EiffelBench Guided Tour

version 4.3

A

Eiffel Power”

from ISE

Interactive Software Engineering
eiffel.com

Copyright notice and proprietary information
Copyright ©1999 Interactive Software Engineering Inc. (ISE). May not be reproduced in any form (including
electronic storage) without the written permission of ISE. “Eiffel Power” and the Eiffel Power logo are
trademarks of ISE.
All uses of the product documented here are subject to the terms and conditions of the ISE Eiffel user license. Any
other use or duplication is a violation of the applicable laws on copyright, trade secrets and intellectual property.

Special duplication permission for educational institutions

Degree-granting educational institutions using ISE Eiffel for teaching purposes as part of the Eiffel University
Partnership Program may be permitted under certain conditions to copy specific parts of this book. Contact ISE

for details.

ough
plication

pment

ntation

profit

g
ership

rt pages,

http://eiffel.com
mailto:info@eiffel.com
mailto:userlist-request@eiffel.com
mailto:userlist-request@eiffel.com
mailto:info@eiffel.com
http://eiffel.com

1
Tutorial: Guided tour

This chapter walks you through the essential properties of EiffelBench. After you
read and execute the suggested procedures, you will acquire the basics of working
with EiffelBench, including how to:

 Create a new project and retrieve an existing one.
» Add new software elements (classes).

» Compile usingMelting Ice Technology For more information, sé&€ompiling
a systeriy page 6

» Execute the result.

* Browse through a software system to view the components and their
relationships.

1.1 Before starting

Since people with vastly different backgrounds use and enjoy ISE Eiffel, this chapter
only assumes that you can perform basic operations on your platform of choice, such
as: use the drag-and-drop operation to move files (Windows) or change directories
(Unix, Linux or VMS).

Of course, the more you already know about Eiffel or object technology, the
better. However, if you are familiar with other environments, keep an open mind.
EiffelBenchis different and it may take awhile to completely understand why some
things are done a certain way.

For the purposes of this example, you will run the tutorial provided in
$EIFFEL4examples|bench|tour, whe®EIFFEL4 is the path for the Eiffel43
directory and | is the path separator: backslash (\) on Windows or slash mark (/) on
Unix.

To run the example, you first need to install ISE Eiffel and configure the
environment. The environment varial#FFEL4 must be set to the installation
directory, and the environment varialBleATFORMto your platform. On Windows
this is done automatically by the installation procedure, but on Unix, Linux or VMS
you must update your path and environment manually.

2 TUTORIAL: GUIDED TOUR 81.2

Other considerations include:

* On Unix, Linux or VMS, the path must include the location of the EiffelBench
executable files.

* Create a directory nam&OURDIRand then copy all files of the example to it
— YOURDIRIs the name of the directory that you create.

 This discussion also assumes that as part of the installation you included the
EiffelBase library, in precompiled form. EiffelBase is automatically provided if
you installed another precompiled library, such as the Windows Eiffel Library
(WEL).

* Once you compile the example using EiffelBench and precompiled EiffelBase
(default), the contents OfOURDIR(non-optimized) require 1.25 MB. Without
precompiled EiffelBase, 5.5 MB are necessary. In finalized (optimized) mode,
the executable needs 300 KB.

1.2 Starting EiffelBench

ISE Eiffel is one of the most portable environments in the industry and runs almost
identically on Windows 95/98/NT, Linux, Unix variants and VMS. Consequently, all
procedures in this manual apply to all platforms, unless noted otherwise.
Nevertheless, how you start EiffelBench depends on the operating system you are
using.

Unix, Linux or VMS version

You can start EiffelBench from any directory. However, to simplify things for this
tutorial and allow the use of relative rather than absolute file names, you will start
EiffelBench fromYOURDIR

To start the Unix, Linux or VMS version of EiffelBench:

* Open a shell tool or command window, switchtOURDIR and then type
ebench

The main EiffelBench window appears. For more information on the EiffelBench
window, se€ Exploring the Project Toblpage 3

Windows version
To start the Windows version of EiffelBench:
1 On the taskbar, clictart, and then point t®rograms.

2 Point to the folder that contains EiffelBench, an then diidkelBench.

The main EiffelBench window appears. For more information on the EiffelBench
window, se€' Exploring the Project Toblpage 3

1.3 Creating an EiffelBench system
To create the system for the EiffelBench tutorial:

81.4 EXPLORING THE PROJECT TOOL

1 On theFile menu, clickNew.

2 In theDirectories list, click theYOURDIR folder, and then cliclOK .

When you create an EiffelBench project, an Eiffel generatiBliFrGEN)
subdirectory is added to your EiffelBench system directory. The compiler creates
and maintains this subdirectory to store information about your project, and includes
the code generated for execution. The path, file name, and view for the active system
display in the EiffelBench title bar.

1.4 Exploring the Project Tool

When you start an EiffelBench session, Breject Tool displays by default.

;. New project: C:\Eiffel43\examples\bench\tour

File Edit Compile Debug Fomat Special ‘Window Help

DEFEe+00dnm | &9 B & #6
2@ |0 |she | =
g 6 3 &=

-
Output window

Selector
Object Tool

0 o g o

+o O SEaf Kttt e fiom:

Feature Tool

¥

] AW

The Project Tool serves as the control panel for compilation and contains the
following:

* Selector— lists the targets of all activ@lass Feature andObject Tools. One
of the following messages display for untargeted tools:
Empty class tool
Empty feature tool
Empty object tool
 Output window — displays information about the active project.

* Object Tool — displays information about the active object — the object on
which execution stopped.

4 TUTORIAL: GUIDED TOUR 81.5

» Feature Tool— displays information about the active routine — the one whose
execution is in progress.

Ace files

To define a new project, you must provide an Assembly of Classes in Eiffel (Ace)
file, which lists the directories for the Eiffel software, external software, and contains
the compilation options. An Ace file is written in the Language for the Assembly of
Classes in Eiffel (Lace) — a simple, Eiffel-like notation.

An Ace file is required to start the first compilation of a new project. When you
open an existing project, there is an associated Ace file. However, for a new project
you must either:

* Select an existing Ace file.
* Build an Ace file using EiffelBench.

In this tutorial, you will select an existing Ace file and explore the contents using
the SystemTool.

1.5 Exploring the System Tool

The System Tooldefines the overall structure a system, and accesses all clusters. It
also creates, defines and modifies Ace files.

Selecting an existing Ace file
To select an existing Ace file:

1 On theProject Tool toolbar, clickSystem .

2 Click Browse, in theLook in list, click Ace.ace, and then cli€ipen.

8§1.5 EXPLORING THE SYSTEM TOOL

The SystemTool appears and displays the Ace file, which contains the following
clauses in Lace syntax:

;. Ace =]

File Edt Fommat 5Special Window Help

B R EO| EZ§AHLd®
Systen :I

SIMPLE
rookt
TESTROOT (root _cluster): "make"

defanlt
precompiled ("FEIFFEL4d\precomphspec, fPLATFORM \ hases")

cluster
n n -
- "

root _cluster:

ernd

= 2

* system— the name of the active systeSINIPLE).

*root — the name of the root clas3ESTROOQOT), the cluster to which
TESTROOT belongs ioot_cluster), and the name of the creation procedure
for TESTROOT (make).

» default — contains grecompiled entry that indicates that the active project
uses a precompiled version of the EiffelBase library, stored in the specified path.

» cluster — lists all clusters in the active system by name, followed by a colon
and then the name of the associated directory, surrounded by quotation marks.

In this example, “.” means thatot_cluster is in the active directory.
You can now compile the active system.

6 TUTORIAL: GUIDED TOUR 81.6

1.6 Compiling a system

The EiffelBench relies oMelting Ice Technology the proprietary compilation
mechanism of ISE Eiffel, which offers three forms of compilation:

» melting — for making a few changes. The fastest of the mechanisms, typically
taking a few seconds after small changes. Melting time is proportional to the
size of the changed parts and affected classes, while the time needed to freeze
or finalize is partly proportional to the size of the whole system. As long as you
do not include new external C/C++ code, a C/C++ compiler is not required.
However, execution speed is not optimal.

« freezing— generates C code from the active system, and then compiles it into
machine code; you must have a C/C++ compiler installed. You need to use this
option if you add external C/C++ software. Unless you add external code, you
can re-freeze every couple of days. The rest of the time, you can melt your
software to receive immediate feedback.

* finalizing — delivers a production version (intermediate or final) of your
software or to measure its performance in operational conditions. Finalizing
performs extensive time and space optimizations that enable Eiffel to match the
efficiency of C/C++; it also creates a stand-alone C package that you can use for
cross development. Because of all the optimizations involved, finalizing takes
the most time.

Since this example relies on precompiled libraries that contain frozen code, you
will use melting throughout the tutorial.

Melting the project

To melt the project:

* On the Toolbar, cliciMelt (3 .

The Compilation Progressdialog box displays the percentage of compilation
completed.

During compilation, EiffelBench analyzes your system and determines what
needs to be recompiled — in this case, all classes, since your system is a new one.
Degreesmeasure progress, decrementing from 6 to 1. At degree zero, the changes
melt or are effected.

Because many of the classes included in this example are part of EiffelBase and
have been precompiled, EiffelBench only compiles the classeslioaheluster
directory: TESTROOT, HEIR andPARENT.

