
EiffelBench Guided Tour

version 4.3

Interactive Software Engineering
eiffel.com

Copyright notice and proprietary information
Copyright ©1999 Interactive Software Engineering Inc. (ISE). May not be reproduced in any form (including
electronic storage) without the written permission of ISE. “Eiffel Power” and the Eiffel Power logo are
trademarks of ISE.

All uses of the product documented here are subject to the terms and conditions of the ISE Eiffel user license. Any
other use or duplication is a violation of the applicable laws on copyright, trade secrets and intellectual property.

Special duplication permission for educational institutions
Degree-granting educational institutions using ISE Eiffel for teaching purposes as part of the Eiffel University
Partnership Program may be permitted under certain conditions to copy specific parts of this book. Contact ISE
for details.

About ISE
ISE (Interactive Software Engineering) is dedicated to improving software quality and productivity through
advanced methods, tools and languages, based on sound scientific principles and on the systematic application
of object technology.
The company provides a complete line of development tools as well as on-site consulting, library development
services, and a training program on all aspects of O-O technology: analysis, design, implementation
techniques, graphics, library building, Eiffel language, project management, large system design etc.

ISE is the original designer of the Eiffel method and language and a member of NICE, the Nonprofit
International Consortium for Eiffel.

For more information
Interactive Software Engineering Inc.
ISE Building, 2nd floor
270 Storke Road
Goleta, CA 93117 USA
Telephone 805-685-1006, Fax 805-685-6869

Internet and e-mail
ISE maintains a rich source of information at http://eiffel.com, with more than 1200 Web pages including
online documentation, downloadable files, product descriptions, links to ISE partners, University Partnership
program, mailing list archives, announcements, press coverage, Frequently Asked Questions, Support pages,
and much more.

Write to info@eiffel.com for information about products and services. Write to userlist-
request@eiffel.com to subscribe to the ISE Eiffel user list.

Support programs
ISE offers a variety of support options tailored to the diverse needs of its customers. Write to info@eiffel.com
or check the support pages at http://eiffel.com for details.

http://eiffel.com
mailto:info@eiffel.com
mailto:userlist-request@eiffel.com
mailto:userlist-request@eiffel.com
mailto:info@eiffel.com
http://eiffel.com

1
Tutorial: Guided tour
This chapter walks you through the essential properties of EiffelBench. After you
read and execute the suggested procedures, you will acquire the basics of working
with EiffelBench, including how to:

• Create a new project and retrieve an existing one.

• Add new software elements (classes).

• Compile using Melting Ice Technology. For more information, see “Compiling
a system”, page 6.

• Execute the result.

• Browse through a software system to view the components and their
relationships.

1.1 Before starting
Since people with vastly different backgrounds use and enjoy ISE Eiffel, this chapter
only assumes that you can perform basic operations on your platform of choice, such
as: use the drag-and-drop operation to move files (Windows) or change directories
(Unix, Linux or VMS).

Of course, the more you already know about Eiffel or object technology, the
better. However, if you are familiar with other environments, keep an open mind.
EiffelBench is different and it may take awhile to completely understand why some
things are done a certain way.

For the purposes of this example, you will run the tutorial provided in
$EIFFEL4|examples|bench|tour, where $EIFFEL4 is the path for the Eiffel43
directory and | is the path separator: backslash (\) on Windows or slash mark (/) on
Unix.

To run the example, you first need to install ISE Eiffel and configure the
environment. The environment variable EIFFEL4 must be set to the installation
directory, and the environment variable PLATFORM to your platform. On Windows
this is done automatically by the installation procedure, but on Unix, Linux or VMS
you must update your path and environment manually.

TUTORIAL: GUIDED TOUR §1.22
Other considerations include:

• On Unix, Linux or VMS, the path must include the location of the EiffelBench
executable files.

• Create a directory named YOURDIR and then copy all files of the example to it
— YOURDIR is the name of the directory that you create.

• This discussion also assumes that as part of the installation you included the
EiffelBase library, in precompiled form. EiffelBase is automatically provided if
you installed another precompiled library, such as the Windows Eiffel Library
(WEL).

• Once you compile the example using EiffelBench and precompiled EiffelBase
(default), the contents of YOURDIR (non-optimized) require 1.25 MB. Without
precompiled EiffelBase, 5.5 MB are necessary. In finalized (optimized) mode,
the executable needs 300 KB.

1.2 Starting EiffelBench
ISE Eiffel is one of the most portable environments in the industry and runs almost
identically on Windows 95/98/NT, Linux, Unix variants and VMS. Consequently, all
procedures in this manual apply to all platforms, unless noted otherwise.
Nevertheless, how you start EiffelBench depends on the operating system you are
using.

Unix, Linux or VMS version

You can start EiffelBench from any directory. However, to simplify things for this
tutorial and allow the use of relative rather than absolute file names, you will start
EiffelBench from YOURDIR.

To start the Unix, Linux or VMS version of EiffelBench:

• Open a shell tool or command window, switch to YOURDIR, and then type
ebench.

The main EiffelBench window appears. For more information on the EiffelBench
window, see “Exploring the Project Tool”, page 3.

Windows version

To start the Windows version of EiffelBench:

1 On the taskbar, click Start, and then point to Programs.

2 Point to the folder that contains EiffelBench, an then click EiffelBench.

The main EiffelBench window appears. For more information on the EiffelBench
window, see “Exploring the Project Tool”, page 3.

1.3 Creating an EiffelBench system
To create the system for the EiffelBench tutorial:

§1.4 EXPLORING THE PROJECT TOOL 3
1 On the File menu, click New.

