS SOME ADDED TEXT so that the result will look like
what’s shown on the next figure. This is all there is to change; the second line remains
untouched. Please check the result and be careful not to introduce any mistakes; in the
next section we’ll study how EiffelStudio will report syntax and other errors, but right
now we want to see what happens when everything is right!

811 RECOMPILING AND EDITING 73

i § o AT TR 00 = [= 11

i RN Vi DheoBei e Delig Wl S g
B 3| fpoeiaes | o Peaam S ey | Zhoeeas [l
= P Hfma P B W

o D -
e = Agdood tox
[("THIE 15 0EE KRHED TEXT®)
" ' I
v TE =caze TITMNTT
| | i
|-|| | II i i
[lales m® % . OK 1
[B s . -
-]
| o rilE
- Lokl g
«I || 92 - s
e

= « B M|

] FLEE d
Now save your changes; you may indifferently use CTRLlthe Save entry from tLe
Edit menu, or the Save button highlighted on the figure. (If you forget to save, the next
compilation will tell you so, and ask you if from now on you want all non-saved class
edits to be saved automatically.)

Recompiling and executing after a change

Next compile again, using the Compilation button (shown on the figure phg8ome
“degree” messages appear quickly; EiffelStudio has found out what class has changed
and deduced what exactly to recompile — only a subset of the whole system. So this
again will proceed very quickly.

Execute the system again now, using one of the execution buttons (shown on the
figure on pagel3), with or without breakpoints, on the right in the bottom Project
toolbar. You will see that the message output by the execution has changed to include
the added string.

Views in the Editing Tool

In studying the Context Tool we discovered a number of views of a classS@xAGS
VIEWS”, 7,page30). For convenience, you can also display a number of these views
in the Editing Tool, although only the basic Text view is editable. A row of buttons next
to the Class and Feature fields lets you choose between them:

74 EIFFELSTUDIO: A GUIDED TOUR 8§11

ey e | |-I llm_"l i i -
IFis Bn Vg Feewim Pome Dsben Teow Virsiow Hap
Hider =+ B E llll' ﬁ ------ B rnonee O Sewrd foorird
= = D Fuis =] Pt | :|r'="'“J o488
EJ'{I;I;#JHI&J".‘J..PE-I Ta
F ks, & = 0N} -

..'J..: - Im=z FARINT fmarime

C-l..lln:.h..- 5, .IEIJ-I iLapiay 3 Clickain Interis=n
. Coniraci

You can try some of these view now, although there is nothing exciting to show about
classPARENT. Make sure to come back to tHext view — through the leftmost of
these buttons — so that we can continue exploring the editing facilities.

Basic editing facilities

The editing facilities in the Editing Tool are provided by the EiffelStudio Editor, a
specialized tool supporting the development and update of Eiffel texts. As we’ll see
next, if you have a preferred editor you can use it instead, but the EiffelStudio Editor is
worth knowing.

The online documentation provides many more details about editing functions.
Here are the essentials.

First, the key property of any interactive systddmdo. You can cancel the latest
editing command, or any earlier one performed during the current session, by choosing
Undo from theEdit menu, or typing CTRLZ. To cancel more than one command,
apply Undo repetitively; there is no limit to the number of undoable commands within
a session. (When you exit EiffelStudio, however, the editing history is lost.) To redo an
undone command, us&edo from theEdit menu or CTRLY.

Since right now we don’t need to do any actual editing to continue this Guided Tour,
we suggest that you don’t change the text of cBRA&RENT but simply look up the
menu entries described next, without actually selecting them. If you do make a change,
voluntary or not, you should at the end of this editor discussion perform enough Undo
commands to get the text of cld3SRENT back to its original state.

To copy, cut andpasteuse the corresponding entries in tBeit menu or the familiar
keyboard shortcuts CTRC; CTRL-X and CTRLV.

When you edit text, it will be automaticalipdented according to standard Eiffel
style rules. If you prefer to remain in charge of your own indenting, you can disable this
facility throughTools — Preferences - Editor.

To indent a sequence of lines, select the lines, therbEalse — Advanced -
Indent selection . You can also use the Tab key, but only if the selection consists of
one or more entire lines; otherwise typing Tab will simply replace the selected text with
a Tab character. Shift-Tab will similarly decrease indentation by one step.

811 RECOMPILING AND EDITING 75

To comment outa sequence of lines, select them andiBdg# — Advanced -
Comment or CTRLK. Conversely, CTRL-Shif will uncomment. Also in the=dit
- Advanced menu are “set to upper case”, with the keyboard shortcut COUR&nd
to lower case, CTRL-Shift.

Other useful facilities of thedit — Advanced menu are:

. Embed in “if” , or CTRL4, which will create a conditional instruction and
include the selected instructions in it.

Embed in “debug” , CTRL-D, which will include the selected instructions in a
debug ... end instruction, so that their execution becomes conditional on a
Debug compilation option.

Search and replace

The editor lets you search for text and replace occurrences, individually or globally. We
assume you have seen a text search facility before, so we’ll just emphasize some of the
less obvious features.

To start a search, make sure the Search Tool is active by clicking the Search button
in the top toolbar (this one we’ll let you find), using tkelit — Find menu entry, or
type CTRL¥ in a Text or Context Tool.

Note that although we are studying Search as part of the Editor, this function also
applies to any textual form displayed in the Context Tool; make sure to start a Search
from the tool that you want to search.

The Search Tool presents a number of self-explanatory options:

i =_. I —— ’ puerie
M kR Ve Peoim Soecl Deiey Tosh Wcre Heip
efi=l- 2 X N Ealey iy i &M--.-I'-'u-\.m CTE R |
E -I:H.III-.':-Iu' Erll-!- e E'l'" BErdaw
SATHEEE BETea T8
Ll a B m B
I""'“'"' | SN — The Search pana

B 1
I Pl ity
et La.pat mhrairm H - -
I bk pasw T
T il e LS. Pl _BCTLEg (FIn olnew PARENT
T e i e ! L
L3P _FEDiEg (e-
= o pe_ L ime
I gt e T _miindbin
80l
i] |
_ o o
agn

Fiula on

76 EIFFELSTUDIO: A GUIDED TOUR 8§11

If you selectUse wildcards , two characters will be treated specially in thearch
for field: a question marR will match any character, and an asteriswill match any
sequence of characters.

If you check theReplace with box, a replacement field will appear:

el g
My | E e Fewim P [eosp Teow Vinkss =i
FidFa*EPE - N e v W Saed | Lot | [
o= o D Furin | remmm| T rrms @ F @AW
H20 SEEE uafea 1
bl - =

i’l"'_‘":":_' _ = The Ssarchifepiace pans

(=

gy

I Eaprkogw

1 ety]

s eliced 1o, pow_Lane

T Ragplica o TiisE e mings
s

I Sy bl

Having filled the two fields, you can elect to replace the last found occurrence, or all
occurrences at once.

The Search for field has an associated menu, so that you can reuse a recently
entered search string without retyping it.

Let the editor do the typing

Particularly interesting are the editorautomatic completion facilities. Well,
particularly interesting fomostpeople: maybe you like your editor to do the gruntwork
for you, or maybe you don't. In the latter case — if you prefer to be in control of all the
details — don’t worry: throughTools - Preferences - Editor you can easily
disable any facility that you don’t like. The behavior described here is the default.

The EiffelStudio Editor knows about Eiffel syntax and will recognize syntactic
elements as you type them. It will color them according to standard conventions: basic
elements in black, keywords in blue, comments in dark red. You can change these
conventions through Preferences.

811 RECOMPILING AND EDITING 77

If you start typing a control structure through its opening keyword, such as
from for a loop, the editor will automatically display the structure of the whole
construct. Here for example is the result if you typeftioen followed by Return/Enter
at the beginning of our example routine:

display is
—— Display bhasic information.
do
from

until
loop

encd
io.put string ("THIZ IS ZOME ADDED TEZXT™)
io.new line

This has produced the structure of an Eiffel lobpm ... until ... loop ... end. You

can then fill in the blanks with the appropriate expression and instructions. The
generated lines start with the appropriate number of Tab characters to support the
standard Eiffel indenting conventions. If you want a more compact style, follow the
from with a space rather than Return. Typirigfollowed by Return or a space will
similarly produce the outline of a conditional instruction.

To start a routine, type the routine name followed by the keywsoahd a Return.
The editor generates the basic structure of a routine text:

my routine is

This prompts you to enter the header comment (no self-respecting Eiffel developer
eventhinksof writing a feature without a header comment). At the end of the header
comment, type Return if the header comment continues, otherwise type a down arrow
to continue with the indentation for the beginning of the routine, with one of the
keywordsrequire , local, do, external , once. Once you typedo, followed by a
Return or space, the completion mechanism will insert the approgmatebut other

than that it doesn’t try to produce an entire routine structure because there are too many
syntactical choices (precondition or not, postcondition or not, locals or not etc.).

78 EIFFELSTUDIO: A GUIDED TOUR 8§11

Also interesting igeature completion, using theCTRL-SPACE key. It works at

two levels:

* You can type the beginning of the name of a feature of the current class, then

CTRL-SPACE to get possible completions.

* Once you have typed the name of a query (attribute or function), either all by
yourself or aided by the previous completion technique, you can type a period
followed by CTRL-SPACE to get the list of possible features to be applied,
deduced from the list of features in the corresponding class (the type of the query).

In both cases, if more than one completion is possible, you will get a menu of the
possibilities. You can scroll through it with the up and down arrow keys, or the mouse,
and select one through Enter or double-click. You can also or give up through the

Escape key.

Here for example is the menu you will see in the body of our example routine if
you typejo. followed by CTRL-SPACE, wheré is the feature, coming from class

ANY; that provides access to standard input and output facilities:

Ry ey e
SNEe+r@E - % O iyooe: drrees G | Lo | B
2= = b frerren z| Frwm | Hlel L KN
MRl i ahf== a8
Fag & T 0
m IhiS FLEENT DERCUDS -
[B
AT lisplay i
]
-l -
LR § e 1l
L
i o [[yr—
[yomin -Ox Ty sou
e L i Py
i || 2t gl
o
i | et rm =]
| ik L]

811 RECOMPILING AND EDITING 79

The following properties enhance the convenience of the completion mechanisms:
« If only one completion is possible, no menu appears; the completion is selected.

» If the cursor is just after the name of a query (which you have fully typed, or
obtained through completion), typing CTRL-SPACE once more will produce a
period, as if you had typed it.

« When a menu of possible completions is displayed, typing CTRL-SPACE will
select the first of them.

The combination of these facilities means that you can often obtain what you want
simply by typing CTRL-SPACE repeatedly.

Also note the following properties of automatic feature completion:

* The mechanism will only work for queries that were present at the time of the last
successful compilation. So if you add an attribute, &gy to the current class, and
do not recompile, typing-CTRL-SPACE will not displayattr. To make sure that
it's included in completion proposals, save and recompile. (Remember,
incremental compilation is fast in EiffelStudio, so there is nothing wrong in
compiling early and often.) The same rule holds for featuredlodrclasses, those
that will appear in proposed completions after a period.

* Automatic completion is applicable to features, not local entities or formal arguments.

» The features proposed for automatic completion include all features of the class:
those declared in the class itself,iotmediatefeatures, and thosaheritedfrom
proper ancestors, direct or indirect, with one exception: by default the list will not
include features from the universal cladd/Y; which serves as ancestor to all
classes and provides many features for comparison, copying, input-output,
reflection etc. IncludingANY’s features would clutter all menus with too many
features. So for example typindollowed by CTRL-SPACE will not suggesb
among the possible completions. You can change this policy through Preferences.
The policy does not apply to remote feature completion for an extigclared of
type ANY: typing CTRL-SPACE aftex.will produce the list ofANY’s features.

80 EIFFELSTUDIO: A GUIDED TOUR 8§11

Using your own editor

You may have a favorite editor and prefer to use it, at least in some cases. The
EiffelStudio incremental compilation mechanism, to be studied shortly, recognizes that
files have been modified outside of EiffelStudio (by checking their time stamps) and

will without any fuss take their modified versions into account.

You can also call an outside editor on a class from within EiffelStudio. Just use
File - External Editor or the corresponding button in the top toolbar:

EI‘ * PARENT in cluster root_cluster located in clapps'eiffeliliexamples'benchtouriparent.e
|ri='ile Edit “ieww Favoritez Project Debug Toolz Window Help

@E = @ 4% JFHE) o~ | & B @ ||&Clu5ters|*Features QSEarch [% fonte:
<3 w Clazs [PARENT Featurel j Farmat .

FADO @& EE ENT= | Ma

Features + - 0O x| | Editor

=& [Unnamed festure claul | ©lass PARENT flegure
'I' display _ _ External Editor button
= R display is

This will call the editor of your choice. The default is Notepad on Windows and Vi on
Unix and Linux. You can easily change this to any editor by entering the desired editor
command infools — Preferences - Global Preferences . In this command text

you can use the two special notatiddtarget and$line ; when EiffelStudio calls the
selected command, it will replace any occurrencétafget by the name of the file
where the current class resides, &tide by the line number at which the Editing Tool

is currently scrolled. If you include one or both of these markers at the appropriate
argument positions for the command, this will enable you — assuming the editor
supports the appropriate options — to make sure it starts at exactly the right place. For
example the default editor command under Unix is

vi +$line $target

meaning: start the Vi editor on tigarget file, initially positioned at linebline (the
+line_number command-line option of Vi directs it to start at livee_number).

812 HANDLING SYNTAX AND VALIDITY ERRORS 81

If you start an external editor on a class, then exit the editor after possibly making
changes, EiffelStudio will immediately update the class text in the Editing Tool. More
generally, note that EiffelStudio will detect changes made separately on the same class,
and warn you of possible conflicts.

Several important text editors from various providers h&ifeel modes, which
support the syntax-directed editing of Eiffel texts. They include:

* Vim, for Vi iMproved, an extension of Vi available on both Unix/Linux and
Windows — see www.vim.org

* Emacs— see www.emacs.org.
* Editeur, a Windows syntax highlighting editor — see www.studioware.com.

12 HANDLING SYNTAX AND VALIDITY ERRORS

So far we have tried to make sure that everything went smoothly. But in actual software
development you may encounter error situations, and it is useful to know what can
happen then.