The precompilation mechanism plays an important role in the speed of
compilation. Although only three classes are compiled, the actual size of the system
— the number of classes on which the root class depends directly or indirectly,
including STD_FILES (used for input and output) and all ancestors and suppliers
— IS 65 classes.

81.7 USER INTERFACE CONVENTIONS

Apart from the speed, the most important feature of melting is that it is entirely
automatic. The only information the compiler retrieves from the Ace file is the name
and path for the root class. You do not have to supply “make files” or other manual
descriptions of intermodule dependencies.

1.7 User interface conventions

The following section provides a basic overview of the user interface conventions of
ISE Eiffel. These conventions apply to all the tools in the environment, including
EiffelCase and EiffelBuild.

Development objects
EiffelBench provides a series of tools that work directly with the conceptual units of
your project —development objects

Using the ISE Eiffel environment, you work directly with the development
objects, while the tools address the underlying source text files. This allows you to
concentrate on building the proper logical structure.

Development objects that EiffelBench supports include:

 Project — defined by a directory that stores project-related files, and where the
compiler stores its internal files in @&FGEN subdirectory.

» System— group of classes, spread over a number of clusters; known as a
program in traditional approaches.

* Cluster — group of classes in the same directory.
» Class— set of data abstractions.
» Features— set of properties attached to a class.

» Execution objects— run-time objects created during execution as instances of
classes in the system.

A development objeds a concept of ISE Eiffel and is an instance of any of the
abstractions. For the purposes of this user guide, the term development object
represents either a project, system, class, feature or execution object.

Other ISE Eiffel tools, such as EiffelCase and EiffelBuild, use these types and add
several others.

Pick-and-drop operation
The pick-and-drop operation is instrumental in the ISE Eiffel environment. You will
use this mechanism throughout this tutorial and the ISE Eiffel environment.
To use the Eiffel pick-and-drop operation:
1 Right-click a development object name.

The cursor changes to the shape of the selected objegqiebble — and a line
continuously connects the pebble to the original position of the object.

8 TUTORIAL: GUIDED TOUR 81.7

2 Point to the new position for the object, and then right-click.

Canceling the operation
To cancel the operation:

* Click anywhere.

Holes

Holesare icons that you drop pebbles on using the pick-and-drop operation, to create
new tools, retarget existing tools, or execute other operations. The pebble and hole
in a pick-and-drop operation must be compatible — not necessarily identical.

There are two types of holes in EiffelBench:

* Tool holes— a symbol for the corresponding development abstraction; located
in the upper left corner of a tool.

» Operation holes— performs various operations on the target of a tool, when
you drop the object on the hole.

If you drop a pebble on its corresponding hole, a new tool appears and displays
information about the selected development object. This action makes the object the
targetof the new tool — the tool &argetedto the object. When you target a tool,
the corresponding hole displays with a dot in it.

Since the dot represents the development object; you can use the pick-and-drop
operation to drop the dotted hole on its corresponding hole to display a new tool
targeted to that class.

Clickable elements

A clickable elementis one on which you use the pick-and-drop operation, or hold
down CTRL and either click or right-click. This definition includes class names,
routine declarations (features), stop points and execution objects.

Clickable elements display underlined and in blue on Windows. Because of
limitations in the current Motif library, these elements are not distinguished
graphically in Unix or VMS.

In the next section, you will use the pick-and-drop operation to target a tool (the
Class Too), and then view contents of a cla3& 5 TROOQOT).

8§1.8 EXPLORING THE CLASS TOOL

1.8 Exploring the Class Tool

TheClassTool sets properties, features, indexing information and constraints for the
active class.

This section explains three ways to creaf#ess Tooltargeted to a specific class:
* Use the pick-and-drop operation.

* Hold down CTRL and right-click a class.

* Hold down CTRL and click a class.

Targeting the Class Tool using the pick-and-drop operation
To target theClass Toolusing the pick-and-operation:
1 In the System Toolwindow, right-clickTESTROOT.

The cluster changes to the shape of the selected object — a class.

2 On theProject Tool toolbar, point to th€lasshole @ , and then right-click.
The Class Toolappears and displays the content$BSTROOT.

4 Class: TESTROOT Cluster: root_cluster M=l E3
File Edit Faormat Special ‘wWindow Help

= | B el® <& [fEsTRo0T
=E¥LE:E |waasEe 8 0mb

class TESTROOT creation

|»

make
featurea

ol, oZ: PARENT;

display demonstration message
'HEIER! ol
[
ol.display
of.display
end

display demonstration message is
do
io.put_new line
io.put_string (" ISE Eiffel spoken here")
io.put_new line
io.put_string ("----—--—-——-—-— e (NEN"
end

-— To get a typical compilation error, remowe the two dasl—
-— at the beginning of the next line:
-- inwv: INVALID -

10 TUTORIAL: GUIDED TOUR 81.9

Targeting the Class Tool class using CTRL right-click

To target theClass Toolusing CTRL right-click:

*In the System Tool window, hold down CTRL, and then right-click
TESTROOT.

Targeting the Class Tool using CTRL click

To target theClass Toolusing CTRL click:
* In theSystem Toolwindow, hold down CTRL and clickKESTROOT.

As mentioned earlier, you can also use the pick-and-drop operation to drop a
development object on a targeted hole to retarget that hole.

Since there are three op€lass Tooldargeted ta ESTROOQOT, you need to close
two.

Closing a Class Tool

To close &Class Tool
* On theFile menu, clickExit tool.

In the next section, you will explore the different ways to retargeCkhes Tool

1.9 Retargeting the Class Tool

This section introduces the different ways to retargeCthss Tool
» Use theClasshole # on théProject Tool toolbar.
* Use the tool window.

* Use browsing accelerator®revious ¢= or Next = on theClass Tool
toolbar).

» Use theTarget Name Tool

81.9 RETARGETING THE CLASS TOOL

Using the Class hole

To retarget th€lass Toolusing theClasshole:

1 In theClass Toolwindow, right-clickHEIR.

2 On theClass Tooltoolbar, point to the targetétiasshole & , and then right-click.

The Class Toolretargets and displays the contentsiBiR.

, Class: HEIR Cluster: root_cluster _ O]
File Edit Fomat Special Window Help

S B|ede < R
E= wheiie | 884 m

class HEIR inherit -

PARENT
redefine
display
end

feature

display is

da
io.putstring ("In class HEIR");
io.new_line;
io.putstring {("---——-—-————--————--—- "
io.new_line
display routine;
io.putstring lan attribute);
io.new_line;
io.new_line

end;

display routine is
do

io.putstring ("Calling a routine of class HEIR");
io.new line
end;

an attribute: STRING i=s -

] AW

Before you continue, it is important to note the difference between the preceding
pick-and-drop operations:

* You create &lass Tooltargeted to a specific class when you use the pick-and-
drop operation to drop a class pebble on@hess hole in theProject Tool
toolbar.

* You retarget an existinGlass Toolto a specific class when you use the pick-
and-drop operation to drop a class pebble on the tarGé&isghole in theClass
Tool toolbar.

12 TUTORIAL: GUIDED TOUR 81.9

Using the tool window

To retarget th€lass Toolusing the tool window:

1 In theClass Toolwindow, right-clickPARENT.

2 Point anywhere in th€lass Toolwindow, and then right-click.

The Class Toolretargets and displays the content®ARENT.

4, Clazs: PARENT Cluster: root_cluster |_ O =]
File Edit Format Special Window Help

EE | A | @0® | &= [rRenT
ELEfE wasie 8 DO

class PARENT feature d

display is

do
io.putstring ("In class PARENT") ;
io.new line;
io.putstring ("--————————————- "1
io.new_line;
first_message

end;

first message is
do
io.putstring ("Message number 1");
io.new line; io.new line
end;

erd

] 2

Using browsing accelerators

The browsing accelerators Previous ¢= andNext = — are located in the
Project Tool, Class Too| Feature Tool or Object Tool toolbars. Since each tool
maintains a list of its recent targets, you can also use these commands to go back and
display the previous target, display the next target (if applicable).

To retarget th€lass Toolusing the tool window:

1 On theClass Tooltoolbar, clickPrevious

81.9 RETARGETING THE CLASS TOOL

2

TheClass Toolretargets and displays the contentsiBiR.

1 Class: HEIR Cluster: root_cluster
File Edit Fomat Special Window Help

I [=] E3

L | A ede &= R

[EZEE wrhatie | 836 WY

class HEIR inherit

PARENT
redefine
display
erd

feature

display is

do
io.putstring ("In class HEIR");
io.new_line;
io.putstring ("--—--——-——-—————-————- "
io.new_ line
display routine;
io.putstring (an_attribute);
io.new_line;
io.new line

end;

display routine is
do
io.putstring ("Calling a routine of class HEIR");
io.new_line
end;

ann attribute: STRING is

4

Click Previousa second time.

14 TUTORIAL: GUIDED TOUR 81.9

TheClass Toolretargets and displays the content$B5TROOT.

4 Class: TESTROOT Cluster: root_cluster |_ O =]
File Edit Format Special Window Help

=E| Q| ede | &= [fEsTroo
== i haiie [834 0wl

class TEZTROOT creation -

nake

ol, oZ: PARENT;

make is
do
display demonstration message
IHEIR! ol
1 aZ
ol _display
ofZ.display

arnd

display demonstration message is
dao

io.put_new line

io.put_string (" ISE Eiffel spoken here")

io.put_new line

io.put_string ("---------—--—-—mm e (NN,
end

== To get a typical compilation error, remowe the two dasl——
-— at the beginning of the next line:
-- inwv: INVALID -

(| M4

3 Click Next.
TheClass Toolretargets and displays the contentsiBiR.
4 Click Next a second time.
TheClass Toolretargets and displays the content®ARENT.
You can also right-cliclPrevious or Next to display a list of all active targets.