2 In the Directories list, click the YOURDIR folder, and then click OK .

When you create an EiffelBench project, an Eiffel generation (EIFGEN)
subdirectory is added to your EiffelBench system directory. The compiler creates
and maintains this subdirectory to store information about your project, and includes
the code generated for execution. The path, file name, and view for the active system
display in the EiffelBench title bar.

1.4 Exploring the Project Tool
When you start an EiffelBench session, the Project Tool displays by default.

The Project Tool serves as the control panel for compilation and contains the
following:

• Selector — lists the targets of all active Class, Feature and Object Tools. One
of the following messages display for untargeted tools:

Empty class tool
Empty feature tool

Empty object tool
• Output window — displays information about the active project.

• Object Tool — displays information about the active object — the object on
which execution stopped.

Selector
Output window

Feature Tool

Object Tool

TUTORIAL: GUIDED TOUR §1.54
• Feature Tool — displays information about the active routine — the one whose
execution is in progress.

Ace files

To define a new project, you must provide an Assembly of Classes in Eiffel (Ace)
file, which lists the directories for the Eiffel software, external software, and contains
the compilation options. An Ace file is written in the Language for the Assembly of
Classes in Eiffel (Lace) — a simple, Eiffel-like notation.

An Ace file is required to start the first compilation of a new project. When you
open an existing project, there is an associated Ace file. However, for a new project
you must either:

• Select an existing Ace file.

• Build an Ace file using EiffelBench.

In this tutorial, you will select an existing Ace file and explore the contents using
the System Tool.

1.5 Exploring the System Tool
The System Tool defines the overall structure a system, and accesses all clusters. It
also creates, defines and modifies Ace files.

Selecting an existing Ace file

To select an existing Ace file:

1 On the Project Tool toolbar, click System .

2 Click Browse, in the Look in list, click Ace.ace, and then click Open.

§1.5 EXPLORING THE SYSTEM TOOL 5
The System Tool appears and displays the Ace file, which contains the following
clauses in Lace syntax:

• system — the name of the active system (SIMPLE).

• root — the name of the root class (TESTROOT), the cluster to which
TESTROOT belongs (root_cluster), and the name of the creation procedure
for TESTROOT (make).

• default — contains a precompiled entry that indicates that the active project
uses a precompiled version of the EiffelBase library, stored in the specified path.

• cluster — lists all clusters in the active system by name, followed by a colon
and then the name of the associated directory, surrounded by quotation marks.
In this example, “.” means that root_cluster is in the active directory.

You can now compile the active system.

TUTORIAL: GUIDED TOUR §1.66
1.6 Compiling a system
The EiffelBench relies on Melting Ice Technology, the proprietary compilation
mechanism of ISE Eiffel, which offers three forms of compilation:

• melting — for making a few changes. The fastest of the mechanisms, typically
taking a few seconds after small changes. Melting time is proportional to the
size of the changed parts and affected classes, while the time needed to freeze
or finalize is partly proportional to the size of the whole system. As long as you
do not include new external C/C++ code, a C/C++ compiler is not required.
However, execution speed is not optimal.

• freezing — generates C code from the active system, and then compiles it into
machine code; you must have a C/C++ compiler installed. You need to use this
option if you add external C/C++ software. Unless you add external code, you
can re-freeze every couple of days. The rest of the time, you can melt your
software to receive immediate feedback.

• finalizing — delivers a production version (intermediate or final) of your
software or to measure its performance in operational conditions. Finalizing
performs extensive time and space optimizations that enable Eiffel to match the
efficiency of C/C++; it also creates a stand-alone C package that you can use for
cross development. Because of all the optimizations involved, finalizing takes
the most time.

Since this example relies on precompiled libraries that contain frozen code, you
will use melting throughout the tutorial.

Melting the project

To melt the project:

• On the Toolbar, click Melt .

The Compilation Progress dialog box displays the percentage of compilation
completed.

During compilation, EiffelBench analyzes your system and determines what
needs to be recompiled — in this case, all classes, since your system is a new one.
Degrees measure progress, decrementing from 6 to 1. At degree zero, the changes
melt or are effected.

Because many of the classes included in this example are part of EiffelBase and
have been precompiled, EiffelBench only compiles the classes in the root_cluster
directory: TESTROOT, HEIR and PARENT.

The precompilation mechanism plays an important role in the speed of
compilation. Although only three classes are compiled, the actual size of the system
— the number of classes on which the root class depends directly or indirectly,
including STD_FILES (used for input and output) and all ancestors and suppliers
— is 65 classes.

§1.7 USER INTERFACE CONVENTIONS 7
Apart from the speed, the most important feature of melting is that it is entirely
automatic. The only information the compiler retrieves from the Ace file is the name
and path for the root class. You do not have to supply “make files” or other manual
descriptions of intermodule dependencies.

1.7 User interface conventions
The following section provides a basic overview of the user interface conventions of
ISE Eiffel. These conventions apply to all the tools in the environment, including
EiffelCase and EiffelBuild.

Development objects

EiffelBench provides a series of tools that work directly with the conceptual units of
your project — development objects.

Using the ISE Eiffel environment, you work directly with the development
objects, while the tools address the underlying source text files. This allows you to
concentrate on building the proper logical structure.

Development objects that EiffelBench supports include:

• Project — defined by a directory that stores project-related files, and where the
compiler stores its internal files in an EIFGEN subdirectory.

• System — group of classes, spread over a number of clusters; known as a
program in traditional approaches.

• Cluster — group of classes in the same directory.

• Class — set of data abstractions.

• Features — set of properties attached to a class.

• Execution objects — run-time objects created during execution as instances of
classes in the system.