Levels of language description

Let’'s remind ourselves first of how the language is specified. The Boibkl: The
Languaye, the language reference, carefully distinguishes between three levels of
descriptionssyntax, validity andsemantics Their roles are clearly distinct:

* Syntaxdefines the structure of software texts. A typical syntax rule states that an
assignment starts with\&ritable entity, continues with the symbot, and ends
with an ExpressionThis is a purely structural specification, saying nothing for
example about the types of thé&itable and theExpression

* \Validity, applicable only to syntactically legal texts, defines required consistency
conditions. A typical validity rule states that in an assignment the right-hand-
side Expressiormustconform— a property of its type, defined rigorously on
the basis of inheritance — to the left-hand-sldeitable. Eiffel has about 75
validity rules; part of the language’s originality is that these rules are ofithe “
and only if form, not only telling you individual error cases (“this is valoshly
if...”) but also reassuring you that your text will in fact be valhidt satisfies the
conditions listed exhaustively.

* Semantics, applicable only to valid texts, defines the software’s expected run-
time behavior. A typical semantic rule states that an assignment replaces the
value of its left-hand-sideWritable by the value of the right-hand-side
Expressionat the time the assignment is executed, with precise rules on the
different possible cases involving references, objects and simple values.

http://eiffel.com/doc/documentation.html#etl
http://eiffel.com/doc/documentation.html#etl

82 EIFFELSTUDIO: A GUIDED TOUR 812

You may make an error at any of these levels:
* Writing = instead of= for the assignment symbol is a syntax error.

» Writing your_integer := your_real, with the types suggested by the names, is a
validity error.

Calling a feature on a void target, violating a precondition, causing a division by
zero, are semantic errors.

Syntax and validity errors will be detected by the compilation process. For semantic

errors, you will rely on contract checking and on the debugging tools described later.
Let’s look now at examples of the first two cases.

A syntax error

To see what happens for a syntax error, replace the keywdoglist in the first line of
routinedisplay of classPARENT (click the position immediately after theeand type

at.). Save the file by clicking the Save button or using CTRLEIiffelStudio parses the
class as it is saving it, and finds the error:

P bt e e et =

EOc=+ &2 RGO e | P | T e it [l

F e -|:||||||-.':--.' Erll-i. Elr'-l Erfaw
HAdNGAEEE EEFea T8

hmali a B ¥ Efes

oo B E} Peh
= « BE
i7 Py it
s ™ - e
e RET - Vi
I ik e LE.pal_BCTing (Fin olnew FLEENTS
= bk ...:.I.-_.:.-
L. m u
T s s P =
— Do b vt sy
- ey . . LT T [,
™ o b skl e it gl Wik
bemety | s | O "___' I; "",,,]
Fabimi_= e T O . # 5
L. PULALELEY (CASEEYE N 1
Cigkst O = & « B ard

Lt

The position of the error is highlighted in the class text.

To correct the error, just bring the mouse back to its location, remove the spurious

t, and click Save again; also click Compile to make sure that the project is recompiled
up-to-date.

812 HANDLING SYNTAX AND VALIDITY ERRORS 83

You may wonder why the syntax error messages are not a little more verbose than
justSyntax error . The reason is merely that Eiffel's syntax, being simple and regular,
does not require sophisticated error messages; syntax errors usually result from trivial
oversights. If you make a syntax error and the reason is not immediately clear, check
the syntax summary in the appendip&ffel: The Languge.

Avoiding “Gotcha” dialogs

This syntax error message also illustrates a user interface principle present throughout
EiffelStudio. At ISE, we believe that you have better things to do than spending your
days clicking onOK buttons. Almost all messages that may appear to signal errors,
display warnings, or request confirmation are of one of two kinds:

* Whenever possible, they give ybuo or more possibilities. A dialog with just one
possibility is not much of a dialog. (We’ll resist the temptation to be pompous here
by recalling the original Greek meaning alig” in “dialog”.)

» If EiffelStudio cannot give two possibilities — as in the case of an error message,
for which it must let the user proceed after making sure the message has been seen
— EiffelStudio doesn’t force you, like many of today’s user interfaces, to
acknowledge your sins by clicking &K button. You simply correct the error and
move on.

In the case of our syntax error thesanOK button and you may click it, but you don’t
have to. It is there mostly to avoid troubling people (almost everyone, that is) who are
used to the “Gotcha!” dialogs of the dominant user interfaces. Once you get used to the
EiffelStudio style, you won't bother clickin@K for a syntax error: you will correct the
error, and when you click Save again the dialog will go away like a bad dream.

A validity error

A validity error is a violation of one of the validity constraints givenhkiffel: The
Languaye. Every such constraint is identified by a four-letter code of the fandx X
(the first letter is alway¥).

A validity error will produce a precise error message, which includes the validity
code. Although short, the error message is usually sufficient to find out what the error
is. If not, you can get the complete rule, straight from the book.

To see this mechanism at work, let us introduce a validity error. There is in fact
one ready for you in clasSESTROOT. Target a Development Window to this class;
at the end of its text, just before the firgadd , you will find the following comment line:

-- inv: INVALID

http://eiffel.com/doc/documentation.html#etl
http://eiffel.com/doc/documentation.html#etl
http://eiffel.com/doc/documentation.html#etl

84 EIFFELSTUDIO: A GUIDED TOUR 812

If uncommented, this is a declaration of a feature of tYg¥ALID. A class called
INVALID indeed exists in filenvalid.e of the root cluster, but it contains a validity
error. To see what it is, remove the initial double-dasi the above line from class
TESTROOT so that it is not a comment any more.

'w : e N

= Ex
ﬂlﬂﬂ"‘-a " hlhﬁmﬂm_ﬁcmq.
= Ol [1E 8 TR | P Jhﬁljﬂﬂnﬂ
III'-I*I'I' dEgEEF= A8
= = DK Fiks - 2
P i o Gl | dz =l
ol Lo _pew Dipe
i Fs L.l _shEleg (7 19E BACPS] sgalien BeieT|
i e sy i b e L. PR 3K
L PAFE_BECLEE § %= e m e o e e e e e s Hid=
]
- T ged & §ppErml aempilsllan eeian, reecd Bhe D deskes
- &T Cheii GEQLERIGG 3 TS (WD 1LESJ
w1 [HFALCh
wred
Tha bwo dashes to be removod -
=
 Lowmal = 5]
EiZTal ENTEE TS0 LR i
il | "
Do om & - 0
T
% O vl

Click Save, thenCompile . Compilation starts but after a few degrees it stops with an
error message that appears in the bottom Context Tool (you may have to do some
resizing to see it in its entirety):)

ye. ok _periom 0 EEh T
sral

- Ta g & oppicel compilssicn &CCoo, CEECVE ©hd Da ORARES
- Wt tha Bagienisg of the maet lice:
drrer THYELID

=l
=
- K.
[n
L 1 I Brror cesdaz VIBE(Li
|Disiy sim |8 o 8 Rl Frrors wropp amsber of actual srowsemes an feemare calls
= I cass Wl Din dhin maks sars Dhal mosbes @ adlisals malales musdesi of Foeeals,

= [rmi ik
Llman: THVELTR
Fasmacu: 4 |
tallod foacucer ficst_poopeos doom FANENT

r of EarusiE 1 iEEsr of Tarmkisc O
Lirssr 1l

crastd |

Friicet_meaesoe 112
el

Ilw\-u ¥ Frocaswssd: 1 Tz pgor D Tacml: 1
Eavar informaion

s [T Do | o]]

812 HANDLING SYNTAX AND VALIDITY ERRORS 85

As the error message indicates, you have (shame on you) violated the validity rule
VUAR, which requires the number and types of actual arguments in a routine call to
match the number and types of formal arguments declared in the routine.

One of the interesting properties of the error message is that everything in color is
clickable: class name, feature name, but also the error code. This means that you can
start a Pick-and-Drop on any of these elements to find out more.

For example, to see the exact context of the error, pick-and-drop the name of the
affected featureglisplay — appearing on the fifth non-blank line, afteeature: —
and pick-and-drop it to the top Text window. (As you remember this means: right-click
on it and release; move the mouse to the text window, without clicking any button;
right-click again. During the move the cursor shows a cross, the symbol for features.)
This displays the erroneous feature:

) B AL L B A = =

FEwEe® BE < - Ry rexas W Bes | lose [l

b = Ol [=| Frsms | g pie =| Fem 1 i £ &1
AN HEE DEF=='08

L. - e] Y

T b o m | T

a s

Dtzar | Orogpin | D | P | st |

Note on this display a special property of Pick-and-Drop when its source is a feature name
appearing in a validity error message: the instruction that causes the error is highlighted.

86

EIFFELSTUDIO: A GUIDED TOUR 812

In the error message in the Context Tool, the error code itS&H\R, is also
clickable. Assuming the message was not sufficient to understand the error, you can use
it to start a Pick-and-Drop. Do this now, by picking that code and starting to move the

mouse, but not dropping yet:

E R LR by e B b e 8 0 O Rl D A LR (=111
e RE v Moo R DEng el Sioose HEC
B ™% BE -« - LWl i] [| [|
e e =] Frsta |5 i B N ER)
ERATeg EREE aawes=a'A8
1 i = |
Crewae Ly e m OLEpINY L =
krrespt jin an imvslid wapi oo cell & procedurce of
clase PEFENT
e
Fi PERENT
SCHELE |
vl
sl -- ol TWELIL %
=|
s L ko
i | B8 prrar cods B
P EE =2 Errar: wracg amsbar of scouml scgoaore in fesmurce cedls
T Lk Fhan to dar moke mure than omiber of sctuols setches pusber of focmalde
1 0 veew oo

et reals
Faauce: displa
Tl led feacuce:

Wiadesi 6f Gefdalsi 1 Waley of Taosalds: 0
Lapek 1
CrERTE F
B ficer mmersgEm |13
s

Fsgraa: I Frocasssed: i1 Tz ga: D Tacel: i

Duit [Opive| [| P | ot |

The icon shape for such information elements is a question falkit is not on a
droppable target, as in the bottom Context Tool, that icon will be crossed. In principle
the place to drop is the Explanation hole in the Project toolbar, the only one that remains

highlighted during the Move step of Pick-and-Drop:

LR CE R gl s dT e 2R Ll oty P

e RE v Feeotei Bl Doy e SioEe HE
Ef==% N5 - LB . a

[|
=

e =] Fraas [
EEER aan== "a
«| Exiien
SLEpiNy LN
AMLLERET |10 AL LEFRll] YTl
wlage FEFEHT

Explanation hode

812 HANDLING SYNTAX AND VALIDITY ERRORS

87

As is often the case when dropping into a specific hole, you don’t need to shoot straight;
dropping the pebble anywhere in the Editing Tool has the same effect as dropping itinto

the Explanation hole:

ETTT k A a2
FHid=+% 0 & - B s o teewe T Seark | LD | [l
= = Dy forocaii 'Ir_.I'IIT.-I.q. = rema | Pl O 8
HRYe EEEE U T8
F it = 0| Ed -]
LI I N dizplar iz =
FUEE W oRE (IAAMIIA e Al & i el
STRUET N
Lazkl
p: FARINT
A T k]|
i wrum, slepler IF [TEpe ehaskisgl, pape D88 -
x SEELAEC &L BXRICC-vRild cmll =f TErget cangecc e
fascurs oEwe Cfomma’ AFMACLEF i3 m cluaw - -
ar Teremlificd cull tss “rargec’ to be CCercemit ol
Led CETY he Bl Diws o AEgel B! LEe lase odass .
o T ALl CHEY TLE TEALUENS OF Cofehl el T’ T
tp 'S . Lec [e @ cescerdane of 8, and G cha i
= | vacrion of "l im "B, Tha cell ir wrpeesarc-valid
Wl | H . gac I 2 apd aply Lf i ssclsfies bhe followimm
Treer cad T T T]
D am & o BE) T om
o i pas kir =3 o v B Y Al |
B il st i Tha wmebsr cf BSCUGl MCESSOLE 18 .|.--I IR R
L ths mwsi=r od doommd acpeeancr dacluced oo
Lugw: 1M &=
Foatymes 2,
cailsd ©
I Fwep BOTAA] AOJUEEL, LE ALY, FONCICWE Lo Cha
tk# carcwrporading forssl srprassre af de .
Has =
b (1o 1] -1 eplE a all i iz
L AT B geees Bl-A51 10 BEE '
I
ana L)
[o=_]
et 1 =1L To e 1 Toma 1
Duip | Ovagram | Chads | Pt | o |

The result is to display the complete text of the violated rule, straight from the pages of

Eiffel: The Languge.

The rule has several clauses, numbered. Since the error message showed the error

code as/UAR(1), the violated clause is the first; this convention of showing the clause
number in parentheses applies to all multi-clause validity constraints.

To correct the error the easiest is to go back to cldSSTROOT and reinstate the
comment symbol - (two consecutive dashes) on the erroneous line. Save and compile

to continue with a valid system.

http://eiffel.com/doc/documentation.html#etl

88 EIFFELSTUDIO: A GUIDED TOUR 8§13

13 DEBUGGING AND RUN-TIME MONITORING

The next set of EiffelStudio capabilities enable you to control and monitor the
execution of your systems. The obvious immediate application is to debugging; but the
more general goal is to let you follow the execution of your systems, explore the object
structures, and gain a better understanding of the software.

A reminder about debugging in Eiffel

Before looking at debugging facilities don’t forget that debugging in Eiffel is different.
The presence of Design by Contract mechanisms gives the debugging process a clear
sense of direction. The speed of the recompilation process makes it easy to recompile
after a change; after getting rid of syntax and validity errors, you run the system again,
and remaining errors are often caught as violations of contract clauses — routine
preconditions, routine postconditions, class invariants.

The facilities to be described now are also useful when you find such an error, as
they will help you study its execution context. In fact, one of the characteristics of the
debugging mechanism is that there is no “debugger” proper, no more than there is a
“browser”; you have instead a set of facilities supporting controlled execution and
debugging. This means for example that:

* While debugging, you can access all the browsing capabilities to explore the
features and classes surrounding the cause of an error.

* While browsing, you can launch or resume execution, and follow its progress
through the debugging facilities.

* If execution stops on an exception — assertion violation, arithmetic overflow, call
on a void target.. — you have all the environment’s facilities at your disposal to
understand what happened.

813 DEBUGGING AND RUN-TIME MONITORING 89

Setting breakpoints

To control the execution you will set breakpoints, indicating places where you want to
interrupt the execution. You may set a breakpoint on an individual instruction of a
routine, on the routine’s precondition or postcondition, or on the routine as a whole,
meaning its first operation (precondition or instruction).