81.9 RETARGETING THE CLASS TOOL

15

Using the Target Name Tool

The Target Name Toolis on theClass Tooltoolbar and displays the name of the
active class, which you can rename. You can also use it to quickly retarGéasbe
Tool.

To retarget th€lass Toolusing theTarget Name Tool
* In theTarget Name Toolbox, typeHEIR, and then press ENTER.
TheClass Toolretargets and displays the contentsiBiR.

4 Class: HEIR Cluster: root_cluster M=l E3
File Edit Faormat Special ‘wWindow Help

=H| B8 el® &= R
S4EfE|wasie| 8, DB

class HEIPR inherit

|»

Target Name Tool

PARENT
redefine
display
arnd

featurea

display is

do
io.putstring ("In class HEIR") ;
io.new_line;
io.putstring ("--—————--————-—————— "
io.new line
display routine;
io.putstring (an attribute);
io.new_line;
io.new_line

end;

display routine is
do

io.putstring ("Calling a routine of class HEIR") ;
io.new line
end;

an attribute: STRING is —

] AW

Since Eiffel is not case-sensitive, you can use lower case or upper case text when
you type. Once the tool retargets, the class name displays by default in upper case in
theTarget Name Tool

You can also use the wildcard character (*) to represent one or many characters.

16 TUTORIAL: GUIDED TOUR 81.9

Using the wildcard character
To use the wildcard character:
1 In theTarget Name Toolbox, typepar*, and then press ENTER.
The Select classlialog box appears and lists all classes in the system that begin

with par.

PARENT

P&RT COMPARABLE
P&RT_SORTED_LIST
P&RT_SORTED SET
P&RT_SORTED TwO_way LIST

Cancel

2 Click PARENT.

In the next section, you will displayFeature Tooltargeted talisplay , and then
retarget the tool to explore other features.

8§1.10 EXPLORING THE FEATURE TOOL

1.10 Exploring the Feature Tool

The Feature Tool sets properties for the active feature and its signature — the
number and type of arguments in the feature.

Displaying the Feature Tool

To display thé~eature Tool

¢ In theClass Toolwindow, hold down CTRL, and then right-clidksplay .

4 Feature: display Class: PARENT
File Edit Faormat Special ‘wWindow Help

i Imll:l. | '@. ||§§ ;T| & E 1 t %| **Ihispla}l fram: [FARENT

display
do

erud

i

is

io.
io.
io.
io.

-— Version from class: PARENT ;I

putstring ("In class PARENT")
new line;
putstring ("---—-—-——-—---- "y
new_line;

first_message

The comment, added by EiffelBench, indicates where the versidisay is
declared, in this case, in claBSRENT. In general, the applicable version of any
feature in any class can come from any ancestor.

The next section examines three ways to retargdte¢hture Took

 Use theFeature hole == on thd=eature Tooltoolbar.

» Use a classHEIR, one of the descendentsRARENT).

» Use theTarget Name Tool

18 TUTORIAL: GUIDED TOUR §1.10

Using the Feature hole

To retarget thé&eature Tool using theFeature hole:

1 In theClass Toolwindow (targeted t€ARENT), right-click display .
2 On theFeature Tooltoolbar, point to thé&eature hole «f% , and then right-click.

The Feature Tool retargets and displays the versiondidplay targeted to
PARENT.

1 Feature: dizplay Class: PARENT

File Edt Fomat Special ‘window Help

“oml]e | 2 ||§§;f| .'=H' I t %| = Idi&pla_l,l frarm: [PARENT

-- Wersion from class: PARENT ﬂ

Le)

display is

do
io.putstring ("In class PABRENT");
io.new_line;
io.putstring ("----—-—-———————-- "
io.new_line:
first_message

end

] 2

You can also drodisplay anywhere in th&eature Toolwindow to produce the
same results.

Using a class
To retarget thé&eature toolusing a class:
1 On theClass Tooltoolbar (targeted tBARENT), click Descendents i, .

2 In theClass Toolwindow, right-clickHEIR.

8§1.10 EXPLORING THE FEATURE TOOL

3 In theFeature Toolwindow, point anywhere, and then right-click.
TheFeature Toolretargets and displays the versiomnisplay defined inHEIR.

;. Feature: display Clazs: HEIR

File Edit Format Special Window Help

Comnde® @ EEd SHiite &2 6 from: [HE|F,
-— WVersion from class: HEIR ;I
display is
do
io.putstring ("In class HEIR") ;
io.new_line;
io.putstring ("---———--———--————-— iz
io.new line
dizplay routine;
io.putstring (an attribute);
io.new_line;
io.new line
end
-
< H

You will use this mechanism when you know about a fedtdrem classA,
displaying in aeature Tool, and want to know what the versionfa$ for classB.
You can use the pick-and-drop operation to drop either a feature or a class on a
Feature Tool

Using the Target Name Tool

Like the Class Tool| the Feature Tool toolbar also contains Barget Name Tool

with a slight modification — two text boxes, instead of one. The left text box
displays the name of the active feature, while the right one displays the name of the
corresponding class. Functionality remains the same: you can rename the active
feature or class, and quickly retarget the tool.

To retarget thé&eature Tool using theTarget Name Tool

* In the Feature Tool in the rightTarget Name Toolbox, typePARENT, and
then press ENTER.

20 TUTORIAL: GUIDED TOUR 81.11

The Class Tool retargets and displays the contentsdadplay targeted to
PARENT.

4 Feature: display Class: PARENT
File Edit Faormat Special ‘wWindow Help
TomOe B |S=a Sitla| e fom: [PaRENT |
-— Version from class: PARENT ‘ ‘ ;I
display is active feature corresponding class
do
io.putstring ("In class PARENT") ;
io.new line;
io.putstring ("-----————-—--—- "y
io.new line; Target Name TOOI
first_message
end
< H

1.11 Formats

In the preceding sections, you have seerSystem Too| the Class Tooland the

Feature Tool with the corresponding Ace file, class and feature text. You can
display other information diormats about the corresponding development object,

such as the classes of the system or the ancestors of a class. Once you retarget a tool,
it retains the format displaying prior to retargeting.

This section details the formats available in 8ystem Too) Class Tooland
Feature Tool In each of the following sections, you will explore the active system,
classTABLE and several features of the class, respectively.

The first series of formats that you will explore are inSgstem Tool You may
need to redisplay this tool.

To redisplay the&ystem Tool
» On theProject Tool toolbar, cIickSystemE :

8§1.11 FORMATS

System Tool formats

By default, theSystem Toolappears displaying the Ace file text in the tool window.
You can use the commands on 8ystemtoolbar to view the contents of the active

system in different formats.

; Ace

File Edit Faormat Special

Windaw Help

I [=] E3

Ed A EO E=Ei Soet

systen
STIMPLE
root

default

cluster
root_cluster:

ernd

5

TESETROOT (root_cluster): "make"

n n -
- L

[—

precompiled ("$EIFFEL4precomp'spec \ sPLATFORM \bas=a")

i

Since all class names in the following formats are clickable, you can hold down

CTRL, and then right-click a class name to display its propertie€iass Tool
To view a format below, click the corresponding button orSyxstemtoolbar.

» Text E: displays a textual representation of the Ace file for the active system
(default — see preceding illustration). In this format, only cT&STROOT is

clickable.

22 TUTORIAL: GUIDED TOUR 81.11

« Clusters _= : lists all clusters in the active system; all corresponding classes

display alphabetically below each cluster; the root cluster
(root_cluster)always displays first, the precompiled clusters last.

4. Clusters in universe simple

File Edit Format Special Window Help

EH A EO| == ane®h

15 chisters containing 1635 classes o
root: TESTROOT (chister: roor_aluster)

Chaster: root_chuster (4 classes)

PARENT
TESTROQT
Chaster: kernel (Precompiled, 52 classes)
AN
ARGUIENTS
ARRAY []
RASTC_ROUTINES
RIT_REF
ROILEAN
ROOLEAN REF
CHARACTER
CHARACTER_REF
CoPARARLE
CONSOLE
DECIARATOR
DIRECTORY
DURECTORY MNAME
DOUTELE
DOURLE_REF
EXCEP_CONST
EXCEPIIONT
FILE
FILE_MNAME

FUNCTION [TEBASE, TOPEN -= ITIPLE, TRESULT]
e R il

1 Al

* Classes § : alphabetically lists all classes in the active system with its
corresponding cluster.