A development object is a concept of ISE Eiffel and is an instance of any of the
abstractions. For the purposes of this user guide, the term development object
represents either a project, system, class, feature or execution object.

Other ISE Eiffel tools, such as EiffelCase and EiffelBuild, use these types and add
several others.

Pick-and-drop operation

The pick-and-drop operation is instrumental in the ISE Eiffel environment. You will
use this mechanism throughout this tutorial and the ISE Eiffel environment.

To use the Eiffel pick-and-drop operation:

1 Right-click a development object name.

The cursor changes to the shape of the selected object — a pebble — and a line
continuously connects the pebble to the original position of the object.

TUTORIAL: GUIDED TOUR §1.78
2 Point to the new position for the object, and then right-click.

Canceling the operation

To cancel the operation:

• Click anywhere.

Holes

Holes are icons that you drop pebbles on using the pick-and-drop operation, to create
new tools, retarget existing tools, or execute other operations. The pebble and hole
in a pick-and-drop operation must be compatible — not necessarily identical.

There are two types of holes in EiffelBench:

• Tool holes — a symbol for the corresponding development abstraction; located
in the upper left corner of a tool.

• Operation holes — performs various operations on the target of a tool, when
you drop the object on the hole.

If you drop a pebble on its corresponding hole, a new tool appears and displays
information about the selected development object. This action makes the object the
target of the new tool — the tool is targeted to the object. When you target a tool,
the corresponding hole displays with a dot in it.

Since the dot represents the development object; you can use the pick-and-drop
operation to drop the dotted hole on its corresponding hole to display a new tool
targeted to that class.

Clickable elements

A clickable element is one on which you use the pick-and-drop operation, or hold
down CTRL and either click or right-click. This definition includes class names,
routine declarations (features), stop points and execution objects.

Clickable elements display underlined and in blue on Windows. Because of
limitations in the current Motif library, these elements are not distinguished
graphically in Unix or VMS.

In the next section, you will use the pick-and-drop operation to target a tool (the
Class Tool), and then view contents of a class (TESTROOT).

§1.8 EXPLORING THE CLASS TOOL 9
1.8 Exploring the Class Tool
The Class Tool sets properties, features, indexing information and constraints for the
active class.

This section explains three ways to create a Class Tool targeted to a specific class:

• Use the pick-and-drop operation.

• Hold down CTRL and right-click a class.

• Hold down CTRL and click a class.

Targeting the Class Tool using the pick-and-drop operation

To target the Class Tool using the pick-and-operation:

1 In the System Tool window, right-click TESTROOT.

The cluster changes to the shape of the selected object — a class.

2 On the Project Tool toolbar, point to the Class hole , and then right-click.

The Class Tool appears and displays the contents of TESTROOT.

TUTORIAL: GUIDED TOUR §1.910
Targeting the Class Tool class using CTRL right-click

To target the Class Tool using CTRL right-click:

• In the System Tool window, hold down CTRL, and then right-click
TESTROOT.

Targeting the Class Tool using CTRL click

To target the Class Tool using CTRL click:

• In the System Tool window, hold down CTRL and click TESTROOT.

As mentioned earlier, you can also use the pick-and-drop operation to drop a
development object on a targeted hole to retarget that hole.

Since there are three open Class Tools targeted to TESTROOT, you need to close
two.

Closing a Class Tool

To close a Class Tool:

• On the File menu, click Exit tool.

In the next section, you will explore the different ways to retarget the Class Tool.

1.9 Retargeting the Class Tool

This section introduces the different ways to retarget the Class Tool:

• Use the Class hole on the Project Tool toolbar.

• Use the tool window.

• Use browsing accelerators (Previous or Next on the Class Tool
toolbar).

• Use the Target Name Tool.

§1.9 RETARGETING THE CLASS TOOL 11
Using the Class hole

To retarget the Class Tool using the Class hole:

1 In the Class Tool window, right-click HEIR.

2 On the Class Tool toolbar, point to the targeted Class hole , and then right-click.

The Class Tool retargets and displays the contents of HEIR.

Before you continue, it is important to note the difference between the preceding
pick-and-drop operations:

• You create a Class Tool targeted to a specific class when you use the pick-and-
drop operation to drop a class pebble on the Class hole in the Project Tool
toolbar.

• You retarget an existing Class Tool to a specific class when you use the pick-
and-drop operation to drop a class pebble on the targeted Class hole in the Class
Tool toolbar.

TUTORIAL: GUIDED TOUR §1.912
Using the tool window

To retarget the Class Tool using the tool window:

1 In the Class Tool window, right-click PARENT.

2 Point anywhere in the Class Tool window, and then right-click.

The Class Tool retargets and displays the contents of PARENT.

Using browsing accelerators

The browsing accelerators — Previous and Next — are located in the
Project Tool, Class Tool, Feature Tool or Object Tool toolbars. Since each tool
maintains a list of its recent targets, you can also use these commands to go back and
display the previous target, display the next target (if applicable).

To retarget the Class Tool using the tool window:

1 On the Class Tool toolbar, click Previous.

§1.9 RETARGETING THE CLASS TOOL 13
The Class Tool retargets and displays the contents of HEIR.

2 Click Previous a second time.

TUTORIAL: GUIDED TOUR §1.914
The Class Tool retargets and displays the contents of TESTROOT.

3 Click Next.

The Class Tool retargets and displays the contents of HEIR.

4 Click Next a second time.

The Class Tool retargets and displays the contents of PARENT.

You can also right-click Previous or Next to display a list of all active targets.

§1.9 RETARGETING THE CLASS TOOL 15
Using the Target Name Tool

The Target Name Tool is on the Class Tool toolbar and displays the name of the
active class, which you can rename. You can also use it to quickly retarget the Class
Tool.