A group of icons on the Project Toolbar help control breakpoints. They are known
in EiffelStudio terminology as Buttonhole$ meaning that they can serve both as
buttons (you can click them to get some functions) and holes (you can pick-and-drop
into them to get some other functions).

EI‘ * PAREHT in cluster root_cluster located in clapps'eiffelsliexamples i
_File Edit “iew Favorites Project Debug Tools Window Help

Emﬁ%ﬁﬁlﬂ ﬁlclﬁlj -@|aclusters *Featl_

4@ = Class [PARENT | Feature |
EADO da&s @ Ma
E ditar
Enable all Display info
Disable all Remove all

The labels correspond to the icons’ use as buttons: enable all set breakpoints, disable
them all, clear all, display information on current breakpoints. The difference between
“disabling” and “removing” is that disabling turns off breakpoints until further notice
but remembers them, so that you can later re-enable them, whereas “removing” clears
them for good.

Target a Development Window to the claBESTROOT and pick-and-drop the
name of the proceduraake (the first routine, after the declaration of the two attributes
0l and o02) to the Enable all icon, used here as a hole. This sets and enables a
breakpoint on the routine. Click the button label@dplay info above to get the list
of breakpoints, as shown in the next figure.

If the Context Tool is not preserdisplay info will bring it up. You can get the same
effect as that oDisplay info by selecting th®©utput Tab in the Context Tool.

90

EIFFELSTUDIO: A GUIDED TOUR 8§13

T ———— F—— 1=
Bim Ii W Hn- i— hh.. h- -l r-
=P T L - e T e |
o (TR =] Fomam [:lFHIIL;_JI!-E'ﬂ'
FATNo THEE BRR=> T2
[T -]
= Pl b k| Elaas TLITREST cosace =
o i
L L] o
s i dore
FuiL LW -
wi: ai: FLFENT
Examplen ed attribaces
il I 3] Jotiess 3
s % _OE — (AFCPLE EEETRAE TTRCIG] WL gaing AR,
Tn:m = display_dempenratics seosamr
sieais CHELE] il
aradns £d =
Lol - = Bm
B L & Do SOl SRl
TESTEOT:
makn (1]
This shows that so far you have enabled only one breakpoint. For a finer degree of

control, let's look at the feature’s flat form. Pick-and-dropke to the Context Tool —
from the Context Tool itself, since its name appears there, or the Editing Tool); this sets
the Context to th&eature Tab. Select th€lat view if that wasn’t the last one used:

Ph_-.lul-.-ﬂt-—:l.ﬁ.-u‘rll... .)
FOE*#BE - -G8 e Srous Qs o B
9559 e | re22ro01 SIS, Armfaddf
FATN0 HEEE BEF=2 A2
*‘ 5 |:|:|: i a
||..----|.-|.—u-.. clasy TEITROOT craacs -
o ui
e s]
s wir, areree
ThALLLS
pl: md: FARENT
Exasplen of aticihneey
-I| | =] b 18
& % .OK - (NLHE EEFEEJEE TTECLEY WEL- @ JIirs] 20,
v [Do —
i 0 recr i dirplay_deorotration_Ecrpegs
aifsls (AMEEEN GR
Gieats ol =
vl -]
HD =&Y A#
i b ol b i o it 4 TR T
ke
— Cadpdl meaeraped Geas i TR LR T
aa
L] LN _SERGRNTINL 0N e R age
¥} cowace | EEIRG ol
Q cemake Al
(m] 1,0 By
o o, i
L] Rl
| apee] Goppae] Dose | vuen M|

813 DEBUGGING AND RUN-TIME MONITORING 91

The small circles on the left side of the Flat form indicate breakpoint positions. Empty
ones are not set; enabled breakpoints are marked by a circle filled with red. At the moment
only one is enabled, corresponding to the first instruction of the routine since, as noted,
setting a breakpoint on a routine as a whole means setting it on its first operation.

By (left) clicking on a breakpoint mark, you toggle it between enabled and not set.
You can also right-click on a mark to get a menu of possibilities. Try enabling and
unsetting a few of these marks; you might get something like this:

i T8 s Tl I P T by =0
i B Vew e el feiig e e g
FoE++EE - - B B e W reaus Gl S |oese [l
=% Claws [1E2 o000 =] Fosts |-is = Fosma |] i] g 1
TANp JEHEE e 8
b O X Ele =H
B8 Pivewws bephr ihad | Claag TLI TR =
o i
o T, e

als

The breakpoint mark for the routine’s third instructioreate 02, is red but not filled;

this means it is set but not enabled. You can obtain this by right-clicking on the mark
and choosingDisable breakpoint on the menu that comes up. Any potential
breakpoint will be in one of three states: not set; enabled; set but disabled.

You can see the list of enabled and disabled breakpoints by clickin@ukaut
Tab, or theDisplay info button in the Project Toolbar.

For the continuation of this tour it doesn’t matter which exact breakpointsaée
you've set, as long as the one on its first instruction is set and enabled (red-filled circle)
as above. Please make sure this is the case before proceeding.

92 EIFFELSTUDIO: A GUIDED TOUR 8§13

Executing with breakpoints

To execute, you will use the following Run buttons in the Project toolbar, or the
corresponding entries in tiebug menu:

EI‘ * PAREHT in cluster root_cluster located in clapps'eiffelsliexamples i
_File Edit “iew Favorites Project Debug Tools Window Help

Eiﬁﬁ%‘i‘[ﬂﬁlﬂ ﬁlclﬁlj -lﬁ|aclusters *Featl_

4| = Class IF',E-.HENT j Featurel
EACO e Esa =B oE
Editor

Step-by-step

Step into routine Terminate

Interrupt
Step out of routine up
Run with

Run without breakpoints breakpoints

The buttons are shown here in full bloom, but at any times some of them will be grayed
out. Terminate is only active when execution has started and not terminated;
Interrupt is only active when the execution is active (not stopped at a breakpoint).

The Debug menu entries will also remind you of shortcuts: F10 &iep-by-step ,
F11 forStep into routine , Shift-F11 forStep out of routine , CTRL-F5 forRun

without breakpoints , F5 for Run with breakpoints , CTRL-Shift-F5 for
Interrupt , Shift-F5 forTerminate .

Start execution of the compiled system by clickRgn with breakpoints . The
display automatically switches to accommodate supplementary tools providing

debugging information. Execution stops on the breakpoint that you have enabled on the
first instruction of procedureake:

813 DEBUGGING AND RUN-TIME MONITORING 93

idi=f—2 & 3 K R T —— P T |
4 o Dt [1E TR0 =] Faabiin i =] Fos| 5] R 3] 2D
FADO WS HhFa 148
Femiars =+ - O Sl -o
Dlalwi o & - BN
= H 5 A TAS
Lol ibick i o B T e i -l e TEEMSDON
Lt ; - =
B RS L o
[fitas Thies [heea i |
[—
] D] ot P[] -
iy sl 8 = =
B et e o
o =3t
1 HOME
i o i
e T T
li] |-

The pane at the bottom left indicates that execution has stoppadhr. The Context
shows the flat form of that routine, with a new icon to indicate the stop point which
execution has reached. At the bottom right is a new toolQject Editor , which shows

the content of current object and (later) related objects. At the moment you can see that:

e The current object is an instance of cla&sSTROOT.

* Theclass (as you could also see from its text in a Development Window) has two
attributesol and o2, for which the corresponding fields in the current object are
both void; this is as expected since you haven't yet executed the two creation
instructionscreate { HEIR} ol andcreate 02, as they come after the breakpoint.

» Along with attributes, an Eiffel class may hagace functions executed at most
once — the first time they are called — in a given session, and from then on always
returning the same value. Here the once funcfmhas been called, returning an
object of typeSTD_FILES, but operating environment (coming, likeio, from
the top-level clasa\NY) has not yet been called.

The execution-time objects that you may display in an Object Editor are our latest kind
of EiffelStudio “development object”, along with classes, features, explanations,
clusters; notice their distinctive icon, a rectangular mesh suggestion an object’s division

into fields. It appears colored for actual objects, gray for void references such as
operating_environment.

94 EIFFELSTUDIO: A GUIDED TOUR 8§13

Monitoring progress

Click twice onStep-by-step (or press the function key F10 twice). Monitor, in the flat
form of make, the marker that shows execution progress; note that the marker always
points to thenextoperation to be executed. After the two steps, the Context and Object
Tools look like this:

37

ake

plm

H..

[ongm iy

I LS R L

TRt e i i b W iy TS T R

=3

il Eils

L1

LT T S
i = - = - - e

The last instruction that you executedci®ate { HEIR} o1, meaning create an object

and attach it tw1, but instead of using the declared typ&@RENT of 01 use its proper
descendamt/EIR. As aresult, the entry fan1 in the Object Tool no longer showsid

but an object of typeHEIR. Note that all objects are identified by their addresses in
hexadecimal; such an address is by itself meaningless, but enables you to see quickly
whether two object references are attached to the same object. The addresses you see
as you run the Guided Tour will — except for some unlikely coincidence — be different
from the ones appearing here.

Note that since the ISE Eiffel garbage collector compacts memory and hence may move
objects around, the address of a given object is not guaranteed to remain the same
throughout a session.

To see the details of the object, pick-and-drop its identifier in place (that is to say, drop
it in the Object Tool itself). A new object entry appears, showing the object:

813 DEBUGGING AND RUN-TIME MONITORING

- TESTROOT [0xCEC264]
- aftributes
- m-# o1 HEIR [0xCEC2E0]
- L3 02 NOME = Yoid
Eli] once routines
-3 in: STD_FILES [0xCEC266]

ﬁ operating_environment: Mot yet called
=- 3

-3l Once routines HEIR Objact

OxCEC2AR0]

From the instance to the class

Now try pick-and-dropping that same object, the instandeg®fR, to the Context Tool
above the Object windowl he effect is the same as if you had pick-and-dropped the
classnameHEIR: retarget the Context Tool to that class.

_" =IE0=
mfelr L N K TR Tr— =" | Sy e

s = D [EIH-!II\.-I ﬂ'ﬂ'I‘-I'JJ" "

EANe dEFE ByFea g

Fapsi w 8 W] Commal . B
[Tl e rers el | BOA0 TARS #¢ 7+ MK

Chavpm 0y | = NS et o Ok b

0T o

+ L0 it ew FERRUT

o Ok D
N LR e
o LS t el

In the same way that you can dropesturepebble into a tool that expects a class, you

can also drop ambjectpebble, which will be understood as denoting the object’s
generating class.

96 EIFFELSTUDIO: A GUIDED TOUR 8§13

Because the Context Tool is showing a class, it has switched to the default format
for classesAncestors , and is showing the ancestorsi¥E/R. Click theFeature Tab
of the Context Tool to set it back to feature information for the continuation of our
debugging session. No feature is currently displayed.

Stepping into and out of a routine

Click Step-by-step once more to advance just before the aalldisplay:.

v

| ma ke
Lo _
| G e W A B
. it Fome ol gy meilem ol ey TE STPRRDT
1
L]
"]

=
&}

(g | S | Ciosi | P | bps |

ChoosingStep-by-step again would execute the next step in the current routine, the
call o1.display, treating the entire execution afisplay from classHEIR as a single
operation. Assume instead that you want targo that routine and follow the details

of its execution. For one thing, you might not know that it's a routine of cldS#R,
sinceol is declared of typdPARENT and it's only through polymorphisngl being
dynamically of typeHEIR at this point, and through dynamic binding, that the
execution ends up calling a routine frafE/R. Of course here it's obvious because of
the wording of thecreate a few lines up, but in many cases, especially all those for
which polymorphism and dynamic binding aeally interesting, the exact type won't
be immediately clear from the neighboring software text.

813 DEBUGGING AND RUN-TIME MONITORING

97

Click the Step into routine button (or press F11). This brings execution to the
beginning of the appropriatésplay routine in clas$HEIR:

EOF S+ W - | R B Fremm U s [o W
e b Chana [T R | P | o =] rema | Z| B £) ¢ 81
EATND A @i wnFea Ig
TS =
= G T - i Y - displar iz
:::: i Filnd v AH
- HEg naYAS
Cliskbn = & A = SR P e dipiy o casl, N
l;lwlr I
[F TR piag 1E
T 2 ﬁ z atperiag (*1n cless TEI) -
D I R —— e 1
Fi Wil o= 1] Fromiosl | [In.
P cinging' Hom 4 T 5 =
i D [)
5. ol S L
B
= o) o rmiran
o [l & EiC i e
ey sereremrd Foe i ol
| Qg e]
= il Sra=rmlie
lI I ll

You can also expand theall stack pane on the left to see the full call stack, consisting
here of only two levels. Minimize it to get the above display back.

Now click Step out of routine (Shift-F11) to finish the execution afisplay. This
brings you back to the next instruction of the calling routimeke of TESTROOT.

Terminating

You may now click thelTerminate button (Shift-F5) to end execution. The execution-
specific tools go away and the display returns to what it was before execution.

98 EIFFELSTUDIO: A GUIDED TOUR 8§14

Other debugging capabilities

In this little application nothing runs long enough to give you the time to interruptit. In

a longer-running application you may want to interrupt executigthoutnecessarily
terminating it, while it’s running (not stopped on a breakpoint). This is the purpose of
the Interrupt button (CTRL-Shift-F5). It will interrupt execution at the closest
potential breakpoint position, letting you — as when execution stops because of an
exception — take advantage of all the debugging and browsing facilities to see what'’s
going on inside the program. You may then restart execution — with or without
breakpoints, single-stepping, out of the current routine, into the next routine — by
choosing the appropriate Run button

In debugging sessions for more advanced applications, you will also find self-
explanatory mechanisms enabling you, in addition to what we have seen, to examine
all the objects on the “call stack”: arguments and local entities of the current routine,
its caller, caller’s caller and so on.

The combination of these facilities provides you with a levelyfamidnformation
on the execution of your system that matchessgtagic information that the browsing
mechanisms studied in preceding sections provide about the system’s structure.

14 COMPUTING PROJECT METRICS

In earlier sections we saw how EiffelStudio provides extensive documentation on your
systems. That information was qualitative. Project managers and developers will also
be interested inmquantitative information about their projects. You can get such
information through theMetrics Tab of the Context Tool, which enables you to
perform a number of operations, detailed over the next few pages:

* Apply predefined metrics — number of classes, number of invariants, number of
features, number of compilations so far and many others — to components of a
system at various levels including feature, class, cluster, entire system.

» Define new metrics, through mathematical formulae or boolean selection, and
apply them to your project.