4 Clusters in universe simple

File Edit Fomat Special Window Help

B0 QA ED| E=i Ao

15 chasters contaiming 163 classes -
root: TESTROOT (chister: roor_cluster)

Chaster: root_cluster (4 classes)
HEIR
IMEALID
PARENT
TESTROOT

Chaster: kermel (Frecompiled, 52 classes)
AN
ARGUMENTS
ARRAY[G]
BASTC ROUTINES
BIT_REF
BOQLEAN
RAGLEAN REF
CHARACTER
CHARACTER_REF
COMPARARLE
COMSALE
DECIARATOR
INRECTORY
DRECTORY WAME
DOUTRLE
DOURLE_REF
EXCEP_COMST
EXCEPTIONT
FILE
FILE_WAME

FUNCTION [TBASE, TOPEN -= IUFPLE, TRESTULT]
Tali] hal

§1.11 FORMATS 23

« Show cluster hierarchy &% : displays the cluster hierarchy for the active

system. You use the following Lace syntax to specify that one cluster is a
subcluster of another:

my_subcluster (some_parent_cluster): “$|my_subcluster_directory”

$|my_subcluster_directory is the directory for the parent cluster
some_parent_cluster

;. Cluster Hierarchysimple Hi=] E3
File Edit Format Special Window Help
== Y

2 Q| EO E=i 2o

karnel ;I
support

aceess

CUFOVE

oursOY_trés

dispenser

Heration

list

et

sort

stavage

table

aversing

ee

roor_cluster

¥

4] ol

« Statistics i : lists statistical information for the active system, such as the
number of classes and clusters.

4 Statistics of system simple

File Edit Fomat Special Window Help

B0 QA ED| EZi 4o

10 compilations for system. ;I
15 chisters in the system.
183 classes in the system.
4 melted classes in the system.

24 TUTORIAL: GUIDED TOUR 81.11

« Modified classesg: lists all classes in the active system that were modified
since the last compilation.

;. Modified classes in universe simple

File Edit Format Special ‘window Help

B Q EBO| == AMo®

Classes modified since last compilation ;I

¥

] 2V

* Indexing clausesfrﬁ : alphabetically lists all clusters in the active system with
key information from the indexing clauses of all classes — notably the
description entry. The indexing clause displays in the beginning of an Eiffel
class and associates indexing information with the class.

4 Indexing clauses of classes in universe simple

File Edit Fomat Special Window Help

B B EO| E=iA0dH
Chaster: kermel (Precompiled) -
AN
description: Project-wide universal properties. This class is an ancestor to all
ARGUMENTS
description: Aecess to command-line avgmments. This class may be nsed as ar
ARRAY[G]

description: Sequences of wahies, all of the same type or of a confonming one
BASTC ROUTINES

description: Some nsefil facilities on objects of basic types
RIT_REF

description: Bit sequances of length “count®:, with binary operations
BOOLEAN

description: Trath vabies, with the boolean operations
BOOLEAN REF

description: References to objects containing a boolean vahe
CHARACTER

description: Characters, with comparison operations and an A3CII code
CHARACTER_REF

description: References to objects containing a ok ter vahie
COMPARARLE

description: Ohjects that may be compared according to a total order relation

note: The basic operation is “=%3 (less than), others are defined in terms of' t

names: comparable, comparison
COMSOLE

description: Corumonly wed console input and cutput mechanisms. This clas
DECIARATOR

warning: If you are precompiling a suhset of EiffelBase, it is praferable HOT

description: Class used to ensare proper precompilation of EiffelBase. Hot tc
IRECTORY

description: Directories, in the Unix sense, with creation and exploration fez
DIRFCTART MAMF r

K aW

The set of formats that you will explore in the next section are iGldss Too|
retargeted to claSS\BLE (an EiffelBase class). You may need to redisplay this tool.

§1.11 FORMATS 25

To redisplay theClass Tool

 On theProject Tool toolbar, clickClass 4 .

Before continuing, you must retarget tkass Toolto TABLE . You can use any
of the methods described earlier in this chapter to retarg€iéiss Tool

Class Tool formats

Like theSystem Too] theClass Toolappears displaying the text for the active class
in the tool window. You can use the commands onQlasstoolbar to view the
contents of the active clasFABLE) in different formats.

4 Class: TABLE [g. h] Cluster: access [precompiled]

File Edit Faormat Special ‘wWindow Help
Zk| Q| ede &= [T
=¥E vy Seiie | 84 Dmdb

indexing —

description:
"Containers whose items are accessible through keys":

status: "See notice at end of class";
names: table, access;

access: key, membership;

contents: generic;

date: "iDate: 1998,/08/17 1&:50:0Z £";
revision: "fRewision: 1.9 "

deferred class TAELE [G, H] inherit

BAG [G]
rename

put as bag put

end;
feature -- Access
item, infix "@" {k: Hi: F i=s
-- Entry of key "k'.
require

wvalid key: walid key (k)
deferred
end;

-

< _ | B

Since all class names in the following formats are clickable, you can hold down
CTRL, and then right-click a class name to display its propertie€iass Tool

To view a format below, click the corresponding button orGlasstoolbar.

« Text = : displays a textual representationT@BLE (default — see preceding
illustration).

26

TUTORIAL: GUIDED TOUR 81.11

* Clickable E: displays the active class wilteywords in blue and bold,

identifiers in italic, and commentsin red; every semantically-meaningful
component is clickable.

* Flat

4 Clickable form of class TABLE [g. h]
File Edit Format Special Window Help

- (O] x|

| 8 eole | &= [Tk

=+ | daiie | 825 mEs

indexing
description: "Containers whose items are accessible through keys",
status: "See notice at end of class";
nares: table, access,
ancess: key, mervbership,
contents: generic;
date: "$Date: 199808712 16:50:02 $;
revision: "$Revision: 1.9 §"
deferred class TABLE [G, H]
inherit
HAG[F]
rename

putas bag_put
end

feature -- Locess

ftera (k: HY: Gis
-- Entry of key k.

require

valid key: valid ey (k)
deferred
end;

infix "@" (k: H): Gis
-- Entrv of kev 'k'.

i

-- Was declared in TAELE as synonym of ‘iew' and “@'.

D

7

. provides the reconstructed form BABLE , including all inherited
features.

;. Flat form of class TABLE [g. h] H=] E3
File Edit Fomat Special Window Help

B | 8| ole® &= [t

S¥EZE wahetie 8F b

indexing -

description: "Containers whose items are accessible through keys";
status: "See notice at end of class";

names: table, access;

amcess: key, membership;

contents: generic;

date: "$Date: 1998/08012 16:50:02 $°,

revision: "$Revision: 1.9 $"

defarred class TARLE [, H]
feature -- Lccess

has (v G BOOLEAN is
-- Does structurs includes "v'7
- i(Reference or object equality,
- based on ‘chject_comparson'.)
- ifrom CONTANER)
deferred
ensure -- from CONTAIVER
not_found_in_empty: Resmlt implies not exnpyy
end,

drem (k:H): Gis
-- Entry of key k.
-- Was declared in TABLE as synonym of ‘item' and "@.
require
valid key: valid_kay (k)
Adofarrad

8§1.11 FORMATS

» Short . displays the interface th@ABLE offers its clients: it removes all

implementation information (routine bodies, secret features), but keeps the
routine headers, the header comments and assertions; this is the interface
through which you will use any class.

;. Short form of class TABLE [q, h] H=1 3
File Edit Fomat Special Window Help

B | 8| ole® &= [t
SE¥E[z E|waakie| 886 Omdb

indexing
description: "Containers whose items are accessible through keys"
statns: "Jee notice at end of class"
names: table, access
access: key, membership
contents: generic
date: "$Date: 1998108012 15:50:02 §"
revision: "$Revision: 1.9 $"

|»

defarred class interface
TARLE [(3, H]

feature -- Lccess

ftem (k:HY: G
- Entry of key k.
-- Was declared in TAELE as synonym of ‘tem' and "@'.
require

valid_key: valid_kay (k)

infix "@" (k: H): G
- Entry of key k.
-- Was declared in TAELE as synonym of ‘tem' and "@'.
require

valid_key: valid_kay (k)
feature -- Status report

vealid Jeav (- HY1: RONITE AR hal

)

]

* Flat/short

: displays the short form of the flat — the complete interface.

4 Interface of class TABLE [g. h] M=l B3
File Edit Fommat Special window Help

Bkl B ede® & [
SLEZE waae 8K OB

indexing =
description: "Containers whose items are accessible through keys"
status: "See notice at end of class"
names: table, access
access: key, membership
contents: generic
date: "$Date: 1992/08/12 16:50:02 §"

revision: "$Revision: 1.9 §"

deferred class intexface
TABLE [i3, H]

feature -- Aocess

has (v 51 BOQLEAN
-- Does structure include “v'7
- i(Reference or object equality,
-- ba=zed on ‘object_comparison’.)
-- i from CONTANER)
ensure -- from CONTAINER
not_found_in_empty: Remlt implies not exnpyy

ftem (k:HY G
-- Entry of key k.
-- Was declared in TABLE as synonym of ‘item' and @
require

valid_key: valid_kay (k)

infix "@" (k- HI- G l

28 TUTORIAL: GUIDED TOUR 81.11

* Ancestors ‘QJ| lists the ancestor structure that leadSABLE .

4. Ancestors of class TABLE [g. h] [_ O] =]
File Edit Fomat Special Window Help
| 8| ole® &=
S<E1: [waoie 85 Omb
TARLF [G, H] =]
FAG[G)
COLLECTION[G]
CONTAIVER [G]
ANT
¥
| ol

In the preceding, TABLE inherits from BAG, which inherits from
COLLECTION, and so on, while the inheritance structure stop&Nit — an
ancestor of all developer-written classes.

« Descendents 5 : lists all descendents ®ABLE .