To retarget the Class Tool using the Target Name Tool:

• In the Target Name Tool box, type HEIR, and then press ENTER.

The Class Tool retargets and displays the contents of HEIR.

Since Eiffel is not case-sensitive, you can use lower case or upper case text when
you type. Once the tool retargets, the class name displays by default in upper case in
the Target Name Tool.

You can also use the wildcard character (*) to represent one or many characters.

Target Name Tool

TUTORIAL: GUIDED TOUR §1.916
Using the wildcard character

To use the wildcard character:

1 In the Target Name Tool box, type par* , and then press ENTER.

The Select class dialog box appears and lists all classes in the system that begin
with par.

2 Click PARENT.

In the next section, you will display a Feature Tool targeted to display , and then
retarget the tool to explore other features.

§1.10 EXPLORING THE FEATURE TOOL 17
1.10 Exploring the Feature Tool

The Feature Tool sets properties for the active feature and its signature — the
number and type of arguments in the feature.

Displaying the Feature Tool

To display the Feature Tool:

• In the Class Tool window, hold down CTRL, and then right-click display .

The comment, added by EiffelBench, indicates where the version of display is
declared, in this case, in class PARENT. In general, the applicable version of any
feature in any class can come from any ancestor.

The next section examines three ways to retarget the Feature Tool:

• Use the Feature hole on the Feature Tool toolbar.

• Use a class (HEIR, one of the descendents of PARENT).

• Use the Target Name Tool.

TUTORIAL: GUIDED TOUR §1.1018
Using the Feature hole

To retarget the Feature Tool using the Feature hole:

1 In the Class Tool window (targeted to PARENT), right-click display .

2 On the Feature Tool toolbar, point to the Feature hole , and then right-click.

The Feature Tool retargets and displays the version of display targeted to
PARENT.

You can also drop display anywhere in the Feature Tool window to produce the
same results.

Using a class

To retarget the Feature tool using a class:

1 On the Class Tool toolbar (targeted to PARENT), click Descendents .

2 In the Class Tool window, right-click HEIR.

§1.10 EXPLORING THE FEATURE TOOL 19
3 In the Feature Tool window, point anywhere, and then right-click.

The Feature Tool retargets and displays the version of display defined in HEIR.

You will use this mechanism when you know about a feature f from class A,
displaying in a Feature Tool, and want to know what the version of f is for class B.
You can use the pick-and-drop operation to drop either a feature or a class on a
Feature Tool.

Using the Target Name Tool

Like the Class Tool, the Feature Tool toolbar also contains a Target Name Tool,
with a slight modification — two text boxes, instead of one. The left text box
displays the name of the active feature, while the right one displays the name of the
corresponding class. Functionality remains the same: you can rename the active
feature or class, and quickly retarget the tool.

To retarget the Feature Tool using the Target Name Tool:

• In the Feature Tool, in the right Target Name Tool box, type PARENT, and
then press ENTER.

TUTORIAL: GUIDED TOUR §1.1120
The Class Tool retargets and displays the contents of display targeted to
PARENT.

1.11 Formats
In the preceding sections, you have seen the System Tool, the Class Tool and the
Feature Tool, with the corresponding Ace file, class and feature text. You can
display other information or formats about the corresponding development object,
such as the classes of the system or the ancestors of a class. Once you retarget a tool,
it retains the format displaying prior to retargeting.

This section details the formats available in the System Tool, Class Tool and
Feature Tool. In each of the following sections, you will explore the active system,
class TABLE and several features of the class, respectively.

The first series of formats that you will explore are in the System Tool. You may
need to redisplay this tool.

To redisplay the System Tool:

• On the Project Tool toolbar, click System .

Target Name Tool

active feature corresponding class

§1.11 FORMATS 21
System Tool formats

By default, the System Tool appears displaying the Ace file text in the tool window.
You can use the commands on the System toolbar to view the contents of the active
system in different formats.

Since all class names in the following formats are clickable, you can hold down
CTRL, and then right-click a class name to display its properties in a Class Tool.

To view a format below, click the corresponding button on the System toolbar.

• Text : displays a textual representation of the Ace file for the active system
(default — see preceding illustration). In this format, only class TESTROOT is
clickable.

TUTORIAL: GUIDED TOUR §1.1122
• Clusters : lists all clusters in the active system; all corresponding classes
display alphabetically below each cluster; the root cluster
(root_cluster)always displays first, the precompiled clusters last.

• Classes : alphabetically lists all classes in the active system with its
corresponding cluster.

§1.11 FORMATS 23
• Show cluster hierarchy : displays the cluster hierarchy for the active
system. You use the following Lace syntax to specify that one cluster is a
subcluster of another:

my_subcluster (some_parent_cluster): “$|my_subcluster_directory”

$|my_subcluster_directory is the directory for the parent cluster
some_parent_cluster.

• Statistics : lists statistical information for the active system, such as the
number of classes and clusters.

TUTORIAL: GUIDED TOUR §1.1124
• Modified classes : lists all classes in the active system that were modified
since the last compilation.

• Indexing clauses : alphabetically lists all clusters in the active system with
key information from the indexing clauses of all classes — notably the
description entry. The indexing clause displays in the beginning of an Eiffel
class and associates indexing information with the class.

The set of formats that you will explore in the next section are in the Class Tool,
retargeted to class TABLE (an EiffelBase class). You may need to redisplay this tool.

§1.11 FORMATS 25
To redisplay the Class Tool:

• On the Project Tool toolbar, click Class .

Before continuing, you must retarget the Class Tool to TABLE . You can use any
of the methods described earlier in this chapter to retarget the Class Tool.