* Store measurement results, as well as metric definitions, into an XML archive that
can be stored locally or made available on the Web for future reference.

 Compare the measurements on a system to those on record locally or on a Web
site. ISE has released on its own site an archive recording the metric properties of
its basic libraries, available to any other project for comparison.

814 COMPUTING PROJECT METRICS 99

Methodological observations

Although the field of software metrics is a rich one with an abundant literature, its
methodological basis is sometimes subject to question. One should resist the tendency
to believe numbers just because they are numbers (“lies, damn lies, and metrics”).

Software engineers and their managers expect, however, to reap at least some of
the benefits that precise quantification has brought to other engineering fields. Such is
the purpose of software metrics, definedgasintitative estimates of product and
project properties. Object-oriented development, with the rich software structures that
it induces, is a particularly amenable to metric analysis. Even when some of the
measures do not seem to bring much by themsebasparingthem to those of other
projects may reveal significant peculiarities of a system or of some of its parts.

The metrics capabilities of EiffelStudio were designed with these observations in
mind. They result from a conservative approach, where no metric is provided without
a credible assumption that it reflects some meaningful project or product attribute. For
example, you will find a way to define a new metric dsmaar combinatiorof existing
ones, but not a way to compute arbitrary arithmetic operations, since it isn’t clear that
— say —multiplyingtwo metrics ever makes sense.

Metric terminology

The following terms are used in the presentation of EiffelStudio metric mechanisms.

A metric — not to be confused with a measure — is a quantitative property of
software products or processes whose possible values are numbmeeasiireis the
value of a metric for a certain product or process.

For example, we can evaluate the metric “number of classes in the system”, called
just Classes, by counting the classes in our system. This yields a measure.

We may distinguish betweegproduct metrics, which measure properties of the
elements being turned out (code, designs, documentation, bug reports.proaeds
metrics, which measure properties of the process used to turn them out (salaries,
expenses, time spent, delays...). The current metric facilities of EiffelStudio are
primarily product-oriented but include a process metric: “number of compilations”.

Any metric should berelevant related to some interesting property of the
processes or products being measured, such as cost, estimated number of bugs, ease of
maintenance... Anetric theory is a set of metric definitions accompanied with a set
of convincing arguments to show that the metrics are relevant. Neither EiffelStudio nor
this manual provide a metric theory.

100 EIFFELSTUDIO: A GUIDED TOUR 8§14

The numbers yielded by measures are meaningless unless we describe what they
refer to. Every metric is relative to a certainit, specified as part of its definition. For
example the unit for a metric that counts classes, su€lfaases, is calledCLASS.

EiffelStudio provides a set of predefined units. Some simply serve to count
occurrences of certain construct specimens in the software; examples iGUZAES,
CLUSTER, FEATURE, LINE, ... The metricRATIO describes metrics whose values
are divisions, for example “average number of classes per cluster”, obtained by
dividing the number of classes by the number of classes.

Any metric applies over one or moseope typesA scope type is a type of product
or process over which the metric is measured; for product metric, examples include
feature (meaning that we will compute a metric over a single featurklss, cluster,
system. They obey an order relation corresponding to containment order: a feature
belongs to a class, a class to a cluster and so on.

A scopeis an instance of a scope type. For example a given cluster is an instance
of the scope typeluster.

To compute a measure is to apply a certain metric over a certain scope of an
applicable scope type. For example we may compute the value of the i@&tsses
over a certain system.

Kinds of metrics

The EiffelStudio metric framework provides a number of predefined metrics but also
enables users to define their own metrics in terms of the predefined ones according to
a taxonomy illustrated as follows:

Metric

Composite

gdefmeo_l by user
rom existing metrics
and math formula)

Elementary

d??w di Derived Linear Ratio Scope
g?re elinea in gdeflned by user combination comparison
iffelStudio) from raw metric

and selection criteria)

814 COMPUTING PROJECT METRICS 101

Metrics are divided into elementary and composite:

* Anelementary metric measures the number of occurrences of a certain pattern in the
product or process. An example is the number of precondition clauses in a class.

* A composite metric, defined by a user of EiffelStudio, applies a mathematical or
logical formula involving other metrics (elementary or previously defined metrics).

Among elementary metrics, we make a further distinction between raw and derived:

* Raw metrics are simple counts, built-in into EiffelStudio, of occurrences of certain
basic elements. For exampl#asses, the number of classes, is raw.

* Itis often useful to define a new metric by subjecting a raw metric to one or more
selection criteria. For example a class may be either deferred (abstract) or
effective (concrete, i.e. fully implemented). This is a selection criterion.
Separately, a class may have an invariant, or not; this is another selection criterion,
Invariant_equipped. You might want to know the number of classes that are
deferred and have no invariant clause; if so, you may define a derived metric by
submitting the raw metri€/asses to both of these criteria connected by an “and”.

The precise definition adelection criteriorfor a raw metric is: a property with a fixed

set of possible values (two or more) characterizing the patterns being counted by the
metric. Without the notions of selection criteria and derived metrics, EiffelStudio
would need to have predefined (raw) metrics including all possible combinations, such
as “deferred and no invariant”. This would quickly grow out of hand.

Defining a derived metric

Let us define a new derived metric. In the Context Tool, choos®ltacs Tab. Click
the Define new metric button:

(= = Dm

Haas | Fomed .-c-'\-ll-_;_-u..""r--"--' - -_|.u| il e LS E e
|

:lll‘! _-:';::-n:fm -'.r::-blf:l- --'!-flﬁ.l.'.l Cpwwn | I

“Dafing naw madric” baton

In the dialog that comes up, the first tab, selected by default, is the one weDeantd :

102 EIFFELSTUDIO: A GUIDED TOUR 8§14

FLETETT N &l
Dot | L pmaa | et Pt | %o =it |
Ll marirer ey |
[T T =
e i o Ty 5
G §
SNl me By e 7 R S el ar e
i
1 e cigen] W lguorn
T v s T Aarvand " gmors
™ Chsdsda ™ Hs cosies T kmorw
[e |

In the Raw Metric entry, currently set taClasses, bring up the menu and select
Features. Note the large number of selection criteria applicable to the raw metric

Features (number of features), reflecting the many angles under which it is possible to
classify features:

FLETETT N LT
Dot | L pmaa | et Pt | %o =it |
Ll marirer ey |
L miewr it [
i =
G P
Lo L T R TR L S e
(=]
1 S ~ Hmbran 17 leguern
I e " Coresarsh " kgmorw
T Furaiom T Hd Facians T ks
™2 e bt ™ (]
T Sl ¥ * igmire
] “ P i 7 lgurn
T Smondis sppesd ¢ A precerdioe T Loy
T Peniccsiics spussd Ao paslcsrdiee T ke
m | | |

Assume you want a metric calle@ublic_functions_full _contracts that counts the
number of features that are functions, are exported, and have both a precondition and a
postcondition. Enter its name and check the selected criteria:

814 COMPUTING PROJECT METRICS 103

T N sl
Doivaect | L imae | el Pt | 5 o it |

o e e i, P, b, ez |

e i o LTS ST

G P

Lo L T R TR L S e
i

i S ~ Al 7 lgurn
I e ~ Corsariiy " lgmerw
T Nt T Hd Facians I kmow
I S bl = i " s
= e ¥ ™ gmirn
1™ Bkl 7 P i ¥ lgmern
™ Lo T lmern
= Popmosdios sgppsd T o poslcendine L

[| |

Click OK to add this new metric to the set of available metrics. It's actually been entered
as the default metric to be computed, although we’ll compute it only in a short while:

First maspsga i |

Ferdaa - 0 E|
[N TIPS FI S [T o EeT=R) 19 [P ALWE S
| et
|'_—._"'J'_'n-'_‘=.-|::=_ Juas | At | copaminin |

Note that theJnit field indicates the unit automatically assigned to this derived metric,
Feature, the same as the unit for the raw metfkeatures from which you have
derived it.

Composite metrics

A composite metrics applies one or more mathematical operators to a set of metrics,
themselves either elementary (raw or derived) or already composite. In line with the

conservative approach mentioned earlier, EiffelStudio permits only three kinds of

mathematical operators:

* Linear metrics of the formy k; . m; , where thek; are real values and thes,
existing metrics (either elementary or basic) with the same unit, othe RAZIO.
(It would be improper to add tw&AT/O values since they might be ratios of
incompatible things.)

104 EIFFELSTUDIO: A GUIDED TOUR 8§14

Ratio metrics of the fornm, / m, where bothm, are previously defined metrics,
not necessarily with the same unit, neither of whicliRAT/O (again because

RATIO s a catch-all category for all divisions, so you can’t divide further without
courting incoherence). The resulting uniH&T/O.

Scope comparisommetrics that measure the ratio of the value of a given non-ratio
metric over two different scope types. For example by choosing the nidasses

and the scope types “cluster” and “system” we can measure the proportion of
classes in a system that belong to the current cluster.

Let's define a linear metri®irect_dependents that counts heirs (direct descendants)

and direct clients of a class. ClidRefine new metric again and choose the tab
Linear . Bring up theMetric menu:

Do Lrss | b S | e Pl

P vl e

Hrmrch @n | Lo

Sl

[T b

o i ([
Fovimds == E1

| remyeeesy R -

Lt T

To define the first term of the sum, sel&tients. Do not click the button marked OK (we
are not done yet as we need a second term) but instead clieldtiigon next tdVietric :

Do L | bl s | S Pl

Pl vl wyew

Form wier: rw. | Lo

g
Lo g

— =
Formmds
| ey

Lorvhl il

Sk

814 COMPUTING PROJECT METRICS 105

The field at the bottom reflects the current state of the linear combination, which only
includes the ternClients, with the default coefficient 1. Now bring up théetric

menu again, chooskeirs this time, and click+ again. The expression for the sum
appears in the bottom field:

Drmed Lresw | i B | S P

P vl

Flgm wopier st [e

Srgls =
[L2
T =

Frvmds

| ey

Lorvhl il

[T I || [|

The name of our new linear metric will BBirect_dependents. Enter it into the top
field, New_metric_name (if you forget, you will be reminded), and clioRK. The

name of the new metric and its unit become the defaults in the corresponding fields of
the Context Tool.

Let’s define one more metric, this time a ratio. We want to know the “branching

factor”: average number of heirs per class. It will be the ratio of mettless and
Classes. Click Define new metric thenMetric ratio :

[t | L M P | i s

P vl

Frmecie s [Fan

Lrsam Dmmam
e e

i = | | e =
Frrmmin Fumvda
[T T

P

e O _ii.

FecE nd
T Dl e g

106 EIFFELSTUDIO: A GUIDED TOUR 8§14

SelectHeirsin theNumerator menu on the leftClasses in theDenominator menu

on the right; danot check the box “Display as percentage” at the bottom (we prefer to
see the branching factor as a number); enter the metric warmege _heirs, more

clear than “branching factor”, in the field at the top, and clik. You now have three
user-defined metrics available in addition to predefined metrics, as you can check by
bringing up theMetric menu on the Context Tool:

1=} = —]

- e FITTIEIT

L bl |
Pk, Pl cormpriy

Applicable scope types

The reasorAverage _heirs is grayed out on the last figure is that it's not applicable to
the current scope. Each metric indeed has a minimum “applicable scope type”; for
example it doesn’t make sense to compute the number of attributes in a feature, since
the smallest construct in which attributes appear is a class, bigger than a feature.
Similarly, the minimum scope type fat/asses (the denominator ofverage heirs)

is Cluster, since we can only start counting classes at that level.

Computing measures

Let's now compute a few measures. These will all be relative to the entire system, so
the first thing to do is to change tiszope field of the Context Tool (the second field
from the left at the top on the preceding figure Bpstem, the next-to-last entry on the
corresponding menu.

814 COMPUTING PROJECT METRICS 107

The measures that you get should be identical or very close to those shown next.
Differences, if any, may result from changes in the EiffelStudio delivery, especially
EiffelBase, or operations that you have performed on the Guided Tour system.

First let's use a predefined metric to compute the number of classes in our system. In
the Metrics field bring up the menu and choo€dasses - All. The Unit field is
updated to the unit of that metric:

SO e g [e[ARLEE G H
o i L e

e | Bpmtge | Buigrawse | v | pegdt | Compaanin | —

Calculabe motric

For more clarity, change the name of the next measure in the leftmost top field, set by
default to Resultl, to Class_count. Now compute that measure by clicking the
Calculate metric button, at the place shown on the above figure. This displays the
resulting measure in the field just below:

Lo -OR

e e P ™ —— s e

["I.s.mi I:;i-.."l-.-'i-: [mua]e] F

Add mezasure bo the list and saneo IE

As you see, our system has 183 classes. Refining the measure — for example by
restricting the scope to certain clusters — would show that all but a handful belong to
the EiffelBase library. But you already know this, so don’'t perform these measures yet
(you can do them later).

Saving measures

When you compute a measure, it's not kept anywhere, and the next measure will
displace it. To keep the one you just made, click the button labstiedmeasure to
the list and save it on the last figure:

108 EIFFELSTUDIO: A GUIDED TOUR 8§14

il T ET = %N "'?-;‘ll

The operation has had two effects:
* It has added the latest measure to the table of currently displayed measure.

The first time around, as here, it creates a metrics file; a messages tells us this:

x

Meazures are saved in file:
C:happztEiffelblhexamplestbenchtourM etiiczhmetne,_file. xml

Ok

Metric information will be kept in the subdirectoiyetrics of the project directory.
The generatedhetric_file.xml file contains both the metrics you have defined, and
the measures you have performed. This makes it possible to use it both for:

* Applying to a new project the metrics that you have defined for an existing one (so
that, as you go, you can accumulate a portfolio of useful metrics).

* Using existing measures as a comparison for new projects.

To obtain more measures, apply the three metrics that you defined earlier — with names
Public_functions_full_contracts, Direct_dependents andAverage heirs — to the

entire system and save the corresponding measures. You can use appropriate names for
the results or use the EiffelStudio defaults. The result will be as follows:

814 COMPUTING PROJECT METRICS 109

] =AW

T DR L e [T T T T 15 T o L e |
Poamic Pubde Pacai bl caniicli ol Synbis. aipsh Wis 15084 _!
[D | o [e | mesall | 0] |

o oo Lvm EegR DWoHE il
o lnnc derendercm1 Symiem e Dner st B
W dmomnge by Gyvom megE e e (]
o ol i ke Sydem g Sk _Cmeles bk L]

Manago matrics

Operations on metrics

Click the button labeletlanage metrics on the last figure. This brings up the metric
management dialog:

x

r Metrics

Awailable compogite metrics:
Direct_dependents

Heir_average]
Public:_functions_full_contracts

B

_ |
o |
| [Delete |
Formula;
| Edit |
Lnit:
|
| Save | In'||:u:|rt...| Exit |

You can use it to rearrange the order of the metrics you have defined (by selecting one
of them and clickingJp or Down) and delete any of them. Thermula field shows

the definition — arithmetic, or boolean — of the selected metric. [fly@ort button

will let you, if you have defined metrics in another project, select the corresponding
XML file to add them to those of your current project.