4, Descendants of class TABLE [q. h] M=l &=
File Edit Fomat Special Window Help

B | 8| ole® &= [t
SE¥=: E|waske|88F 0wl

TARLE [3, H]
HASH_TARLE [, H -» HASHARLE]
INDEXARLE [G, H -» INTEGER]
SORTED STRUCT [3-= COMPARARLE]
CHATVG]
CIRCULAR [G]
DIYNAMIC_CIRCULAR [G]
ARRAYED_CTRCULAR [3]
LIVEED_CIRCTILAR [G]
TWO_WAY_CTRCTULAR [G]

|»

LI5T 3]
DYNAMIC_LIST []
LINEED_LIST[G]
LINKED_TREE [3]
LINEED_SET[G]
TWO_WAY_LIST[G] L

TWO_WAY_TREE [G)

SORTED_TWO_WAY_LIST [G -= COMPARARLE]
TWO_WAY_SORTED_SET [5G -» COMPARARLE]
LINEED_PRIORITY_OURTE [G-» COMPARARL.

PART_SORTED_TW(_WAV_LIST[G-» PART COMPAI
PART_SORTED _SET [G = PART CCUMPARARLE

LINEED_(OUEUE [3]
LINEED_STACK [G]
MULTT_ARRAY_LIST[G]
ARRAYERD_LIST [5]
ARRAYED_TREF [5]
ARRAVED_STACE [G]
ARFATRD STROTIT AR [T al

41 | M

8§1.11 FORMATS

29

» Clients == : lists all clients ofTABLE.

* Suppliers 4= : lists all suppliers oTABLE.

;. Clients of class TABLE [g. h] =] B3
File Edit Format Special Window Help
=k | R elde | &= [@E
E¥=: 5 |whbEe | 8K 0 08H
Clients of class TARLE [i3, H]: =]
| AW
;. Suppliers of class TABLE [g. h] =] B3
File Edit Format Special Window Help
=k | R elde | &= [@E
E¥FEEL 5| whaie 8, Omds
Supplisrs of class TABLE [G, H]: =]

30

TUTORIAL: GUIDED TOUR 81.11

- Attributes 88 : lists all attributes oTABLE , sorted by originating class.

; Attributes of class TABLE [q, h] M= &3
File Edit Format Special Window Help

| 8 eole® | &= [TsE

ESXE:E wWaatie 85 DEd

Class CONTAINER [G]: =]

objeat_somparison: BOOLEAN
-

| o

. Routines of class TABLE [g. h]
File Edit Fommat Special window Help

« Routines J* : displays information about all routines TABLE , sorted by
originating class.

I[=1 B3

Bkl B ede® & [

ELE:E | whatie | By TED

Class CONTAINER [G]:

_comparison_criterion: BOOLEAN
compare_objects
COMPare_veforances
exmppy: BOOLEAN
has (v Generie #1): FOOLEAN
lineay_representation: LINFAR [Generic #1]

Class COLLECTTON [G]:

extendible: BOOLEAN

All (ather: CONTAINER [(reneric #1])
prunable; BOOLEAN

prune (v: Generic #1)

prune_all (v Generic #1)

wips_out

Class RAf [G]:

extend (v: Generic #1)
cocurvences (v Generie #1): INTEGER

Class TARLE [G, H]:

infis @ (k: Generic #2): Genenie #1
bag_put (v: Generic #1)

ftem (k: Generie #2): Generic #1

wiit Far ranavin #] - 1 Gavara #720

i

|»

8§1.11 FORMATS

« Deferred ~: lists all deferred routines FABLE, sorted by originating class.

4. Deferred routines of class TABLE [g. h] M= E3
File Edit Fomat Special Window Help

Bkl B ede® &=
SE«E:E waskie|8F OB

Class CONTAIVER [G]: =]

empy: BOOLEAN
has (v Generic #1): FOOLEAN
linear_representation: LINEAR [Generic #1]

Class COLLECTION [G]:

extendible: FOOLEAN
prunable: FOOLEAN
prune [v: Generic #1)
wipe_out

Class BAC [G]:

extend (v Generic #1)
cocurrences [v: Generie #1): INTEGER

Class TARLE [G, H]:

enfEi(@ (k: Generic #2): Generic #1
ftemm (ko Generde #2): Generie #1

put (v Generic #1; k: Generic #2)
valid_kap (k: Generie #2): FOOLEAN

| AW

» Once/Constantsg] : lists all once routines and constant$ABLE , sorted by
originating class.

4 ‘Once/Constant’ routines of class TABLE [q, h]

File Edit Fomat Special Window Help
B | 8| ole® &= [t
SLEZE wahetie 8F Onb

32 TUTORIAL: GUIDED TOUR 81.11

« Externals (3 : lists all external routines iABLE , sorted by originating class.

, Externals of class TABLE [q. h] M= EF
File Edit Format Special Window Help
B | 8 ede &= s
E¥=: | wahoile 38K O8H
El
[5l

* Exported $2: lists all exported routines iMABLE, sorted by originating
class.

, Exported features of TABLE [qg. h] M=
File Edit Format Special Window Help

Ek| 8 ele®| &= [Tk
E|wanEe | RBF TN

Class CONTAINER [G]:

|»

_comparison_crterion: BOCLEAN
compare_objects
compare_rafarences
empp: BOOLEAN
Fas (v Generie #17: BOOLEAN
Tnear_representation: LINFAR [Generic #1]
object_comparison: BOOLEAN

Class COLLECTICN [G]:

axtendible: BOCOLEAN

Al (other: CONTAINER [Generic #1])
prunable: BOOLEAN

prume (v Generie #1)

prume_all (v Generic #1)

wipe_out

Class RAC [G]:

exntend (v: Generic #1)
cecurrerces [v: Generic #1): INTEGER

Class TARLE [G, H]: .

(@ (k: Generie #2): Generic #1
ftemn (ko Generie #2): Generie #1
it Frr Cavario &1 T (Tanavin #71 i

1 AW

As you can see, some of the routines of the class are defif@dBLE itself,
while others come from ancest@©NTAINER, COLLECTION andBAG.

Note the first routine defined IPABLE, _infix_@ . In the class text, it displays

asinfix “@” : this is the Eiffel mechanism for routines used in infix forms, such as
infix “+” on integers.

§1.11 FORMATS 33

In this representation, it means that a client can access the entrykoirkeple
t through the notation@ k as an alternative tioitem (K) . In a list of features (like
the preceding one), the conventional syntarfig_x , wherex represents the infix
operator.

Note the use of the synonym mechanism of Eiffel: a feature has two names, an
identifier nameifem) and an infix nameirffix "@"). The effect is the same as if
you had two declarations, identical except for the feature name.

In the next section, you will explore the contents of several features using the
Feature Tool For the sake of continuity, you will start with featesdend (from
classTABLE). You must first retarget tHeeature Toolto extend .

To target thd-eature Toolto extend :

1 In theFeature Tool in the leftTarget Name Tool typeextend , and then press TAB.

2 In the rightTarget Name Tool typeTABLE, and then press ENTER.

Feature Tool formats

The features of a class include both the inherited and immediate features. There are
two possible types of features:

e attribute — contains information stored with each instance of the class and
returns a result. Attributes cannot have arguments.

* routine — describes an algorithm applicable to every instance of the class. If
the routine returns a result, it is callefdiaction; if not, it is called grocedure.

This classification is based on the implementation technique of the feature, as
seen from the class itself. Viewed from the perspective of a client class, a feature can
also be classified as either:

« acommand — the feature can change its target object, but does not return a
result. A command may only be implemented asogedure

» aquery— the feature returns a result, but should not change the object. A query
may be implemented as eithefuactionor anattribute

and its implementation status in the class is one of two kinds:
« effective— the feature is completely implemented.

* deferred — the feature ispecifiedin the current class, but not implemented
yet; implementations may be provided in proper descendants.

34 TUTORIAL: GUIDED TOUR 81.11

Like the two previous tools, thifeeature Tool appears displaying the text for the
active feature dxtend) in the tool window. You can use the commands on the
Feature toolbar to view the contents ektend in different formats.

. Feature: extend Clazz: TABLE [g. h] M=l E
File Edit Fomat Special Window Help

LomOe Q| SEw &t ttd| e e o [TEGLE

—-- Wersion from class: BAG ;I

extend (w: &) is
-— Add a new occurrence of “v'.
deferrad
ensure then
one_more_occurrence: occurrences (vw) = old {(occurrences (w)) + 1
erd

JEH| AW

Since many of the objects in the following formats are clickable, you can hold
down CTRL, and then right-click an object to display its properties.

To view a format below, click the corresponding button orFgeture toolbar.

 Text E: displays a textual representatioregfend (default — see preceding
illustration).

8§1.11 FORMATS

 Flat = : lists the reconstructed versionexftend , with all inherited assertions
combined.

4. Flat form of feature extend [v: Genenc #1)

File Edit Faormat Special ‘wWindow Help

+‘|E||:|.|@.|§_ |&E=t%|«*lextend frorn: [T 4B E

extend [v. 3] is
-- Add a new occurrence of v
- (from FAG)
reguire -- from COLLFCTION
extendible: extendible
deferred
ensure -- from COLIFECTION
itern_inserted: Bas (v)
ensure then -- from FAF
one_mmore_ocourrence: cceurrences [¥] = old (ocewrrences (v + 1
end,

il

] 2

- All callers i : lists all locations in the system where the feature is called.