Class Tool formats

Like the System Tool, the Class Tool appears displaying the text for the active class
in the tool window. You can use the commands on the Class toolbar to view the
contents of the active class (TABLE) in different formats.

Since all class names in the following formats are clickable, you can hold down
CTRL, and then right-click a class name to display its properties in a Class Tool.

To view a format below, click the corresponding button on the Class toolbar.

• Text : displays a textual representation of TABLE (default — see preceding
illustration).

TUTORIAL: GUIDED TOUR §1.1126
• Clickable : displays the active class with keywords in blue and bold,
identifiers in italic, and comments in red; every semantically-meaningful
component is clickable.

• Flat : provides the reconstructed form of TABLE , including all inherited
features.

§1.11 FORMATS 27
• Short : displays the interface that TABLE offers its clients: it removes all
implementation information (routine bodies, secret features), but keeps the
routine headers, the header comments and assertions; this is the interface
through which you will use any class.

• Flat/short : displays the short form of the flat — the complete interface.

TUTORIAL: GUIDED TOUR §1.1128
• Ancestors : lists the ancestor structure that leads to TABLE .

In the preceding, TABLE inherits from BAG , which inherits from
COLLECTION , and so on, while the inheritance structure stops at ANY — an
ancestor of all developer-written classes.

• Descendents : lists all descendents of TABLE .

§1.11 FORMATS 29
• Clients : lists all clients of TABLE .

• Suppliers : lists all suppliers of TABLE .

TUTORIAL: GUIDED TOUR §1.1130
• Attributes : lists all attributes of TABLE , sorted by originating class.

• Routines : displays information about all routines in TABLE , sorted by
originating class.

§1.11 FORMATS 31
• Deferred : lists all deferred routines in TABLE , sorted by originating class.

• Once/Constants : lists all once routines and constants in TABLE , sorted by
originating class.

TUTORIAL: GUIDED TOUR §1.1132
• Externals : lists all external routines in TABLE , sorted by originating class.

• Exported : lists all exported routines in TABLE , sorted by originating
class.

As you can see, some of the routines of the class are defined in TABLE itself,
while others come from ancestors CONTAINER, COLLECTION and BAG .

Note the first routine defined in TABLE , _infix_@ . In the class text, it displays
as infix “@” ; this is the Eiffel mechanism for routines used in infix forms, such as
infix “+” on integers.

§1.11 FORMATS 33
In this representation, it means that a client can access the entry of key k in table
t through the notation t @ k as an alternative to t.item (k) . In a list of features (like
the preceding one), the conventional syntax is infix_x , where x represents the infix
operator.

Note the use of the synonym mechanism of Eiffel: a feature has two names, an
identifier name (item) and an infix name (infix "@"). The effect is the same as if
you had two declarations, identical except for the feature name.

In the next section, you will explore the contents of several features using the
Feature Tool. For the sake of continuity, you will start with feature extend (from
class TABLE). You must first retarget the Feature Tool to extend .

To target the Feature Tool to extend :

1 In the Feature Tool, in the left Target Name Tool, type extend , and then press TAB.

2 In the right Target Name Tool, type TABLE , and then press ENTER.

Feature Tool formats

The features of a class include both the inherited and immediate features. There are
two possible types of features:

• attribute — contains information stored with each instance of the class and
returns a result. Attributes cannot have arguments.

• routine — describes an algorithm applicable to every instance of the class. If
the routine returns a result, it is called a function; if not, it is called a procedure.

This classification is based on the implementation technique of the feature, as
seen from the class itself. Viewed from the perspective of a client class, a feature can
also be classified as either:

• a command — the feature can change its target object, but does not return a
result. A command may only be implemented as a procedure.

• a query— the feature returns a result, but should not change the object. A query
may be implemented as either a function or an attribute.

and its implementation status in the class is one of two kinds:

• effective — the feature is completely implemented.

• deferred — the feature is specified in the current class, but not implemented
yet; implementations may be provided in proper descendants.

TUTORIAL: GUIDED TOUR §1.1134
Like the two previous tools, the Feature Tool appears displaying the text for the
active feature (extend) in the tool window. You can use the commands on the
Feature toolbar to view the contents of extend in different formats.

Since many of the objects in the following formats are clickable, you can hold
down CTRL, and then right-click an object to display its properties.

To view a format below, click the corresponding button on the Feature toolbar.

• Text : displays a textual representation of extend (default — see preceding
illustration).

§1.11 FORMATS 35
• Flat : lists the reconstructed version of extend , with all inherited assertions
combined.

• All callers : lists all locations in the system where the feature is called.

TUTORIAL: GUIDED TOUR §1.1136
As you can see, the Feature Tool title bar displays the signature of the routine as
extend (v: GENERIC #1) . This means that extend takes one argument, whose
type is the first (and only) generic parameter of the class, called G within the class.

• Implementers : lists all redeclared versions of extend . Redeclaration
retains the original name of a feature, but changes other properties, such as the
implementation.

The preceding illustration shows all classes where extend from LIST, which
originally comes from COLLECTION , has a different, redeclared version.

§1.11 FORMATS 37
• Ancestor versions : displays the entire history of extend : its versions in
every ancestor; not just those in which extend is redeclared.

You will normally use the pick-and-drop operation with this format to see what
an ancestor version looks like. In this example, there is only one ancestor (History
branch #1), but in multiple inheritance cases that involve joining features from
several ancestors, there will be several.

TUTORIAL: GUIDED TOUR §1.1138
• Descendant versions : lists all descendents of extend .

• Homonyms : lists all features called extend in the active system.