Here (possibly after having tried rearranging the metrics) just Ekak

110 EIFFELSTUDIO: A GUIDED TOUR 8§14

Metric archives

What does a measure mean? You don’t necessarily know in the absolute, but you might
want to compare your results to those of other projects. For example, if you have
measured the average number of invariants in classes of your system, you might be
curious to know how this compares to ISE’s EiffelBase library.

The notion of metric archive addresses this need. You may:

« As noted above, archive all current measures into an XML file, called a
measurement archive

* Make this measurement archive available in a shared directory, olJ&d_aon
the Internet.

At any time in a project, select any measurement archive, local or at a URL, as the
reference archive in that case all the measures you perform will be compared to those
of the reference archive. You may select various comparison formats: percentage (the
default), difference percentage, plain value.

ISE has established a Web sitettp://metrics.efel.com as a publicly available
reference for metric collections on ISE’s own libraries (EiffelBase, EiffelVision, ...).
This provides an invaluable source of comparisons for other projects within and
without ISE.

Let's see how this works. We'll compare the number of classes in our system to
the number of classes in EiffelVision. Click the last buttGompare to archive , in
the Context Tool:

- Ox
= Seope Isystem j Metric|F'ublic:_functions_full_contre junitlFealure 8 W | + &
wctions_full_contracts Scope: System: simple W alue: 15804

| Scop... | Sco.. | hietric | Resurtl Cl
System zimple Classes 183 -
lencies System simple Direct_dependents 862 -
] System zimple Heir_average 142 -

Es System simple Public_functions _full_cortracts 15804 - Compare to arChi\fe

http://metrics.eiffel.com

814 COMPUTING PROJECT METRICS 111

This brings up the archive comparison dialog:

x
r Set reference archive
Compare current archive to:
File or URL:
Dizplay comparisan i terms of:
Fatio of current meazure to archive Set
Difference of current meazure to archive Set

Archive value

- Createdreplace archive

Create new archive for cument systen: Browse...

Current archive:

r Update archive

alll

Update current system archive: Browse...

Current archive: I

Close |

You canBrowse ... to select a local archive (aml file) for comparison, but if you
have access to the Internet enter the following URL irFtleeor URL file:

http://metrics.eiffel.com/vision.xml

If you do not have access to the Wddrpwse ... instead to the filevision.xml of
the documentation directory, which has the same information, although possibly less
up to date.

Click theSet button next tdratio of computed measure to archive to select
this format for displaying the comparisons.

Click Close. This updates the display of computed measures as shown by the
following figure. All future measures that you perform will be immediately compared
to the values in the selected archive if the metric is available on both sides.

112 EIFFELSTUDIO: A GUIDED TOUR 815

Context

Namelﬂesull? Scope Isystem j MemcIF'ublic_functinns_full_c:u:nnlre juni[IFealure

IMetric: Public_functions_full_contracts Scope: System: simple VWalue: 15804 i/T
Mame | Scop... | Sco.. | hietric | Result § Comparison ... |
W iClazz_count System simple Claszes 183\ 12.5?%;}
w' Direct_dependencies System simple Direct_dependents 562 '\M—/

The option that we saw in th@éompare to archive dialog enables you to define an
existing archive as reference for your current and future measurements.

The other two self-explanatory options, shown in the picture of the dialog on the
previous page, enable you toeate your own archive, and to update an existing one.
You can then make this archive available, in a local file or on the Web, for other projects
to perform comparisons.

An archive, stored as an XML file, includes both the project metrics and its current
measures. The metrics will be made available for import to projects selecting the
archive for comparison.

15 GRAPHICS-BASED DESIGN

So far the project modifications that we have made used the text editor in the Editing
Tool. We used graphics, but as a way to reflect system structures, not to build‘them (
peek at diagrams”, page,zdnd subsequent discussions).

In line with the principles of seamlessness and reversibility recalled at the
beginning of this Tour, EiffelStudio’s text-diagram interaction is bi-directional. When
you make a textual modification, the next incremental recompilation will update the
diagram; but you can also work directly from the diagram, and the text will be
generated or updated after each graphical operation.

Many people like to use the graphical mechanisms at the beginning of a project,
to draft the overall structure of a system in “bubbles-and-arrows” style, then
concentrate on text as they get closer to implementation. But there is really no such
obligation. At any point in the development, just use the form that is more suited to your
taste and to your needs of the moment.

815 GRAPHICS-BASED DESIGN 113

Displaying a cluster view

We are going to play with the root cluster. Make sure the Cluster tree and the Context
Tool are up. Also make sure that the Context tool is in Isolate rather than Merge
behavior {Isolating the context”, page68); you can see this by going to thsdit
menu: if there is an entrylsolate context tool , select it; otherwise (the
corresponding entry reads “Merge context tool”) don’t do anything, you're fine. (You
can also use the Merge/lsolate button added earlier to the Browsing toolbar for this
very purpose.)

The earlier diagrams were “class views”, giving a picture of the world around a
class. For a change, we are now going to start working elitkter views showing the
content of a cluster. Select the Diagram Tab in the Context Tool; from the Cluster Tree,
pick-and-dropoot_clusterto the Context Tool. This displays the graphical view of the
root cluster in the Context Tool:

T e FT LA b e Y W e T 1= 11

e EE Vier bbb HERT LD O MR HEE
FoHEs+s*EE - - B B e WP g Saweh | L] o | [l
e | =] Faahin | =) Fee |30 W O) 9
NANp U EEE EHF#==2 92
& . OK| e = oj
| Clusesc: coot_cluscsc
[T oK
+ | Eeme
B vk comier
-
LT
- T
o e
Carvas) L
K Y e o A SEEEET el g R B W [rerant =]
>

. 4

ﬁmllﬂl | P | s |

114 EIFFELSTUDIO: A GUIDED TOUR 815

Hiding a class

First we decide that we don’t want to be bothered with clA8ZAL/D. We could delete
it altogether from the system by pick-and-drop its bubble to the Delete hole. This is not
what we want, but try this now to see the confirmation request:

I Delete Hide

Conte:

X |t >t Alg@eqg Bt o~ Q8 (B

‘ {7 ROOT CLUSTER %

Make sure to answeé¥o to that confirmation request (you want to keep the class even
though it wouldn’t be a catastrophe to lose it) and instead pick-and-draip/tiel /D
bubble into theHide hole. This time there is no confirmation request, since the
operation is reversible — it just affects what'’s displayed in the cluster view — and the
class is removed from the display:

Contest

eX|thw|»tAloBeg|#itlog~ (A& B i

{7 ROOT CLUSTER %

Cearenr >

You can try undoing this change, then redoing it:

History
Undo Redo

Context

DX |t > tA|loBF 4R Q[B

©, FOOT CLUSTER

815 GRAPHICS-BASED DESIGN 115

You can also clickistory which, during the rest of the session, will display the list of
executed operations, and let you undo or redo many operations at once by clicking the
oldest to be kept or the youngest to be redone.

For the rest of this discussion we assuM&AL/D is hidden.

Adding a class

We are now going to add a class graphically to our system. This means you don’t have
to worry about creating and initializing a file; EiffelStudio will take care of the details.

The useful button here idew class :

New class
CRrtext

X | thw =tAloBed Ao (88 (B

__

This button is a pebble, meant to be dropped into the diagram. Drop it somewhere above
the bubble forTESTROOT; the exact place doesn’t matter, but it has to be within the
area of the clustemot_cluster because we’ll want our class to part of it. You're asked

to name the class:

T — x
'+ Class name
MEYW CLASS)

- File name

new_class. e

r Clugter
root_cluster

Overwrite the default name being proposat W _CLASS, by the nameHEIR2, as

we are going to create a new heirARENT. Don’t touch the file name in the second
field; as you type the class name EiffelStudio automatically sets the file name to
heir2.e, so you would only set it if you wanted to override the default convention for
names of class files.

116 EIFFELSTUDIO: A GUIDED TOUR 815

The new class is now in the diagram, partaaft_cluster.

Context .
X[t [tA|lsBeT| b0 g o [RA (B Vi fograutr

CLROOTCLUSTER >

Coarvr> - Cpema)
() (oo

Dutput Diagram | Class | Feature | Metrics

Using conventional drag-and-drop (not pick-and-drop), move the class bubbles for
HEIR2, TESTROOT and PARENT so that the display looks approximately like the
following. The double circle aroundESTROOT is the BON convention to identify a

system'’s root class.

Context

X | thw =tAloBed Ao (88 (B

815 GRAPHICS-BASED DESIGN 117

Adding an inheritance link

Now we are going to make/E/IR2 an heir of PARENT. To create inter-class relations,
you will select a relation by clicking one of the “Create link” buttons, then use pick-
and-drop from the source class to the target class. There are three possibilities:

Create link: _

. client
hmrl | Iexpanded client
Context

X |t >t Alg@eqg Bt o~ Q8 (B

‘ {7 ROOT CLUSTER %

Click the button marketieir above. Now pick-and-drop from théE/R2 bubble to the
PARENT bubble. (Now you see why conventional drag-and-drop is used to move
bubbles: pick-and-drop on the diagram serves to add links between classes).

Context + = root_cluster [ho_clazz] [ho feature) -

o xX[[tivi|=tAlsgBeF |40~ [8Q B LA

To convince yourself that the new class has been made an WBARENT, in its text

and not just in the diagram, pick-and-drei/R2 bubble to the Editing Tool at the top

to see its text. (You could also control-right-click to the bubble to bring up a new
Development Window on this class.) All the code has been generated from your
graphical operations: creating the class produced a class template with all the standard
style and clauses, and the reparenting operation a2 inherit from PARENT.

118 EIFFELSTUDIO: A GUIDED TOUR 815

B n
fatartag i
BEBICIFLICn: “ORHCCE Chat ...*=
wrthor O
duret “FPemer 1™
L EIU T Tl o ST ET T T
JETH
HELRE
" ase MIT - o T paie Ia88 IF Sivd |Aabl ki mEie paE
- [T
imkarit
m
L]
ailk
wl
el
Tk i) SCENTI T # TERDMHE LT Fo Risd B0 OLL#E
THN. _CCkELE
ruT
THAL
owtauls_sceate
aree alita
Tl L L
fwar | FTY
Tl = - [T
RELE 5]
P b

In a moment we’ll use this Editing Tool to see how, conversely, EiffelStudio will

automatically reflect in the diagram a change made to the text. For the moment go back
to the Development Window.

In the Cluster Tree in the top-left pane, you will notice that the nameBiR2
appears grayed out; so does the nam@é/GRL/D.

EIIHEIR.‘«! in cluster root_cluster (not in system) located in cl\apps'eiffel50iexamples'benchitourtheir2.e
-F'il'e Edit “ieww Favorites Project Debug Tools Window Help

E ig = @ % B = | K | & Hg i ||ﬁclusters|*Features @ Search EﬂContext | ﬁﬁ

<A = Class IHEIH2 j Feature I j Format @
EASO &E&Es B Ma
Features + - 0O X || Editor
indexing
description: "Objects that ..."
Clusters & & |2, - OX
author: "
E:I base date: "{Date: i
revision: "jRevision: §"
class
HETERZ

—— Replace MNY below hy the name of parent

FF wmmmmmmmarrrh s sk T rrd e Treon

class if

T s o Ta Tl R P R

815 GRAPHICS-BASED DESIGN 119

This is EiffelStudio’s way of telling us that these two classes, listed because they appear
in one of the system’s clusters, are not actually in the system because the root class
doesn’t reference them directly or indirectly.

Adding a client link

Let's addHEIRZ2 to the system by makingeSTROOT a client of this class. Click the
button that select€lient as the next relation to make links (the link creation buttons
were shown on paggl?). Pick-and-drop from th@ ESTROOT bubble to theHEIRZ2
bubble. This asks you what kind of client link you want:

x

- Select feature type

| Procedure " Function & Attribute
feature {Nove ¥[} —— [acces |
[new_feature : |HEIRZ -]
invari an_1: |
r Ee!nerate zet procedure j

k. Cancel

This technique gives you many option and in fact is a convenient way to build your
classes, whether at the analysis, design or implementation level. Here, fill the fields as
follows. For the top choice, keep the defaditiribute ; we’ll give classTESTROOT

an attribute of type/EIRZ2. In thefeature clause, which will indicate its export status,
replace the default choicd8ONE by ANY, so that the attribute will be public. For its
feature category, keep the choice currently displayedess. For its name, replace the
default,new_feature, by the nameny_heir. In theinvariant clause, enter

my_heir /= Void

120 EIFFELSTUDIO: A GUIDED TOUR 815

to specify the invariant property that this attribute should never be void. Finally, to see
how EiffelStudio can generate the full accompaniment to an attribute, check the box
Generate set procedure . Click OK.

The diagram — shown below after a slight move of the bubbler®86 TROOT
for more readability — shows th&IESTROOT is now a client ofHEIRZ2. By default
it only displays inheritance links; now it has switched automatically to a mode that
shows client links as well, so that we also see (a6 TROOT is (and always was) a
client of PARENT through attributes including2.

Context &= = root_cluster [no_classz] [ho_feature] - Ox

@X|[tew |t Aloesy o8 |RE (B Veworraur

"""""""""" . s

T ROOT_CLUSTER G =

Now pick-and-drop the class bubbl&ESTROOT to the top Editing Tool to see how

the class has been modified. The situation here is different from what we saw earlier
with HEIR2, which had been generated from scratch by the diagram. Here
TESTROOT existed before, in text form; so the diagram mechanisms have had to
preserve the existing feature and feature clauses, and add the elements corresponding
to what you have specified through the diagram mechanisms. Here is the beginning of
classTESTROOT in its updated form:

815 GRAPHICS-BASED

DESIGN

121

fim Bl Yeow Feom Froec [sbag Tey WAdreics Hep

EOcs+n{ .