4. All callers of extend [v: Generic #1) M= E3
File Edit Faormat Special ‘wWindow Help
+‘E|D.|@|§§E||EE 3 t%|«*|extend f":'m:ITAELE
gxtend from TARLE - =
gxtend from INDEYARLE
collecton_extend from HASH TABLE
extend from ARRAY

extend from TUTPLE
gxtend from ARRAYED (UEUE
extend from HEAFP PRIQRITY QUFEUE
extend from CHADV
extend from CTRCTTIAR
gxtend from DEMWAMIC CEHADV
DYNAMIC CHADV
duplicate
extend from DIMNAMIE CIRCTITAR
DIMAMIS CTRCTTIAR
duplicate
exaterd from LIST
gxtend from ARRAYED CIRCTUIAR
extend from FINED LIST
extend from LINEED CIRCTIIAR
gxtend from IED_WAY CIRCTTIAR
extend from PART SORTED LIST
PART SQRTED LIST

mergs
an fAmmme T oreem

kil 2

36 TUTORIAL: GUIDED TOUR 81.11

As you can see, tHeeature Tooltitle bar displays the signature of the routine as
extend (v: GENERIC #1) . This means thatxtend takes one argument, whose
type is the first (and only) generic parameter of the class, dalledhin the class.

« Implementers % : lists all redeclared versions ektend . Redeclaration

retains the original name of a feature, but changes other properties, such as the
Implementation.

1 Implementers of extend [v: Generic #1)]

File Edit Format Special Window Help
= @ [D ot ‘ @' | Ef | &F I I % | = |e:-:tend from: [T 4B E

COLLECTION extend A
HANH TARLF collection_extend
ARRAY extend

ARRAYELD (QUEUE extend
ARRAYED CIRCULAR extend
FIXED LIST extend

LINEED CTRCULAR extend
PART SQORTED LIST extend
MULTT ARRAY LIST extend
ARRAVED LIST extend
ARRAVED STACKE extend
LINEED LIST extend

LINEFED) STACK extend

IINEEED) QUTELTE extend
LINEED SET axtend

T _EAY TINT extend

PART SORTED T WAY LIST extend
PART SORTED SFET extend
SORTED T WAY LIST extend
T _ WA SORTED SET extend
ATRING axtend

] 2

The preceding illustration shows all classes whextend from LIST, which
originally comes fronCOLLECTION, has a different, redeclared version.

8§1.11 FORMATS

- Ancestor versions § : displays the entire history efxtend : its versions in
every ancestor; not just those in whetiend is redeclared.

1 Ancestor versions of extend [v: Generic #1)

File Edit Fomat Special Window Help

-:"lmllj.|@| ET-|&$|TI%|4'-P|EMEW:I fram: [TABLE

History branch #1
COLLECTION extend (v Generic #1)
WVersion from class COLIECTION
FAG extend (v: Generic #1)
Version from class FAG
TARLE extend (v: Generic #1)
WVersion from class FAD

JEH| AW

You will normally use the pick-and-drop operation with this format to see what
an ancestor version looks like. In this example, there is only one andéistory
branch #1), but in multiple inheritance cases that involve joining features from
several ancestors, there will be several.

38 TUTORIAL: GUIDED TOUR 81.11

« Descendant version: ¥ : lists all descendents ektend .

4, Descendant versions of extend [v: Generic #1]

File Edit Format Special ‘wWindow Help

+om e & | | St it ED o hem: [TagLE

History branch #1
TARLE sxtend [v: Generie #1)
Version from class FAG
IWNDEXARLE extend (v Ganeric #1)
Version from class FAG
HASH TARILF collection_extend [v: Generic #1)
Version from class FASH TARLE
ARRAY extend (wv: Generic #1)
Version from class ARRAY
TTUTPLE extend (w: ANT)
Version from class ARRAYF
ARRAFED QUTFUE extend (v Generic #1)
Version from class ARRAVED (QETE
HEAP _PRIORITY QUEUFE extend (v: Ganeric #1)
Version from class ARRAYT
CHAIN gxtend (v: Generie #1)
Version from class FAG
CIRCUTAR extend (v Genere #1)
Version from elass FAS
DENAMIT CHAIV extend [v: Generic #1)
Version from class FAG

TR TAL ST CATTCETE AT . L L

K 2

« Homonyms &4 : lists all features callegixtend in the active system.

;. Homonyms of extend [v: Generic #1]

File Edit Fomat Special Window Help
comde | Q& wf | 8% 3 1| e [eend hom: [T 45 E

extend [divectory_name: STRIVT) -
From class DIRFCTORY MNAME
extend [divectory_name: STRINVE)
From class PATH MNAME
extend (o CHARACTER)
From elass SFQ STRING
extend [v. CHARACTER)
From class RAW FILFE
extend [v: CHARACTER)
From class FILF
extend [divectory_name: STRIVE
From class FILE WAWE
extend (v ANT)
From class TTIPLF
extend [v: Generic #1)
From class ARRAY [(7]
extend (v: CHARACTEER)
From class PLAIN TEXT FILE
extend [v: CHARACTER)
From class COMSOLE
extend (o) CHARACTER)
From class STRING
extend [v: Generic #1)

™ 1 FRSTFIATR AT T T AT PR TR RO

JEH| AW

Unlike the features which display in the preceding formats, these features are not
necessarily related textend from TABLE : they simply have the same name. Since

§1.12 MODIFYING AND REMELTING 39

EiffelBench must explore the entire system representation, rather than rely on
structural information, it takes awhile to display this format.

The large number of features nanedend in many different classes are the
result of the rules for systematic feature naming for libraries in the Eiffel method. For
more information on these rules, $@eusable Software: The Base Object-Oriented
Component Libraries

If you have experience with object-oriented software construction, the
importance of the facilities explored to this point become apparent. Specifically,
given the power and versatility of polymorphism and feature redeclaration
(redefinition and effecting), it is essential to quickly answer the following questions:

» What does featurebecome in clas€?

» What are the descendentsG#

* From what class does the versiorf af C come?
* What was the original version t#

The techniques described in the preceding sections answer the most common
version of these questions.

In the next section, you will modify claBiEIR, and then recompile usiri@uick
Melt =# /% on theProject Tool toolbar.
1.12 Modifying and remelting

To continue this tutorial, use one of the methods discussed earlier in this chapter to
retarget &lass Toolto HEIR, and then selediext = as the display format.

In the following section, you will add procedurew_message after procedure
display and beforalisplay_routine , and then add a call tew_message at the
beginning ofdisplay .
Modifying HEIR
To modify HEIR:
1 In theClass Toolwindow, point to the space abodsplay routine is , and then click.
2 Press ENTER, and then type the following:

new_message is
do
lo.put_string (“Message added later”)

l0.put_new_line
end

3 Point to the space belodo (belowdisplay is), and then click.

40 TUTORIAL: GUIDED TOUR 81.13

4 Press ENTER, and then typew_message

5 On theClass Tooltoolbar, clickSave [& .

4 Class: HEIR Cluster: root_cluster M= E3
File Edt Fomat Special ‘wWindow Help

| A elde &= R
=« wheiie | 34 1Y
PARENT

redefine
display

erd
feature

display is
da
new message

io.putstring ("In class HEIR");
io.new_line;
io.putstring ("-——-————-—-—-——-————- "
io.new_line
display routine:
io.putstring (an_attribute);
io.new_line;
io.new_line

end;

new message is
da
io.putstring ("Message added later")

io.put_new line
end

] 2

Having saved the changesH&IR, you can now recompile the project.

Recompiling HEIR
To recompileHEIR:
* On theProject Tool toolbar, clickQuick Melt fff{f}

During the melting process, a message of the fdbegfee n: class XXX”
appears in theProject Tool. Since EiffelBench automatically determines the
smallest possible set of classes to recompile, fewer message display than during the
initial compilation.

If you encounter a compilation error and the correction is not obvious, read
through the next two sections, which discusses errors and error correction.

1.13 Syntax errors

When the compiler detects an error in either the Eiffel code or the Ace file, a message
appears in the workspace. Some elements of the message, such as class names or

§1.14 VALIDITY ERRORS 41

error codes, are clickable — you can use the pick-and-drop operation to drop them
on the appropriate hole to get more detailed information.

To view this mechanism, you will introduce a syntax error.
Creating a syntax error
To create a syntax error:
1 In theClass Toolwindow (targeted t&lEIR), point todisplay is (belowfeature).
2 Replaces with ist, and then on th€lass Tooltoolbar, clickSave [.

Since EiffelBench parses the class as it saves, you do not need tQuiodk
Melt. The following error message dialog box displays:

Waming |

Clags has syntax error.
See highlighted area.

It is a general principle of ISE Eiffel that, whenever possible, message dialog
boxes arenon-preemptive — instead of having the program stop responding until
you click OK, you can continue working as the dialog box displays. Once you correct
the error, the dialog box closes.

Correcting the syntax error

To correct the syntax error:

1 In theClass Toolwindow, point tast, and then click.

2 Backspace ovetr, and then on th€lass Tooltoolbar, clickSave [& .

1.14 Validity errors

The only errors of substance in Eiffel are those that cause violations of one of the
validity constraints defined in the language definition. A four letter code of the form
VXXX (the first letter is alway¥) identifies each constraint. A validity violation
produces a precise error message, which includes the validity code.

Although short, you can usually determine what the error is from its message. If
not, you can use the pick-and-drop operation to drop the error message on
Explanation [} on theProject Tool toolbar to display the complete text of the
violated constraint.