Unlike the features which display in the preceding formats, these features are not
necessarily related to extend from TABLE : they simply have the same name. Since

§1.12 MODIFYING AND REMELTING 39
EiffelBench must explore the entire system representation, rather than rely on
structural information, it takes awhile to display this format.

The large number of features named extend in many different classes are the
result of the rules for systematic feature naming for libraries in the Eiffel method. For
more information on these rules, see Reusable Software: The Base Object-Oriented
Component Libraries.

If you have experience with object-oriented software construction, the
importance of the facilities explored to this point become apparent. Specifically,
given the power and versatility of polymorphism and feature redeclaration
(redefinition and effecting), it is essential to quickly answer the following questions:

• What does feature f become in class C?

• What are the descendents of C?

• From what class does the version of f in C come?

• What was the original version of f?

The techniques described in the preceding sections answer the most common
version of these questions.

In the next section, you will modify class HEIR, and then recompile using Quick
Melt on the Project Tool toolbar.

1.12 Modifying and remelting
To continue this tutorial, use one of the methods discussed earlier in this chapter to
retarget a Class Tool to HEIR, and then select Text as the display format.

In the following section, you will add procedure new_message after procedure
display and before display_routine , and then add a call to new_message at the
beginning of display .

Modifying HEIR

To modify HEIR:

1 In the Class Tool window, point to the space above display_routine is , and then click.

2 Press ENTER, and then type the following:

new_message is

do

io.put_string (“Message added later”)

io.put_new_line

end

3 Point to the space below do (below display is), and then click.

TUTORIAL: GUIDED TOUR §1.1340
4 Press ENTER, and then type new_message.

5 On the Class Tool toolbar, click Save .

Having saved the changes to HEIR, you can now recompile the project.

Recompiling HEIR

To recompile HEIR:

• On the Project Tool toolbar, click Quick Melt .

During the melting process, a message of the form “Degree n: class XXX”
appears in the Project Tool. Since EiffelBench automatically determines the
smallest possible set of classes to recompile, fewer message display than during the
initial compilation.

If you encounter a compilation error and the correction is not obvious, read
through the next two sections, which discusses errors and error correction.

1.13 Syntax errors
When the compiler detects an error in either the Eiffel code or the Ace file, a message
appears in the workspace. Some elements of the message, such as class names or

§1.14 VALIDITY ERRORS 41
error codes, are clickable — you can use the pick-and-drop operation to drop them
on the appropriate hole to get more detailed information.

To view this mechanism, you will introduce a syntax error.

Creating a syntax error

To create a syntax error:

1 In the Class Tool window (targeted to HEIR), point to display is (below feature).

2 Replace is with ist , and then on the Class Tool toolbar, click Save .

Since EiffelBench parses the class as it saves, you do not need to click Quick
Melt . The following error message dialog box displays:

It is a general principle of ISE Eiffel that, whenever possible, message dialog
boxes are non-preemptive — instead of having the program stop responding until
you click OK, you can continue working as the dialog box displays. Once you correct
the error, the dialog box closes.

Correcting the syntax error

To correct the syntax error:

1 In the Class Tool window, point to ist , and then click.

2 Backspace over t, and then on the Class Tool toolbar, click Save .

1.14 Validity errors
The only errors of substance in Eiffel are those that cause violations of one of the
validity constraints defined in the language definition. A four letter code of the form
VXXX (the first letter is always V) identifies each constraint. A validity violation
produces a precise error message, which includes the validity code.

Although short, you can usually determine what the error is from its message. If
not, you can use the pick-and-drop operation to drop the error message on
Explanation on the Project Tool toolbar to display the complete text of the
violated constraint.

TUTORIAL: GUIDED TOUR §1.1442
Like the syntax error section, you will introduce a validity error to view this
mechanism. In this section, you must first use one of the methods introduced earlier
in this chapter to retarget the Class Tool to TESTROOT.

At the end of class TESTROOT, directly above the final end , there is the
following comment line:

-- inv: INVALID

Uncommented, this is a declaration of a feature of type INVALID . A class called
INVALID exists in file invalid.e of the root cluster, which contains a validity error.

Creating a validity error

To create a validity error:

1 In the Class Tool window (targeted to TESTROOT), point to --inv: INVALID , and then click.

2 Backspace over --, on the File menu, click Save, and then click Quick Melt .

§1.14 VALIDITY ERRORS 43
The compiler executes degrees 5, 4, and 3 on TESTROOT and INVALID before
the following displays:

Here again, class and feature names in this message are clickable, which makes
it easy to find out what went wrong: procedure display of class INVALID calls
first_message from PARENT with one argument, but the procedure does not take
any arguments.

The error code VUAR is also clickable. You can use the pick-and-drop operation
to drop the error code on the Explanation hole in the Project Tool to display the
complete text of the violated rule from Eiffel: The Language.

Since the error code in the Project Tool reads VUAR(1), this means that the first
clause is the one violated. This convention of displaying the clause number in
parentheses applies to all multi-clause validity constraints.

TUTORIAL: GUIDED TOUR §1.1544
Correcting the validity error

To correct the validity error:

1 In the Project Tool window, use the pick-and-drop operation to drop display on the Class Tool
window (targeted to TESTROOT).

2 In the Class Tool window, point to p.first_message(1) , and then backspace over (1).

3 On the Class Tool toolbar, click Save , and then click Quick Melt .

In the next section you will finally run the system.

1.15 Running the system
To run the system:

• On the Project Tool toolbar click Run .

On Windows, a MS-DOS-based program window displays the output. On Unix,
Linux or VMS you can easily display the output. Since you start EiffelBench from a
specific window when you type ebench, that window is where the standard output

§1.16 ARGUMENTS 45
goes and from where the execution reads standard input. You can use the standard
operating system mechanisms to redirect the standard input and output.