R T ST T—— | Ry Ea———

s Ol [T 1Rt

BEAdNdg g8 ThFeos T8

P+ agm

Tl 5w 4 s BH|
e
= L il hedli

x| P | =] e [5] & 81 401 80
1}
claze TEETEOOT oresexs
mhEE
fmabirs Boreon
y_Lelsi HELRZ
fanrura [lsssni caanps
sl _mp WeidE s wp_beive MERRI) L
hamigs & my_bebrt Do ey meart
ERERIACE
& _Fp kmir /= Waid
.
e Wi 0= A_mp_tbe il
(18 T
wy air_ sanigued: wy beic © 8wy Eaic
sred
| EETITE
oi, ok: FAREN

HLPAN nRRRGEE LEGliy WEED S Ghilas)j .

ddrpley_demnrtces ban_sErrses
ceemie HIIFG ol

il 7 T E |

lem

LA

e Hom=tasues -l-I-:n:;-ai..t. B [Y

il

Ll

bl [| Gl F-u.-!u-n-.|

Note how EiffelStudio has generated both the attribute and the associated “set”
procedureset_my _heir, complete with a precondition — deduced from the invariant

you have specifiedyny _heir /= Void — and a postcondition. The unlabeled Feature
clause of the existing class has been kept; the new features have been entered into
clauses labeledAccess and Element change, observing the Eiffel standard for
common feature clauses in libraries.

If you look at the end of the class, you will see immariant clause listing the
invariant that you have entered.

122 EIFFELSTUDIO: A GUIDED TOUR 815

Updating the diagram from the text

In this tour of the diagram facilities we have, so far, worked on the diagram and see the
text updated immediately. Of course we want full reversibility. So let's make a change
in the text and check the diagram.

The change will be very simple. We’ll makeESTROOT a client of HEIR. In the
top Editing Tool, use the editor to add an attribute declaration

other: HEIR

without further ado, as this is just a simple check.

If you are concerned about the correctness of the class, you may with to update its
creation procedurmake to add a creation instructiareate my_heir. Without it the
just added invariant would be violated upon creation.

Nothing happens yet to the diagram. This is normal: EiffelStudio doesn’t update the
diagram every time you type some text (which, for one thing, might be syntactically
incorrect, or invalid). You need to recompile first. Click tBempile button. Then on

the Context Tool clicldbiagram ; the new relation appears:

Context &= = root_cluster [no_classz] [ho_feature] - Ox
oX |t ow|=>tAloHed [+ 8~ |- (B View [oEraUT 7]
T ROOT CLUSTER b =

If the label other of that relation doesn’t appear in the exact place shown here, try
moving it using conventional drag-and-drop. You can only move such a link label
within a small area on either side of the link.

815 GRAPHICS-BASED DESIGN 123

Creating a cluster

Earlier on, we saw how to create a class from the EiffelStudio diagram, letting
EiffelStudio take care of creating and initializing the file. Similarly, you can create a
new cluster graphically, and let EiffelStudio create the corresponding directory.

To create a cluster, you can go througloject — Project settings , or you can
click the little Cluster Creation button at the top of the Cluster Tree:

[CI‘TESTROOT in cluster root_cluster located in cllapps'eiffels0iexa
._File Edit “iew Favorites Project Debug Tools Window Help

Emﬁ%%.‘alﬂﬁ'l%-n|ﬁclusters|_1

= *EIassITESTHDDT = Featurel
EAD0dEEE BuafoaIa

| Features + - O X || Editar

[4|_ I pI class TESTROOT create

make

feature -- Aocess

my_heir: HEIRZ

Create
cluster other: HEIR

feature -- Element change

Click this button. The resulting dialog asks you for the cluster name, and the existing
cluster (non-precompiled) of which you want to make it a subcluster, here leaving only
one choice:

x

r Cluster name
|MEw_CLUSTER

r Cluster
root_cluster

124 EIFFELSTUDIO: A GUIDED TOUR 815

Instead of theNEW_CLUSTER default name, typeny cluster; select the only
possible superclustemot_cluster, and clickCreate at the bottom of the dialog.

This technique only allows you to create a new cluster as a subcluster of an existing
one. You can create a top-level cluster by going thrdeigijiect — Project settings

Recompile the project and bring up the cluster diagram again. It shows the subcluster:

Context = = (oot _clugter [no_clags] [no_featue] -o:
X |tew|stAlsBog|pito g - [RE B View [DEFAULT

-
-

.............................

TESTROOT

Make sure that the display looks approximately like the above; you may have to resize
either or both clusters (drag a corner), and move the small cluster (drag-and-drop).

Moving a class to a different cluster

Among the many operations you can do graphically is to move a class from one cluster
to another. Drag-and-drop (again, using conventional drag and dropjAHe2 class
bubble to the rounded rectangle fdY CLUSTER. Make sure the bubble fits entirely
(that's why we wanted the cluster rectangle to be big enough).

This graphical manipulation has caused a structural change:/6la%82 is now
part of MY _CLUSTER. Check this by expanding the Cluster Tree on the left:

815 GRAPHICS-BASED DESIGN

125

-1
Fle B sem Peemiey B [oey e bewes
BOF @+ EE - - W ome frenm G i e [
45 = Qe [2Ca1R0T | o] i ree B O
EdNd HEEE BhfFasa A
Feman + v B W Edm .EI_
naies TEETEOGT o feis -
=
EALE
= == Emeeas
1 wp_biir: LRI i
A FeRIHT
A T ruber) EEIHE
fHACUTS -— CABSEL ORAGE
sty bediz s ey bhmdrr BELRIS bm
iarioa “s_py_beir’ o e e
I'-I.ll.l:r kel O Raaa
L
wy _Weic v = By bmir
EOFELE
wy WEiE AfEigusEi B Ieip S A wy B
e - B c T
tancurs 2
[e leabdE « B

If you like, you can also look into the project directory — using the Windows Explorer,

ot '+ = b sl ki
X fleweta sEeg 4l o W8 e

or cd andls on Unix/Linux — and check that it now has a subdirectory cluster
with a file heir2.e containing the text of clagsEIR2.

Clearly, it's much more convenient to use EiffelStudio for such manipulations than
to move files around manually.

126 EIFFELSTUDIO: A GUIDED TOUR 815

Changing a class name

Here is another operation that would be even more tedious if you had to perform it
manually: changing a class name. You must make suretieayreference to the class

in the system is updated; but that’s difficult to do with a text editor since — assuming
we are changing the name 6E/R to HEIR1 — you must check references one by one
to avoid, for example, changing an occurrence of the word in a string.

Instead, find the icon whose tooltip reads “Change class hame and generics”:

Change class name and generics

Context

X[}t Ao Bl g [| B

__

This is not a button but a hole (as you'll be reminded if you try just clicking it). Pick-
and-dropHEIR to it:

x

Clazs name: HEIR

Mews name: IHEIH

Farmal gererics: I

{~ Change name locally
{* Global search/replace of name in compiled claszes

" Global search/replace of name in entire universe

QK. I Cancel |

As you can see, this dialog also serves to change the name of formal generic parameters
when the selected class is generic. T{ie/R1 (or heirl, EiffelStudio always converts
class names to upper case) uridew name and clickOK.

815 GRAPHICS-BASED DESIGN 127

As EiffelStudio traverses the system to update all referencef&ti&, a progress
bar appears so that you know what's going on. Everything is updated, including the
current cluster diagram, which displays the new name in the class bubble:

Context + = root_cluster [ho_clazz] [ho feature) - Ox>
oX|[thw|>tAloBeq|ditlon~ [Qa (B View [oEFeuT x

Adjusting the display

A number of buttons enable you to customize the display:

Relation depth

Color hol
olor hole I Extend to cluster

Context

DX ||t A o P 0 g R | BB

So far all class bubbles had the same default color (yellow). Try pick-and-dropping
a bubble into theColor hole to get a color palette that enables you to select a
different color. This is useful if you want to highlight classes possessing certain
properties, for example classes that are part of a certain Design Pattern.

128 EIFFELSTUDIO: A GUIDED TOUR 815

Relation depth enables you to select the depth at which inter-class relations will
be displayed. (Don't change this setting no&Xtend to cluster is more useful for
class diagrams than for the cluster diagram we have now, which by default included all
classes of the cluster; if you click it here it will add the cl&8%AL/D that you removed
earlier. There is no need to do this now.

Views

So far the top-rightview field has always showlEFAULT. You can define any
number of views in your project, and apply them to various class and cluster diagrams.

For example, using the buttons to show and hide links of various kinds

client links inheritance links

Show/hide |:I Show/hide

Context

X[t |t AloBeF B 08 AR (B

__

you can produce diagrams that only show the inheritance links, and others that only
show the client links. If you want to keep both kinds of diagram, simply define views
by typing view names — such &sheritance, Client, All_links — into theView field.

You can also use views to retain some of the choices seen just before, such as
different colors and depths.

To load a previously defined view, just use the menu associated witli¢hefield.

You may remember that when we generated HTML documentation, the dialog
(page46) asked you to select a view among the available ones. You can choose a
different view for each cluster.

Class diagrams, cluster diagrams

Whereas our initial encounter with diagrams at the beginning of this Tour used class
diagrams, in the present discussion we have used cluster diagrams. Both are interesting.
To obtain a class diagram, you will target a Context Tool to a class, and selBchtram

Tab. By default, this shows the parents of the class. Do this noWE®TROOT:

815 GRAPHICS-BASED DESIGN 129

Context + = oot _cluster TESTROOT [no_feature] - O
X[|=tAloFag|ditlcon~ [Qa (B View [oEFauLT |

Catr)

t's for class diagrams that thieelation depth button is most interesting. It will let
you select the exact depth that you wish displayed for every relation:

x

r Include

[Only classes in same cluster

[~ &l claszes in same cluster

~Up to depth of
Ancestors [1 =
Descendants || =
Clients |o =
Suppliers fo =

- Wi

Apply changes to view named: IDEF.-’.\ULT 'I

Select another wigw if you want to zave current placement.

Ok, I Cancel |

This will conclude our review of the Diagram facilities of EiffelStudio, although you'll
surely discover some further riches by yourself and through the rest of the
documentation. We hope the complete seamlessness between text and pictures will
enable you to increase the effectiveness of your analysis work, or your design work, or
your programming — whatever level of system development you need to tackle.

130 EIFFELSTUDIO: A GUIDED TOUR 816

16 HOW EIFFELSTUDIO COMPILES

So far we have relied on the compiling capabilities of EiffelStudio without exploring
them in any detail. We must now understand the principles behind ISE Eiffel's
compiling strategy, in particular how it reconciles fast turnaround, efficient generated
code, and strong typing.

Compilation is automatic

Any speed issue aside, the most important property of the compilation process is that it
is entirely automatic.

You've seen it from the beginning of this Tour: all the information the compiler
has — obtained from an Ace file, as here, or generated automatically by the other
options — is the name of the root class and the list of directories holding Eiffel clusters.
In fact it only needs these directories for non-precompiled clusters; here, since we are
using precompiled EiffelBase, the only directory we are required to specify is the one
containing the root cluster, denoted simply as(turrent directory) since, to simplify
things, we've started EiffelStudio from the Tour’s own root cluster directory.

The compiler takes care of the rest, in particular of finding all the classes that must
be compiled.

There is never any need, when compiling ISE Eiffel systems, to supply “Make

files”, “include files”, or other manual descriptions of inter-module dependencies.

Compilation modes

EiffelStudio offers several forms of compilation, which you can see in the entries of the
Compile menu (don't trigger any of them right now) as well as keyboard shortcuts
and, in some cases, buttons:

* Melt: quick incremental recompilation, doesn’t optimize code for changed parts.

* Freeze incremental recompilation, not as fast as Melt, but generates more
efficient code for changed parts.

* Finalize: recompile entire system, generating highly optimized code.

* Precompile (available both in theProject menu and throughTools -
Precompilation wizard), to process an entire library, on which many systems
can then rely without having to compile it.

You'll quickly learn to use each of these modes to suit your needs.

816 HOW EIFFELSTUDIO COMPILES 131

Criteria

EiffelStudio’sMelting Ice Technologyreconciles the following goals:

* Security and efficiency of the generated codempiling techniques for the
strongly typed Eiffel language ensure that compilers can catch many errors before
it is too late, and generate more efficient code. The “validity constraints” of the
language, whose violations are caught as compilation errors, are particularly
useful here, playing the role of enforceable design rules.

e Quick turnaroundyou should experience an almost immediate transition from the
time you write or (more commonly) modify software to the time you can execute it.

» C code generatiarfor portability, it is useful to take advantage of C in its proper
role, that of a portable assembly language. C’s closeness to machine concepts —
one of the very properties making it less suitable for human programming except
in the case of short routines to access low-level mechanisms —, its almost
universal availability, and its good level of standardization, make it an excellent
target language for a code generator. This also enables the environment to benefit
from the often extensive optimizations performed by good C compilers, and
facilitates interfacing new software with the large body of existing C-based
systems, tools and libraries. As the final output of Eiffel compilation, you can
obtain a complete C package that you can either C-compile on the same machine
or port to other platforms, making ISE Eiffel a tool of choice éwoss-platform
development develop on one platform, deploy on one or more others.

The Melting Ice Principle

The idea of the melting ice is based on the observation that, for the practicing software
developer, the crucial day-to-day compilation problem is not how to process an entire
system but how best to processchanged systemof which an earlier state had
previously been processed.

132 EIFFELSTUDIO: A GUIDED TOUR 816

The change may be big or small; the system may be big or small. (“Small system”
here means up to a few tens of thousands of lines.) This gives four possible cases, of
which only one is really critical:

Small system Large system

Small change (111

Big change

If the system is small, as in both of the left column entries, speed of recompilation with
a good compiler will be acceptable.

In the bottom-right box, the developers have spent days or weeks changing many
classes in a large system, so they will not resent having to wait a little to see the results
of the recompilation, as long as the time remains reasonable. In EiffelStudio this
corresponds, as we'll see shortlyfioalization which is in fact fairly fast anyway, but
not as fast as the incremental modes.

In the day-to-day, minute-by-minute practice of building and modifying software,
the case that recurs by far the most often — and can cause most frustration — is the one
marked[TT] you change only a small share of a big system. Then the result should
come quickly enough. More precisely:

Melting Ice Principle

The time to re-process a system after a change should be a function of the
logical size of the change, not of the size of the system.