42 TUTORIAL: GUIDED TOUR 81.14

Like the syntax error section, you will introduce a validity error to view this
mechanism. In this section, you must first use one of the methods introduced earlier
in this chapter to retarget tiidass Toolto TESTROOT.

4 Class: TESTROOT Cluster: root_cluster M= 3
File Edit Fomat Special Window Help

ZH| Q| ede | &= [fEsTroo

SELEEE | WA B, OmD

class TEETROOT creation =
nake

feature

ol, of: PARENT;

display demonstration message
IHETR! ol
' oz
ol display
oz .display
end

display demonstration message is
do

io.put_new line

io.put_string (" ISE Eiffel spoken here")

io.put_new line

io.put_string ('------—----—--mmm e ENEN",
end

== To get a typical compilation error, remowve the two dasl——
—-- at the beginning of the next line:
-- inw: INVALID -

(| M

At the end of clas§ESTROOQT, directly above the finaénd, there is the
following comment line:

-- inv: INVALID

Uncommented, this is a declaration of a feature of lMALID . A class called
INVALID exists in file invalid.e of the root cluster, which contains a validity error.

Creating a validity error

To create a validity error:

1 In theClass Toolwindow (targeted ta ESTROOT), point to--inv: INVALID , and then click.

2 Backspace over, on theFile menu, clickSave and then clickQuick Melt #&'

§1.14 VALIDITY ERRORS

The compiler executes degrees 5, 4, and BERTROOT andINVALID before
the following displays:

4. ISE EiffelBench : C:\Eiffel43\examples\bench\tour

File Edit Comple Debug Fomat Special Window Help

QEe+00Hum 99 a4 #4b
i@ |0 swe| =

TESTROOT illgﬂ|f'| @'|«*
Enor code: VITAR(1) =

Ermror: wrong rmurber of actual argnments in feature call.
What to do: make sure that munber of actuals matches muvber of formals.

Class: INFALID
Featare: display
Called foature: frst_message from PARENT

Humber of actuals: 1 Fumber of formals: 0
Line: 12
p,
-2 pfirst_message (1)
end,

Degres: 3 Processed: 2 To go: 0 Total: 2

o o | o

+.|g||§§ﬁf|&§=:%|«*l fram:

-

] Al

Here again, class and feature names in this message are clickable, which makes
it easy to find out what went wrong: procedutisplay of classINVALID calls
first_message fromPARENT with one argument, but the procedure does not take
any arguments.

The error cod&UAR is also clickable. You can use the pick-and-drop operation
to drop the error code on tliplanation hole in theProject Tool to display the
complete text of the violated rule froiffel: The Language

Since the error code in the Project Tool redd#\R(1), this means that the first
clause is the one violated. This convention of displaying the clause number in
parentheses applies to all multi-clause validity constraints.

44

TUTORIAL: GUIDED TOUR 81.15

Correcting the validity error

To correct the validity error:

1 In theProject Tool window, use the pick-and-drop operation to diggplay on theClass Tool
window (targeted tdESTROOT).
5 Class: INVALID Cluster: root_cluster M= 3
File Edit Fomat Special Window Help
EE A eode &= [N
SELEI E | waeiie| 8F O
class INVALID feature ;I
attribute: INTEGEER;
display is
-— Attewmpt (in an invalid way) to call a procedure of
-— class PARENT.
local
p: PARENT
do
[<3
p.first message (1)
end;
end -- class INVALID
K A7
2 In theClass Toolwindow, point top.first._ message(l) , and then backspace o\&).

3 On theClass Tooltoolbar, clickSave [l , and then clickQuick Melt % (.

In the next section you will finally run the system.

1.15 Running the system

To run the system:

« On theProject Tool toolbar clickRun — .

On Windows, a MS-DOS-based program window displays the output. On Unix,
Linux or VMS you can easily display the output. Since you start EiffelBench from a
specific window when you typebench that window is where the standard output

8§1.16 ARGUMENTS

goes and from where the execution reads standard input. You can use the standard
operating system mechanisms to redirect the standard input and output.

To continue the tutorial, you need to close the MS-DOS-based program window
(Windows only).

Closing the MS-DOS-based program window

To close the MS-DOS-based program window:
* Press ENTER.

On all platforms, you can rerun the system as often as you want — judRahck
again.

1.16 Arguments

Since the system used in this tutorial is extremely simple, execution arguments are
not necessary. In more complex systems, you may want to pass values to the
execution, such as a numeric parameter or a file name, so that you can have different
executions without changing and recompiling the software.

In Eiffel text, you can access run-time arguments using a feature of the Kernel
Library class ARGUMENTS. Any class in a system can inherit from
ARGUMENTS and can use the following queries:

e argument_count — returns the number of arguments passed to the
execution.

e argument (i) — returns a string representation for fxth argument.

e argument_i — returns the string representation for itle element.

You can retarget @lass Toolto Arguments to display a complete list of all its

features — on th€lass Tooltoolbar, clickShort ' = .

The following section outlines the steps required to define execution arguments.
Since the active system does not require any arguments, the information is solely for
reference.

Defining execution arguments

To define execution arguments in EiffelBench:

1 On theProject Tool toolbar, right-clickRun
Exccution arguments |

Specify arquments

R (] 4 Cancel

46 TUTORIAL: GUIDED TOUR 81.17

2 In the Specify argumentsbox, type all arguments, separated by a space.

3 Do one of the following:
* To start an execution that uses the arguments, Rlick
* To save the arguments for later use, clik.

To continue the tutorial, clicKancel

1.17 Debugging

Before completing the tutorial, it is important that you explore the debugging
facilities, which allow you to watch what occurs during execution — on the control
side (successive instructions) and to explore development objects.

Located on th@roject Tool toolbar,Stop points [llll controls the execution of a
routine. Before you continue, use one of the methods discussed earlier in this chapter
to retarget &lass Toolto PARENT.

Adding stop points to a routine

To add stop points to a routine:

1 Use the pick-and-drop operation to ddipplay on theStop pointhole ICON on thé roject
Tool toolbar.

2 Repeat fofirst_message .

The Output window in theProject Tool displays the list of active stop points:

Enabled stop points: :I
PARENT:

display [1]

First_message [1]

8§1.17 DEBUGGING

The number in brackefg following the routine name indicates the position of
the stop point in the routine. In this example, each stop point is at the beginning of
the routine [{1]).

3 On theProject Tool toolbar, clickRun — .

The program stops at the first stop point and Rne@ject Tool displays the
following information:

5. ISE EiffelBench : C:\Eiffel43\examplesibenchitour

File Edit Compile Debug Fomat Special ‘wWindow Help

QEe+0dOm ¥Y a4 44
tia o she| =
PARENT Stopped in cbject [0 DFANG0] :I ,ﬁﬂ | f’ | &) | E=
Class: PARFNT
Feature: display PARENT [0 DEASG] =]
Feason: Stop point reached
Call stack:

Chject Class Rintine

= [(DEADSH] PARENT *display
o [MDEA9SE] TESTROOT *make

0 o g o

- o | & ||§§ ut | gi- E : : 22} | = Idisplay fram: [paRENT

-- Version from class: PARENT d

display is

do
io.putstring {("In class PARENT");
io.new line;
io.putstring {"--—--—-—--————-—— "hs
io.new_line;
first_messa e

end

| Al

 Stop point reached — reason for interrupting the execution.
« Call stack — shows the state of the execution (from bottom to top):

The first call applied procedureake to the root object — an instance of
classTESTROOT identified as[OxDEA964]. This triggered a call to
procedure display of cla8\RENT applied to objeciOxDEA960] . If you

look at the text ofESTROOT, you will see that this is the object attached
to attributeo2 and is a results of the second creation instruction in the
procedurenake.

The preceding also introduces the last major type of development abstraction —
execution objects— represented by the object identifiers, sucfiOa®EA960] .
Execution objects are run-time objects created during execution as instances of
classes in the system.

48 TUTORIAL: GUIDED TOUR 81.17

The numbers that identify execution objects are internal codes and determine
whether two execution objects are the same. Consequently, the numbers that display
when you run this example will differ from the preceding illustration.

Since the numbers represent class instances, you can hold down CTRL, and then
right-click to view the corresponding run-time object and its fields. For example, you
can hold down CTRL, and then right-clidlsplay to display the body of the routine
where execution stopped.

Removing a stop Point
To remove a stop point:

* Use the pick-and-drop operation to drop a stopped routir&tam point [ill
on theProject Tool toolbar.

Setting Stop points using the Feature Tool

The Feature Toolwindowin the Project Tool displays theStop point g format.
During execution, you can apply this format to &®ature Tool

To setStop pointsusing the~eature Tool
1 In the Output window in theProject Tool, hold down CTRL, and then right-clickake .
A new Feature Toolappears, targeted toake.

2 On theFeature Tooltoolbar, clickStop points it .

4. Stop pointz of make [_ (O]]
File Edit Format Special 'wWindow Help
STomde R =S=hHif Hi il @D ek om: [TESTROOT
make iz
do

display_demonstration_message
\HEIR o]
W aZ
ol .display
ol .Fisplay
end,

8§1.17 DEBUGGING

49

The red markers in the preceding correspond to potential stop points, one for each
instruction in the routine. There are three types of markers:

* ... — a potential stop point.

* ||| — an actual stop point.