To continue the tutorial, you need to close the MS-DOS-based program window
(Windows only).

Closing the MS-DOS-based program window

To close the MS-DOS-based program window:

• Press ENTER.

On all platforms, you can rerun the system as often as you want — just click Run
again.

1.16 Arguments
Since the system used in this tutorial is extremely simple, execution arguments are
not necessary. In more complex systems, you may want to pass values to the
execution, such as a numeric parameter or a file name, so that you can have different
executions without changing and recompiling the software.

In Eiffel text, you can access run-time arguments using a feature of the Kernel
Library class ARGUMENTS. Any class in a system can inherit from
ARGUMENTS and can use the following queries:

• argument_count — returns the number of arguments passed to the
execution.

• argument (i) — returns a string representation for the i-th argument.

• argument_i — returns the string representation for the i-th element.

You can retarget a Class Tool to Arguments to display a complete list of all its
features — on the Class Tool toolbar, click Short .

The following section outlines the steps required to define execution arguments.
Since the active system does not require any arguments, the information is solely for
reference.

Defining execution arguments

To define execution arguments in EiffelBench:

1 On the Project Tool toolbar, right-click Run :

TUTORIAL: GUIDED TOUR §1.1746
2 In the Specify arguments box, type all arguments, separated by a space.

3 Do one of the following:

• To start an execution that uses the arguments, click Run.

• To save the arguments for later use, click OK .

To continue the tutorial, click Cancel.

1.17 Debugging
Before completing the tutorial, it is important that you explore the debugging
facilities, which allow you to watch what occurs during execution — on the control
side (successive instructions) and to explore development objects.

Located on the Project Tool toolbar, Stop points controls the execution of a
routine. Before you continue, use one of the methods discussed earlier in this chapter
to retarget a Class Tool to PARENT.

Adding stop points to a routine

To add stop points to a routine:

1 Use the pick-and-drop operation to drop display on the Stop point hole ICON on the Project
Tool toolbar.

2 Repeat for first_message .

The Output window in the Project Tool displays the list of active stop points:

§1.17 DEBUGGING 47
The number in brackets [] following the routine name indicates the position of
the stop point in the routine. In this example, each stop point is at the beginning of
the routine ([1]).

3 On the Project Tool toolbar, click Run .

The program stops at the first stop point and the Project Tool displays the
following information:

• Stop point reached — reason for interrupting the execution.

• Call stack — shows the state of the execution (from bottom to top):

The first call applied procedure make to the root object — an instance of
class TESTROOT identified as [0xDEA964] . This triggered a call to
procedure display of class PARENT applied to object [0xDEA960] . If you
look at the text of TESTROOT, you will see that this is the object attached
to attribute o2 and is a results of the second creation instruction in the
procedure make .

The preceding also introduces the last major type of development abstraction —
execution objects — represented by the object identifiers, such as [0xDEA960] .
Execution objects are run-time objects created during execution as instances of
classes in the system.

TUTORIAL: GUIDED TOUR §1.1748
The numbers that identify execution objects are internal codes and determine
whether two execution objects are the same. Consequently, the numbers that display
when you run this example will differ from the preceding illustration.

Since the numbers represent class instances, you can hold down CTRL, and then
right-click to view the corresponding run-time object and its fields. For example, you
can hold down CTRL, and then right-click display to display the body of the routine
where execution stopped.

Removing a stop Point

To remove a stop point:

• Use the pick-and-drop operation to drop a stopped routine on Stop point
on the Project Tool toolbar.

Setting Stop points using the Feature Tool

The Feature Tool window in the Project Tool displays the Stop point format.
During execution, you can apply this format to any Feature Tool.

To set Stop points using the Feature Tool:

1 In the Output window in the Project Tool, hold down CTRL, and then right-click make .

A new Feature Tool appears, targeted to make .

2 On the Feature Tool toolbar, click Stop points .

§1.17 DEBUGGING 49
The red markers in the preceding correspond to potential stop points, one for each
instruction in the routine. There are three types of markers:

• ::: — a potential stop point.

• ||| — an actual stop point.

• --> — the active instruction/execution position.

You can use the pick-and-drop operation to drop a marker on a Stop point hole
to add a stop point to an individual instruction (in this case, !!o2).

Adding a stop point to an individual instruction

To add a stop point to an individual instruction:

• In the Feature Tool, use the pick and drop operation to drop the marker to the

right of !!o2 (:::) on Stop points .

The Output window in the Project Tool displays the new stop point as make
[3] , where 3 represents the third instruction. Since this instruction was already
passed, the new stop point is useless in this execution. However, it applies to
subsequent executions.

The display in the Output window also switches to Stop point format, a view
that shows all active stop points. To redisplay the current state of execution, on the
Project Tool toolbar, click Execution status .

TUTORIAL: GUIDED TOUR §1.1850
To return to the Stop point format, on the Project Tool toolbar, click Stop points
.

1.18 Execution formats and stoppable routines
To resume execution, click Run . The first few lines of output appear in either
the MS-DOS-based program window (Windows) or the shell window (Unix, Linux
or VMS). Execution stops at the next stop point — the one at the beginning of
procedure first_message in class PARENT — and the Output window
redisplays the Execution status format.

The Project Tool toolbar also contains a series of execution formats that define
how to execute, but do not execute until you do one of the following:

• Click Run — restarts execution.

• Hold down CTRL and click the corresponding format button — defines a
format and executes immediately.

The preceding is an example of another general convention of ISE Eiffel: in many
cases, when you hold down CTRL and click a button, the command associated with
the button occurs along with something complimentary. For example, when you hold
down CTRL and click Quick Melt , the program recompiles and then
executes.