The “logical size” of a change may be different from its physical size because a small
physical change in a class may have consequences in many others. Imagine for example
that you add a feature to clag&#/Y; although this is an extreme case and won’t normally
happen. Since every class is a descendaditd¥, the logical change may affect the
entire system.

In practice, however, most small physical changes will also be small logical changes
and will only cause minimal recompilation. In particular, EiffelStudio will detect that

a change does not affect the interface of a class — for example if it's only a change to
non-exported features — avoiding the need to re-process its clients.

816 HOW EIFFELSTUDIO COMPILES 133

Processing such incremental changes, in time proportional to the logical size of the
changes, is known in ISE Eiffel amelting. The reason for this terminology is the
metaphor illustrated on the following figure. Think of a compiled system as a block of
ice; it may have taken some time to “freeze” — compile. Now you start working on it
again; the changes are like melted drops of water, dripping from the ice as a result of
the heat generated by your work.

MELTED

The Melting Ice Technology ensures that incremental compilation will only process the
“melted” part, usually small, leaving alone the “frozen” part, which may be large. This
is crucial to the incrementality of the mechanism.

The roles of the four compilation modes follow from this analysis:

* Melting is the fastest mode: it processes the melted part without affecting the
frozen part. With EiffelStudio, the melted elements willingerpretedwhile the
rest is compiled.

* Freezing is the process of putting back the melted parts into the “freezer”:
bringing them to the same compiled state as the parts that have not been modified.

» Finalizing is the non-incremental process of producing a stand-alone C package
and the resulting executable, extensively optimized, from the current system.

* Precompiling is the process of compiling an entire set of reusable classes, once
and for all, so that it can be shared by many systems and many users without
duplicating the code or compiling it again for each project.

134 EIFFELSTUDIO: A GUIDED TOUR 816

Properties of the compilation modes

The following table summarizes the differences between the four compilation modes:

Regenerate| Incremental? | Compilationresult

C code? shared between
projects?
Melt No Yes (fast) No
Freeze Yes Yes (but requires C | No

compilation of
changes & linking)

Finalize Yes No No

Precompile | Yes No Yes

During the production and modification of your software, you will usually alternate
between melting and freezing, since both of these modes are incremental. Most of the
time, you will simplymelt, since melting satisfies the Melting Ice Principle: the time

to get back to a working system is very short — proportional to the size of the changes.
Note in particular that the unit of melting is the smallest possible one: each feature of
a class — attribute or routine — may be melted separately.

The main difference between melting afidezing is that freezing implies re-
generating C code for the changed elements, and hence relinking the system as well. In
contrast, when you melt changes, you do not change any C code: it remains frozen.

As a consequence, melting can only process changes to Eiffel code. If you add new
external code (in C, C++ or other languages whose modules will require linking), you
must freeze. This is also true if you add new Eiffel agents. If you ask for a Meltin such
cases, the operation will trigger a freeze anyway. More generallgahgpile button,

which you have used a number of times to recompile the system in this Tour, triggers
a Melt by default, and a Freeze when it has to.

816 HOW EIFFELSTUDIO COMPILES 135

EiffelStudio knows how to hide the differences and present you with a uniform view of
the frozen parts (the C code) and the melted parts. Here indeed is the full view of the
picture that was previously given in part:

YOUR SYSTEM EIFFELSTUDIO

Execution,
Mrowsmg,
debugging,
documentation ...

MELTING

MELTED

When you examine a component of the system — to edit a class, produce a view such
as Contract or Flat Contract, enable a breakpoint on a routine, run the system, inspect
a run-time object — EiffelStudio automatically knows where to look for the
corresponding information: melted or frozen part. If one of your actions requires
melting or freezing more elements, EiffelStudio will also handle this automatically.

As suggested by the lower red arrow, successive melting operations “pour water
into the bowl”, corresponding to the elements that you have changed since the last
freeze. Freezing, represented by the top red arrow, updates the C code so that it
integrates all the latest changes, emptying the bowl in the process.

Because the difference between melted and frozen code is largely invisible to users
of the environment, the termvorkbench codewill cover both kinds; workbench code
is code resulting from a succession of freezing and melting operations. As long as you
are working within EiffelStudio, you are using workbench code.

136 EIFFELSTUDIO: A GUIDED TOUR 816

When you are happy with the results of your development, you will normally
finalize the system, thereby generatfirgal code Although not strictly required, this
step is in most cases appropriate since final code is significantly more efficient than
workbench code in both time and space: finalization performs a number of
optimizations — dead code removal, replacement of dynamic by static binding — that
wouldn’t be justified in incremental development where, for example, some code
element that is “dead” one minute may be resurrected the next moment through the
addition of just one line of text. In addition, because finalized code is more efficient
than frozen code, it is the natural choice if, using ISE Eiffel for cross-platform
development, you wish to port the resulting C-package to other architectures.

If you have a set of reusable classes that may be useful to many applications, you
canprecompile theminto a library. This set of classes must $af-containedn the
sense that all the classes needed by any of them must be either in the library itself or in
another library that you will include in the precompilation.

Bytecode

The result of melting operations — the contents of the “bow!” — is an internal software
representation known as melted code or (for no particularly good reasbgjeaode
ISE Eiffel bytecode serves two complementary purposes:

» It can be executed directly. This is what happens during melting: while the rest of
your system, the frozen part, is executed in the form produced by Eiffel
compilation generation and C-compilation of the result, the melted part is
interpreted “as is” without further translation.

e It can be compiled into C for further processing.

Internally, the melted code is in a filgmple.melted (wheresimple is our project's name)

in the subdirectonEIFGEN/W_CODE of the project directory. The file is not human-
readable, but as you add elements to your software and melt you watch its size grow.
Whenever you freeze, it's emptied.

On the Microsoft .NET implementation of EiffelStudio, bytecode is replaced by that
platform’s own internal code, MSIL.

816 HOW EIFFELSTUDIO COMPILES 137

Using EiffelStudio without a C compiler

Thanks to melting, it is possible to do Eiffel development without a C compiler. You
will simply melt the Eiffel elements that you write. This is knownraglt-onlymode
and assumes that:

* Youdo not add new external C functions, which would require re-freezing and linking.

* You rely on precompiled libraries (such as EiffelBase). The precompilation
process itself requisza C compiler, but you can obtain precompiled libraries as
part of the ISE Eiffel delivery or download them franmffel.com

Degrees

You can now see the reason behind the terminology used to describe compilation steps,
calleddegreeson the messages that flash on the screen when you do a compilation. The
names are inspired by the international temperature scale — Celsius, also known as
centigrade — where water freezes at 0 (and boils at 100, but Eiffel software never
reaches that). For EiffelStudio:

* Compilation starts at degree 6, which examines the clusters of your system to
determine what classes may have changed. In many cases the compilation can
safely skip part of this degree.

» Degree 5 parses modified classes. It's executed not only when you explicitly request
a compilation, but also when you save a class from the EiffelStudio editor, or exit
from an external editor, so that you can see and fix syntax errors without delay.

» Degrees 4 down to 1 take care of melting.

* Negative degrees only take place when you freeze or finalize.

* After negative degrees comes C-compilation if needed.

http://www.eiffel.com/doc/manuals/getting_started/index.html

138 EIFFELSTUDIO: A GUIDED TOUR 816

Using melting and freezing

When should you melt, freeze, finalize or precompile? The answers are simple and
follow directly from the preceding overview; they provide the key to getting the
environment to work for you in the most effective way possible.

Melting is the bread and butter of the Eiffel developer. As you build your software,
either from scratch or by modifying an existing system, you will regularly melt to
benefit from the various checks that compilation performs and, of course, to generate
executable code that you can test and debug immediately. During this process, there is
no need to refreeze, since this operation (although still incremental) takes significantly
more time than melting.

Only two operations, noted abovequirefreezing: the addition of external (non-
Eiffel) routines, such as C functions or C++ classes, and the addition of agents. The
reason is easy to understand: the EiffelStudio compiler knows how to melt Eiffel
software, but not software written in C or other languages; agents similarly require
special code generation.

For the first compilation of a system that does not use precompiled EiffelBase, a
Freeze is needed since clasAlY; from which all other classes inherit, uses some
external routines. In this case the environment automatically starts a freeze even if
you just click Melt. This does not apply if you have access to precompiled EiffelBase.

Except for the addition of external routines or agents, freezing is never strictly
necessary. It is indeed possible to use melting throughout a development, never
requesting a freeze after the first compilation. But as the melted-to-frozen ratio grows,
you may detect a certain degradation in the performance of the system (determined by
how big a share of your system is melted, not how many times you melt it). After a
while, then, you may want to refreeze. Like melting, freezing is incremental: only those
parts of a system that have been logically changed will be recompiled; as with melting,
the determination of what needs to be recompiled is entirely performed by the
environment, without any manual intervention on the developer’s part.

816 HOW EIFFELSTUDIO COMPILES 139

The principal difference is that freezing takes longer than melting. Because of this
you are requested to confirm the first time you freeze. Freeze the example system by
choosing the menu entBroject - Freeze. You get the following dialog:

x

Freezing implies some C compilation and linking.

- Click. ez to compile the Eiffel zpstem [including © compilation]
- Click. Mo ta campile the Eiffel system [ho C compilation)

- Click Cancel to abort

[~ Do nat azk again, and always compile C code

es Mo Cancel

Note theNo option: by default, freezing will stala C compilation, but you can stop
after C generation if you wish. This is useful for example if you want to generate a C
package for cross-development, C-compiling the result on a different platform.

Click Yes to confirm freeze and C-compilation. Once the Eiffel compilation is
complete, a message in the Development Wind@wcompilation launched in
background) tells you when that C-compilation has started. C-compilation does not
block EiffelStudio: at this point you can continue working with the environment. Any
messages from C compiler will appear:

* On Windows, in a new console that comes up for the occasion (minimize it if you
don’t want to see the messages).

e On Unix/Linux and VMS, in the window from which you launched EiffelStudio.
You will be able to execute the frozen system as soon as the C compilation finishes.

You will note that freezing, although it takes more time than melting, is actually
quite fast, both due to the speed of Eiffel compilation and to the structure of the
generated C code, designed to optimize the operation of the C compiler.

140 EIFFELSTUDIO: A GUIDED TOUR 816

Using finalizing

The main reason for finalizing a system is run-time performance of the generated
system. Finalization enables you to generate the high-performance executables that are
among the hallmarks of ISE Eiffel. As a consequence, finalized code is the best vehicle
for cross-development: you can port the resulting C package to various target platforms
and C-compile them on these platforms.

The optimizations performed by finalization affect both space and time:

» Dead code removatrips the executable module of all the routines in the system
that are not actually called, directly or indirectly, by the root’s creation procedure.
In a large system relying on many general-purpose classes, dead code removal can
easily reduce an executable’s size by one third or more.

» Finalization also appliestatic bindingto non-polymorphic calls, andlinessome
routine calls.

As long as you continue changing, melting and freezing your system, the workbench
compiling mechanisms cannot perform such optimizations: if a routine is “dead” today
you may resurrect it tomorrow by adding a new call to it somewhere; and if a call is

non-polymorphic a single additional assignment may require dynamic binding.

Compilation can only generate optimal code by working on a full, stable system. This
is the task of finalization.

Cross-development the second reason for finalizing, is important if you are
taking advantage of the portability of ISE Eiffel to develop your system on a certain
platftorm and then run the result on target computers with possibly different
architectures. A target machine may lack an ISE Eiffel compiler (unmistakably
signaling its owner’s backwardness) but include a C compiler. If the development and
target platforms are of different architectures you will need to obtain a copy of the run-
time system for the target architecture. The run-time system is also ANSI-C-based, so
porting it is usually a straightforward matter.

Note that cross-development does rexuire finalization, since you can cross-
compile a frozen version. In practice, however, the finalized version is usually the
preferred form for porting a C package because of the performance advantage.

Finalize the example system now by selecting the menu éntijgct - Finalize .
Here too you will be asked to confirm, although the dialog enables you to suppress that
confirmation for later attempts, and you may skip C compilation. You will note that
finalization is longer than freezing, but still remains quite reasonable thanks to the
extensive optimization of the Eiffel compilation process and the structure of the
generated C code.

817 THE COMMAND-LINE COMPILER

17 THE COMMAND-LINE COMPILER

Along with compilation from within EiffelStudio, it is possible to start compilation
from a command line (shell). This is useful in particular to recompile your system

automatically as part of a script.
To use the command-line compiler e€ for Eiffel Compilation — execute

ec option ... [class_name] [feature_name]

Specify class _name and feature_name only if you wish to produce information
about a class or a feature. Otherwise will compile a system according to each

specifiedoption. Here is the set of supported options.

feature_name

OPTION ARGUMENTS EFFECT
—ace file_name Use as Ace the file of
namefile_name.
(Default: file Ace.ace
in current directory.)
—ancestors class _name Print ancestors of class.
—aversions class_name, Printall versions of feature
feature_name in ancestors of class.
—callers class_name, Print all routines that
feature_name call feature.
—clients class_name Print clients of class.
—descendants class _name Print descendants of class
—dversions class _name, Printall versions of feature

in descendants of class.

~

D.

—filter filter_name

class _name

Print text of class
processed byilter_name.

—finalize

Produce finalized
version of system
(optimized ANSI C code

and executable module).

142

EIFFELSTUDIO: A GUIDED TOUR 817

OPTION ARGUMENTS EFFECT

—flat class_name Print flat form of class.

—flatshort class_name Print flat-contract form
of class.

—freeze Freeze system.

—help Print short help message
listing options ofec.

—implementers class_name, Print all classes that

feature_name

declare or redeclare
feature.

—keep

Keep assertions in final
mode (useful with
-finalize only).

—loop

Enter interactive mode
where you may
repeatedly requestc
operations without
having to restaréc.

—precompile

Precompile system,
treating it as a library.

—project file.epr

Use the project of which
file.epr is the project file.

—project_path

Create project directory

directory in directory. (Default:
current directory.)
—short class _name Print contract form of class
—stop Stop on error. (Default: no.
—suppliers class_name Print suppliers of class.

—version

Print EiffelStudio version.

818 EXECUTING A SYSTEM WITHIN AND WITHOUT EIFFELSTUDIO 143

18 EXECUTING ASYSTEM WITHIN AND WITHOUT
EIFFELSTUDIO

To complete this study of the compilation process let’s see a few more properties of how
you canexecutean Eiffel system, both in EiffelStudio and as a compiled system that
you deliver to its users, who may need to run it without EiffelStudio.