 --> — the active instruction/execution position.

You can use the pick-and-drop operation to drop a markerStapapoint hole
to add a stop point to an individual instruction (in this cHeg,).

Adding a stop point to an individual instruction

To add a stop point to an individual instruction:
* In theFeature Tool, use the pick and drop operation to drop the marker to the
right ofl!o2 (:::) on Stop points [l .

4 ISE EiffelBench : C:\Eiffel43\examplesibenchitour
File Edit Compile Debug Format Special ‘Window Help

QEZEe+00Enm 99 a4 #46
td4@ |0 s =
F'AHEN_T Enabled stop points: :I @H | f"| @‘ | =
Stop points of make
TESTROAOT: FPARENT [z DEARGH ;I
make [3]
PARENT:
dispigp [1]

0 of g o

+ o | @‘ ||§§ ;f | gl- E : : % | E=p Idisplay framn: [paRENT

-- Version from class: PARENT ;I

display is

do
io.putstring ("In class PARENT"):
io.new_line;
io.putstring ("-—---—-——-——---——- "
io.new_line;
first_message

end

] 2V

The Output window in theProject Tool displays the new stop point aske
[3], where3 represents the third instruction. Since this instruction was already
passed, the new stop point is useless in this execution. However, it applies to
subsequent executions.

The display in th@©utput window also switches t&top point format, a view
that shows all active stop points. To redisplay the current state of execution, on the
Project Tool toolbar, clickExecution status (g -

50 TUTORIAL: GUIDED TOUR 81.18

To return to thé&top pointformat, on thdroject Tool toolbar, clickStop points
m .
1.18 Execution formats and stoppable routines

To resume execution, clidkun = . The first few lines of output appear in either
the MS-DOS-based program window (Windows) or the shell window (Unix, Linux
or VMS). Execution stops at the next stop point — the one at the beginning of
procedure first_ message in class PARENT — and the Output window
redisplays thé&xecution statusformat.

The Project Tool toolbar also contains a series of execution formats that define
how to execute, but do not execute until you do one of the following:

« Click Run ——> — restarts execution.

* Hold down CTRL and click the corresponding format button — defines a
format and executes immediately.

The preceding is an example of another general convention of ISE Eiffel: in many
cases, when you hold down CTRL and click a button, the command associated with
the button occurs along with something complimentary. For example, when you hold
down CTRL and clickQuick Melt zfj,{_‘} , the program recompiles and then
executes.

To view a format below, click the corresponding button onRhgect Tool
toolbar.

« Run ——>: executes until a stop point or exception is reached or the program
terminates.

* Step-by-stef a5 : executes instruction by instruction in the applicable routines.

e Out of routine "'é,‘a . executes the current routine to completion.
* Ignore stop points & : ignores all stop points.

* Clear stop points [¥] : deletes all stop points in the program. You can also click

Clear stop pointson theDebug menu in theProject Tool to delete all stop
points.

Disabling stop points

To disable stop points:
 Use the pick-and-drop operation to drop a stop point$top point hole.

Unlike theClear stop pointscommand, the disabled stop point remains in the
display. You can use the pick-and-drop operation a second time to enable the stop
point.

To continue the tutorial, on tl&roject Tool toolbar, clickStep-by-step o= .

§1.18 EXECUTION FORMATS AND STOPPABLE ROUTINES 51

The execution pointer-> is now next to the first instruction of the routine:
i0 .put_string (“In class PARENT”) . To move the execution pointer to the next
instruction, clickStep-by-step &=.

Stopping execution

To interrupt a system as it executes, clidlerrupt ™ on theProject Tool toolbar.

This stops execution in the closssippable routine A stoppable routine is one to
which you added at least one stop point — even if you have since disabled or
removed the stop point.

Since the active system is currently stopped, to terminate execution, hold down
CTRL and clickInterrupt &M . System terminated displays in theOutput
window in theProject Tool.

To continue the tutorial, clicRun > . Since you added a stop point to the
third instruction of the creation procedumake (in classTESTROOT), execution
stops.

Exploring the Object Tool

The last tool to explore in this tutorial is tkject Tool, which displays in the
upper-right window of thé&roject Tool. TheObject Tool is used during execution

and debugging and displays the contents of the current execution object — the one
in which execution stopped. It contains one field for each attribute in the generating
class.

4. ISE EiffelBench : C:\Eiffel43\examples\bench\tour

File Edit Compile Debug Fomat Special Window Help
QEe+00Eum 99 a4 #46
tie O she| =
+ make from: TESTROL || Stopped in object [02DEA960] e 6 B «=>
HEIR Class: TESTROOT
Faatore: make TESTROOT [0xDEA9S0] =
Feason: Stop point reached
frav: HOWE = Voiud
call stack: oI: HEIR [0xDEA9S4]
od: HONE = Waoid
Chject Class Routine
-= [DFAQSN] TESTROOT *make
¥ ¥
1 3 14 b
o B EEM RHiild & e from: [TESTROOT
maks is
do
displap_demonstration_message
- VHEIR o]
—= Wi
o d display
o2 display
end;
N O[T ol

52 TUTORIAL: GUIDED TOUR 81.18

As you can see, the active object is an instan¢&8TROOT and contains three
fields that correspond to the attributeg, 01 andoZ2. All three fields are of type

reference; in other examples, you may encounter fields of basic types — boolean,
integer, real and so on.

Although two of the references are vaia/(ando2), ol (of typeHEIR) contains
the execution obje¢0xDEA964] . To view this object in a ne®@bject Toal, hold

down CTRL, and then right-clic)POxDEA964] — again, the value differs on each
computer.

4 Attributes of ol: HEIR object at 0xDEA964 =] B3
File Edit Fomat Special Window Help
8O 6 a &=
HEIR [(5DEA0GE] |
K M

Since clas$lEIR has no attributes, the object contains no fields. However, since
HEIR containonce functions— functions that only execute once; subsequent calls

return the original value; useful for object sharing, since you can view the
corresponding values.

Viewing values for once functions
To view values for once functions:

« On theObject Tool toolbar, clickOnce functionsz] .

§1.19 TOWARDS FURTHER STUDY

53

The Object Tool window contains the following information:

4 "Once’ functions of ol1: HEIR object at 0xDEA9G4

File Edit Faormat Special wWindow Help

8 & A &=

HEIR [(x DEADSL) -]

o0 ST FILES [0z DEARGH]
operating_envivormment: OFERATING FMNFTROMNENT Hot ywet called

-

] 2

* i0 — the first once function; provides access to standard input and output;
attached to an object of ty@@D_FILES; inherits fromGENERAL : the class
from which every class automatically inherits.

* operating_environment — not yet called, so no associated values; also
inherits fromGENERAL.

Other debugging facilities

There are other debugging facilities in the ISE Eiffel environment. Of particular
interest is the ability to stop on an exceptimefore the exception occurs. This
notifies you of an impending exception (assertion violation, call applied to void
reference, operating system signal or other) and allows you to use EiffelBench to
analyze the cause of the exception, and the surrounding object structure.

One important property of the symbolic debugging mechanisms of EiffelBench
is that they are not exclusive of other mechanisms. In other words, there is not a

separate debugger or browser, nor are there separate debugging or browsing modes.

At every point in your project, you have access to all debugging and browsing
facilities in EiffelBench — you do not have to switch between different tools or
modes.

1.19 Towards further study

You have now created and compiled your first EiffelBench project. This means that
you have learned many of the basic EiffelBench procedures, enabling you to produce
useful software.

The following chapters assist you towards that goal, as they provide more
detailed information on the functionality of EiffelBench.

54

TUTORIAL: GUIDED TOUR 81.19

	1 1 Tutorial: Guided tour
	1.1 Before starting
	1.2 Starting EiffelBench
	Unix, Linux or VMS version
	Windows version

	1.3 Creating an EiffelBench system
	1.4 Exploring the Project Tool
	Ace files

	1.5 Exploring the System Tool
	Selecting an existing Ace file

	1.6 Compiling a system
	Melting the project

	1.7 User interface conventions
	Development objects
	Pick-and-drop operation
	Holes
	Clickable elements

	1.8 Exploring the Class Tool
	Targeting the Class Tool using the pick-and-drop operation
	Targeting the Class Tool class using CTRL right-click
	Targeting the Class Tool using CTRL click
	Closing a Class Tool

	1.9 Retargeting the Class Tool
	Using the Class hole
	Using the tool window
	Using browsing accelerators
	Using the Target Name Tool

	1.10 Exploring the Feature Tool
	Displaying the Feature Tool
	Using the Feature hole
	Using a class
	Using the Target Name Tool

	1.11 Formats
	System Tool formats
	Class Tool formats
	Feature Tool formats

	1.12 Modifying and remelting
	Modifying HEIR
	Recompiling HEIR

	1.13 Syntax errors
	Creating a syntax error
	Correcting the syntax error

	1.14 Validity errors
	Creating a validity error
	Correcting the validity error

	1.15 Running the system
	Closing the MS-DOS-based program window

	1.16 Arguments
	Defining execution arguments

	1.17 Debugging
	Adding stop points to a routine
	Removing a stop Point
	Setting Stop points using the Feature Tool
	Adding a stop point to an individual instruction

	1.18 Execution formats and stoppable routines
	Disabling stop points
	Stopping execution
	Exploring the Object Tool
	Other debugging facilities

	1.19 Towards further study