To view a format below, click the corresponding button on the Project Tool
toolbar.

• Run : executes until a stop point or exception is reached or the program
terminates.

• Step-by-step : executes instruction by instruction in the applicable routines.

• Out of routine : executes the current routine to completion.

• Ignore stop points : ignores all stop points.

• Clear stop points : deletes all stop points in the program. You can also click
Clear stop points on the Debug menu in the Project Tool to delete all stop
points.

Disabling stop points

To disable stop points:

• Use the pick-and-drop operation to drop a stop point on a Stop point hole.

Unlike the Clear stop points command, the disabled stop point remains in the
display. You can use the pick-and-drop operation a second time to enable the stop
point.

To continue the tutorial, on the Project Tool toolbar, click Step-by-step .

§1.18 EXECUTION FORMATS AND STOPPABLE ROUTINES 51
The execution pointer --> is now next to the first instruction of the routine:
io.put_string (“In class PARENT”) . To move the execution pointer to the next
instruction, click Step-by-step .

Stopping execution

To interrupt a system as it executes, click Interrupt on the Project Tool toolbar.
This stops execution in the closest stoppable routine. A stoppable routine is one to
which you added at least one stop point — even if you have since disabled or
removed the stop point.

Since the active system is currently stopped, to terminate execution, hold down
CTRL and click Interrupt . System terminated displays in the Output
window in the Project Tool.

To continue the tutorial, click Run . Since you added a stop point to the
third instruction of the creation procedure make (in class TESTROOT), execution
stops.

Exploring the Object Tool

The last tool to explore in this tutorial is the Object Tool, which displays in the
upper-right window of the Project Tool. The Object Tool is used during execution
and debugging and displays the contents of the current execution object — the one
in which execution stopped. It contains one field for each attribute in the generating
class.

TUTORIAL: GUIDED TOUR §1.1852
As you can see, the active object is an instance of TESTROOT and contains three
fields that correspond to the attributes inv , o1 and o2. All three fields are of type
reference; in other examples, you may encounter fields of basic types — boolean,
integer, real and so on.

Although two of the references are void (inv and o2), o1 (of type HEIR) contains
the execution object [0xDEA964] . To view this object in a new Object Tool, hold
down CTRL, and then right-click [0xDEA964] — again, the value differs on each
computer.

Since class HEIR has no attributes, the object contains no fields. However, since
HEIR contains once functions — functions that only execute once; subsequent calls
return the original value; useful for object sharing, since you can view the
corresponding values.

Viewing values for once functions

To view values for once functions:

• On the Object Tool toolbar, click Once functions .

§1.19 TOWARDS FURTHER STUDY 53
The Object Tool window contains the following information:

• io — the first once function; provides access to standard input and output;
attached to an object of type STD_FILES; inherits from GENERAL : the class
from which every class automatically inherits.

• operating_environment — not yet called, so no associated values; also
inherits from GENERAL .

Other debugging facilities

There are other debugging facilities in the ISE Eiffel environment. Of particular
interest is the ability to stop on an exception before the exception occurs. This
notifies you of an impending exception (assertion violation, call applied to void
reference, operating system signal or other) and allows you to use EiffelBench to
analyze the cause of the exception, and the surrounding object structure.

One important property of the symbolic debugging mechanisms of EiffelBench
is that they are not exclusive of other mechanisms. In other words, there is not a
separate debugger or browser, nor are there separate debugging or browsing modes.
At every point in your project, you have access to all debugging and browsing
facilities in EiffelBench — you do not have to switch between different tools or
modes.

1.19 Towards further study
You have now created and compiled your first EiffelBench project. This means that
you have learned many of the basic EiffelBench procedures, enabling you to produce
useful software.

The following chapters assist you towards that goal, as they provide more
detailed information on the functionality of EiffelBench.

TUTORIAL: GUIDED TOUR §1.1954

	1 1 Tutorial: Guided tour
	1.1 Before starting
	1.2 Starting EiffelBench
	Unix, Linux or VMS version
	Windows version

	1.3 Creating an EiffelBench system
	1.4 Exploring the Project Tool
	Ace files

	1.5 Exploring the System Tool
	Selecting an existing Ace file

	1.6 Compiling a system
	Melting the project

	1.7 User interface conventions
	Development objects
	Pick-and-drop operation
	Holes
	Clickable elements

	1.8 Exploring the Class Tool
	Targeting the Class Tool using the pick-and-drop operation
	Targeting the Class Tool class using CTRL right-click
	Targeting the Class Tool using CTRL click
	Closing a Class Tool

	1.9 Retargeting the Class Tool
	Using the Class hole
	Using the tool window
	Using browsing accelerators
	Using the Target Name Tool

	1.10 Exploring the Feature Tool
	Displaying the Feature Tool
	Using the Feature hole
	Using a class
	Using the Target Name Tool

	1.11 Formats
	System Tool formats
	Class Tool formats
	Feature Tool formats

	1.12 Modifying and remelting
	Modifying HEIR
	Recompiling HEIR

	1.13 Syntax errors
	Creating a syntax error
	Correcting the syntax error

	1.14 Validity errors
	Creating a validity error
	Correcting the validity error

	1.15 Running the system
	Closing the MS-DOS-based program window

	1.16 Arguments
	Defining execution arguments

	1.17 Debugging
	Adding stop points to a routine
	Removing a stop Point
	Setting Stop points using the Feature Tool
	Adding a stop point to an individual instruction

	1.18 Execution formats and stoppable routines
	Disabling stop points
	Stopping execution
	Exploring the Object Tool
	Other debugging facilities

	1.19 Towards further study