Arguments

Our example system is very simple and has no need for execution arguments. In more
advanced cases you may want to pass values to the execution, such as a numeric
parameter or a file name, so that you can have different executions without changing
and recompiling the software.

In the Eiffel text, you can access such run-time arguments through the Kernel
Library classARGUMENTS. There is another technique — using the arguments to the
root creation procedure — but usidgRGUMENTS is the most general way. Any class
of your system can inherit rotARGUMENTS and use queriesrgument_count to
know the number of arguments passed to the execution,aagdment (i), for i
between 1 andrgument_countto access théth element. Class RGUMENTS has
more features; since you have EiffelStudio up, you can check the details if you wish
(use the contract form).

To specify execution arguments from within EiffelStudio, enter them, separated by
spaces, in the corresponding fieldPimject — Debug/Settings .

Executing from EiffelStudio

We have seen how to execute a compiled system from within EiffelStudio: choose one
of the appropriate execution buttons, with or without breakpoints.

Executing a finalized system outside of EiffelStudio

A finalized system can be executed on any computer of the appropriate platform; it
doesn’t need EiffelStudio. The executable version is in the directory

project_directorylEIFGEN/F_code

whereproject_directory is the project’s directory. The name of the executable file is
system_name.exe, wheresystem_name is the name that you have assigned to your
system in the project settings (reflected in the Ace file).

The name of our Guided Tour systensigiple, so you can locatsimple.exe in
EIFGEN/F_code for your project, and run it stand-alone if you like.

144 EIFFELSTUDIO: A GUIDED TOUR 8§19

If you run the system from a command line, and it requires argumeintgp(e doesn't),
you will provide the appropriate arguments after the command name:

system_name.exe ... arg

Because various platforms have different conventions, “relative paths” referenced in
your system will mean something different under Unix/Linux, where they relate to the
directory from which the command is launched, and under Windows, where they relate
to the application’s directory.

Executing a frozen or melted system outside of EiffelStudio

A system compiled in “Workbench mode” — frozen or melted — is normally meant
for execution within EiffelStudio, not for outside delivery, since it is not optimized. If
you need to execute it outside of EiffelStudio, make sure that you have access to the
system_name.melted file in project_directory/EIFGEN/W _code .

Moving on

With this discussion of compilation and execution we have finished our review of the
key capabilities of EiffelStudio. Not everything has been covered, but you are now
familiar with the essentials and ready to discover the rest by yourself, both by trying
out various capabilities — most of which should be self-explanatory — and examining
the extensive online documentation that accompanies the product.

19 APPENDIX: WRITING DOCUMENTATION FILTERS WITH
EFF, THE EIFFEL FILTER FORMAT

This appendix provides reference information, not needed in simple uses of EiffelStudio.

We saw in the section on documentatio®_page 39) that you can output
documentation about your system in many different formats. A number of predefined
formats are available, from Postscript to Microsoft's Rich Text Format, FrameMaker,
HTML with and without style sheets,dX and others. There’s nothing special about
these formats: they just make their conventions known to EiffelStudio throfigkra
expressed in a simple notation called EFF, or Eiffel Filter Format. If you have a favorite
format that you'd like EiffelStudio to use for producing documentation, you can define
your own filter in EFF. Applications include:

819 APPENDIX: WRITING DOCUMENTATION FILTERS WITH EFF, THE EIFFEL FILTER 145

* Producing a variant of an existing format, to support some “house style” that you
have defined, such as a different formatting or fonts.

* Producing documentation for a text processing tool that's not among those
supported by default.

* Producing documentation that purposely omit some parts of Eiffel texts, in line
with the ideas applied by the Contract and Flat Contract forms.

This appendix describes EFF and its conventions, enabling you to write filters. Note that
in practice the best way to write an EFF filter is usually not from scratch, but by copying
an existing filter — one that seems closest to your needs — and adapting the copy.

Where to put filters

When you choose to generate documentation, EiffelStudio will ask you to select a filter
from a list it obtains by looking up the files of extensi@hin the directory

$ISE_EIFFEL/examples/bench/filters

To make a new filter available to yourself and other users of this installation, just add
the corresponding fileame.fil to this directory. Make sure to choose the appropriate
name, since this is what the menu of available filters will display.

Filter basics

An EFF filter follows a very simple structure. As with all other Eiffel-related notations
(such as Eiffel itself and Lace, the control language for Eiffel systems), any line or part
of a line beginning with two consecutive dashesis a comment, except if it
immediately follows a percent sign since, as will be seen bélow,is used to denote

an Eiffel comment in the class text. Blank lines are also permitted. Comments and
blank lines carry no semantic value.

Except for comments and blank lines, a filter is a sequence of entries, all of the form

Construc{ Replacement

where:Constructis one of a set of possible strings, most of which correspond to Eiffel
constructs such a€lass_declaration or Eiffel keywords such aglass; and
Replacement is a string indicating how to format specimens of thenstruct that
appear in a class text.

146 EIFFELSTUDIO: A GUIDED TOUR 8§19

For readability, there may be any number of blanks or tabs betweeraihstruct
and the vertical ba, so that you can align all the bars if you wish. On the right of the
bar, however, all characters including blanks and tabs are significant, since they are part
of the replacement for th€onstruct.

The asterisk

In the Replacement part, you may use the symblol(asterisk) to denote the construct
specimen itself. So for example the entry

Feature_clause | %N%N*%N%N

specifies the following formatting for anlyeature clause : two successive blank
lines (expressed &N, New Line, a convention taken from Eiffel); the feature clause
itself; two blank lines.

Similarly, in an HTML format, the entry

External | [k/B>

means that the Eiffel keyworeikternal must appear in the filtered form immediately
preceded by, the HTML code for switching to boldface, and immediately
followed by, the code for reverting to the previous setup. Here you can also write
the right-hand side without the asterisks, external . If, however, all
keywords are to use boldface, it is preferable to write a single entry

Keyword | [k/B>

which, thanks to the asterisk, will govern all construct specimens oKtyvord
category. You can still override this specification for an individual keyword by
including a specific entry for it.

819 APPENDIX: WRITING DOCUMENTATION FILTERS WITH EFF, THE EIFFEL FILTER 147

Constructs

The following general syntactic constructs may appear as the left-hand side,
Construct, of an entry:

Class_declaration
Class_end

Class_header
Class_name
Comment
Creators

Escape
Feature_clause
Feature_declaration
Features
Formal_generics
Indexing_clause
Inheritance
Invariant_clause
Keyword
New_line
Obsolete_clause
Suffix

Symbol

Tab

Most of these denote Eiffel constructs as they appear in the official language reference,
the bookEiffel: TheLanguaye. Since the Eiffel construct namésature , Invariant

and Obsolete are also keywords and EFF, like Eiffel, is case-insensitive, the EFF
construct names use the suffilause , for example-eature_clause .

http://eiffel.com/doc/documentation.html#etl

148 EIFFELSTUDIO: A GUIDED TOUR 8§19

The constructs corresponding to syntactic constructs are self-explanatory. The others are:
 Class_end, denoting the final end of a class text.

 Keyword , denoting any Eiffel keyword among those listed in boldface in the
corresponding appendix fiffel: The Languge

* New_line, denoting any passage to a new line in the class text.

« Suffix , used to introduce the file extension for the generated documentation files.
If you don't specify this, EiffelStudio will use the filter's name as extension.

* Symbol, denoting any of the Eiffel symbols listed in the corresponding appendix
of Eiffel: The Languge.

» Escape, to protect special characters of the external tool, as explained below.

* Tab, denoting any tab character appearing in the class text.

Keywords

A Construct part may consist of the name of an Eiffel keyword. To see the complete
list of possible keywords, look at ttiemplate filter, file format.fil-template in the
default filter directonyISE_EIFFEL/bench/filters , which includes all of them with

a single asterisklas theReplacement part.

If entries are present for both théeyword construct and individual keywords,
the individual keyword entries will override the general entry for the keywords listed,;
the general entry will apply to all other keywords. This makes it possible to have both
a general convention for keywords and a special convention for some of them.

Symbols

A Construct part may consist of an Eiffel symbol, such &s /= and many others.
Again, you may see the complete list by lookingf@tmat.fil-template . Note the
following conventions:

* %UlJrepresents an asterisk. for example as a multiplication operatc¥ tnmids
the confusion with the special meaning of the asterisk for EFF. You can find
examples of this convention in the EFF filters for troff and gtroff.

» Similarly, the Eiffel comment symbol appears%s-, since just writing - would
introduce a comment in the EFF filter itself.

As with keywords, you may specify a general convention for symbols, defined by an
entry for the constructSymbol, and special conventions for certain individual
symbols. Specific symbol entries will override the gen8yahbol convention.

http://eiffel.com/doc/documentation.html#etl
http://eiffel.com/doc/documentation.html#etl

819 APPENDIX: WRITING DOCUMENTATION FILTERS WITH EFF, THE EIFFEL FILTER 149

Escape characters

A text processing system or other external tool may attach a special role to characters
that may normally appear in Eiffel texts. For example, the brdcaad}, used in
Eiffel's Export clauses, have a special meaning f@XT Including them without
precaution in EX input will cause trouble. Similarly, many text processing formats
attach a special meaning to the backslash charaetdich, although not special for
Eiffel, may appear in an Eiffel string.

In such cases the filter mustScapéthe special character, that is to say, protect
it by other characters. For example troff and other text processing tools treat two
successive backslash characteas denoting a single backslash in the text to be output.
The first backslash is the escape character, protecting the second one.

The Escape construct addresses such cases. The first character that follows
Escape (after one or more blanks or tabs) is the character to be escaped. The string
after the vertical bar is the replacement for that character.

Here for example is an escape entry for the backslash in tools that need to escape
it through another backslash:

Escape \|\\

Special characters and strings

EFF uses Eiffel-like conventions, based on the percent sign, for control characters
appearing inRReplacemenparts of entries. Two of these conventions have just been
noted:%[1to represent an asterisk afie to represent a dash that does not introduce
an Eiffel comment. In addition:

* %] denotes a vertical bar. (This is necessary since EFH bisatself in each entry
to separate th€onstructfrom the correspondingeplacemen

* %N (recommended form) é6n denotes a new line.
* %T (recommended form) @6t denotes a tab.
* %% denotes a percent sign.

* % (percent followed by a space) denotes a space. This is equivalent to just a
space, but more visible.

150 EIFFELSTUDIO: A GUIDED TOUR 8§19

If ¢ is not one of the characters for which special conventions have been fBsted,
denotes the characteitself.

A multi-line entry uses the Eiffel convention for string continuatiovsat the end
of a line to signal that there is a continuation; a continuation line begins with zero or
more spaces and tabs followed by@the characters after tlé are the continuation
of the string.

	EiffelStudio: A Guided Tour
	Manual identification
	 EiffelStudio: A Guided Tour
	1 OVERVIEW AND PREREQUISITES
	What will I achieve?
	About the scope of EiffelStudio
	Learning by doing
	What should I already know?
	A note on platform differences
	What should I have done first?
	Locating the example

	2 COPYING THE EXAMPLE FILES
	3 STARTING EIFFELSTUDIO AND OPENING A PROJECT
	Launching EiffelStudio under Windows
	Launching EiffelStudio under Unix or VMS

	4 COMPILING AND EXECUTING A SYSTEM
	Executing the system

	5 A LOOK AT THE PROJECT DIRECTORY
	6 STARTING TO BROWSE
	Browsing styles
	A Development Window
	Retargeting by name
	A peek at diagrams
	Retargeting from the Cluster Tree
	Moving back and forth
	The Target History
	Adding to Favorites
	Starting a new tool

	7 CLASS VIEWS
	The Class Tab
	Feature information in the Class View

	8 PRODUCING AND EXPORTING DOCUMENTATION
	Documentation filters
	Generating an HTML record of your project
	Generating Metatags from Indexing entries
	Choosing a level of detail
	Specifying cluster views
	Generating
	Browsing generated documentation

	9 BROWSING FEATURES
	Targeting to a feature
	Basic feature information
	Who calls this feature?
	What happens to my feature through the inheritance hierarchy?
	Who has the same name?

	10 RETARGETING THROUGH PICK-AND-DROP
	Trying Pick-and-Drop
	How Pick-and-Drop works
	Pebbles, holes, drop targets and type compatibility
	Multiple tools
	Clickable formats
	Semantic consistency
	Behind the Pick-and-Drop conventions
	Isolating the context
	Customizing the view
	Context memory
	The many paths to retargeting

	11 RECOMPILING AND EDITING
	Recompiling
	Editing
	Recompiling and executing after a change
	Views in the Editing Tool
	Basic editing facilities
	Search and replace
	Let the editor do the typing
	Using your own editor

	12 HANDLING SYNTAX AND VALIDITY ERRORS
	Levels of language description
	A syntax error
	Avoiding “Gotcha” dialogs
	A validity error

	13 DEBUGGING AND RUN-TIME MONITORING
	A reminder about debugging in Eiffel
	Setting breakpoints
	Executing with breakpoints
	Monitoring progress
	From the instance to the class
	Stepping into and out of a routine
	Terminating
	Other debugging capabilities

	14 COMPUTING PROJECT METRICS
	Methodological observations
	Metric terminology
	Kinds of metrics
	Defining a derived metric
	Composite metrics
	Applicable scope types
	Computing measures
	Saving measures
	Operations on metrics
	Metric archives

	15 GRAPHICS-BASED DESIGN
	Displaying a cluster view
	Hiding a class
	Adding a class
	Adding an inheritance link
	Adding a client link
	Updating the diagram from the text
	Creating a cluster
	Moving a class to a different cluster
	Changing a class name
	Adjusting the display
	Views
	Class diagrams, cluster diagrams

	16 HOW EIFFELSTUDIO COMPILES
	Compilation is automatic
	Compilation modes
	Criteria
	The Melting Ice Principle
	Properties of the compilation modes
	Bytecode
	Using EiffelStudio without a C compiler
	Degrees
	Using melting and freezing
	Using finalizing

	17 THE COMMAND-LINE COMPILER
	18 EXECUTING A SYSTEM WITHIN AND WITHOUT EIFFELSTUDIO
	Arguments
	Executing from EiffelStudio
	Executing a finalized system outside of EiffelStudio
	Executing a frozen or melted system outside of EiffelStudio
	Moving on

	19 APPENDIX: WRITING DOCUMENTATION FILTERS WITH EFF, THE EIFFEL FILTER FORMAT
	Where to put filters
	Filter basics
	The asterisk
	Constructs
	Keywords
	Symbols
	Escape characters
	Special characters and strings

