
23
Draft, February 1999.
Copyright Interactive Software Engineering,

Active objects, iteration and
introspection
1999. Duplication and distribution prohibited.
23.1 OVERVIEW
Objectsrepresent informationequippedwithoperations.Operationsandobjects
are clearly defined concepts; no one would mistake an operation for an object.

For some applications — such as numerical computation, iteration,
writing complete assertions, building development environments, and
introspection(a system’s ability to explore its own properties) — the
operations may be so interesting on their own as to become information,
worthy of representation by objects that can be passed around to arbitrary
software elements, which can use them to execute the operations whenever
they want. Because this separates the place of an operation’s definition from
the place of its execution, the definition can be incomplete, since we can
provide any missing details at the time of each particular execution.

You can createactive objectsto describe such partially or completely
specified computations. Active objects combine the power of higher-level
functionals — operations acting on other operations — with the full safety
of Eiffel’s static typing system.

23.2 A QUICK PREVIEW
Why do we need active objects? The rest of this chapter will present a
detailed rationale, but it does not hurt to start with a few example uses. This
preview contains few explanations, so if this is your first brush with active
objects some of it may look mysterious; it will, however, give you an idea
of the mechanism’s power, and by chapter end all the details will be clear.

Assume you want to integrate a functiong (x: REAL): REALover the
interval [0, 1]. With your_integratorof a suitable typeINTEGRATOR
(detailed later) you will simply write the expression

Here ~g (?), the first argument tointegral, is an active expression,
distinguished by a tilde character~ appearing before the function name,g.
The tilde avoids any confusion with a routine call such asg (3.5): at the place
we call integral, we don’t want to computeg yet! Instead, what we pass to
integral is a “active object” enablingintegral to call g when it pleases, on
whatever values it pleases.

your_integrator. integral (~g (?), 0.0, 1.0)

ACTIVE OBJECTS, ITERATION AND INTROSPECTION §23.2566
We must tellintegralwhere to substitute such values forx, at the places
where its algorithm will need to evaluateg to approximate the integral. This
is the role of the question mark?, replacing the argument tog.

You may use the same scheme in

to compute the integral , whereh is a three-argument

functionh (x: REAL; a: T1; b: T2): REALandu andv are arbitrary values.
You will use a question mark at the “open” position, corresponding to the
integration variablex, and fill in the “closed positions” with actual values
u andv. Note the flexibility of the mechanism, allowing you to use the same
routine to integrate functions involving an arbitrary number of extra values.

You can rely on a similar structure to provide iteration mechanisms on
data structures such as lists. Assume a classCC with an attribute

and a function

returning true or false depending on a property involvingi. You may write

to denote a boolean value, true if and only if every integer in the listintlist
satisfies integer_property. This expression might be very useful, for
example, in a class invariant. It is interesting to note that it will work for
any kind of integer_property, even if this function involves attributes or
other features ofCC, that is to say, arbitrary properties of the current object.

Now assume that inCC you also have a list of employees:

and that classEMPLOYEEhas a functionis_married: BOOLEAN, with no
argument, telling us about the current employee’s marital status. Then you
may also write inCC the boolean expression

to find out whether all employees in the list are married. The argument to
for_all is imitated from a normal feature callsome_employee. is_married,
but instead of specifying a particular employee we just give the type
{ EMPLOYEE}, to indicate wherefor_all must evaluateis_marriedfor a
succession of different targets, taken from the the list of employees. Note
again the tilde character, signifying that it's the feature we are passing to
for_all, not an expression resulting from evaluating it.

your_integrator. integral (~h (?, u, v), 0.0, 1.0)

intlist: LINKED_LIST[INTEGER]

integer_property(i: INTEGER): BOOLEAN

intlist. for_all (~integer_property(?))

emplist: LINKED_LIST[EMPLOYEE]

emplist. for_all ({ EMPLOYEE} ~is_married)

h (x, u, v) dx
0
1

∫

§23.2 A QUICK PREVIEW 567
What is remarkable in the last two examples is again the flexibility of
the resulting iteration mechanism and its adaptation to the object-oriented
form of computation: you can use the same iteration routine, herefor_all
from classLINKED_LIST, to iterate actions applying to either:

• The target of a feature, as withis_married, a feature of class
EMPLOYEE, with no arguments, to be applied to itsEMPLOYEEtarget.

• The actual argument of a feature, as withinteger_propertywhich
evaluates a property of its argumenti — and may or may not, in
addition, involve properties of its target, an object of typeCC.

It seems mysterious that a single iterator mechanism can handle both cases
equally welll We will see how to writefor_all and other iterators
accordingly. The trick is that they work on their “open” operands, and that
when we call them we may choose what we leave open: either the argument
as in the is_positive and integral case, where the open position is
represented by a question mark, or the target, as in theis_married case.

Now assume that you want to pass to some other software component,
in the style of STL — the C++ “Standard Template Library” — the
mechanisms needed to execute the cursor resetting and advance operations,
startandforth, on a particular list. Here nothing is left open: you fix the list,
and the operations have no arguments. You may write

All operands — target and arguments — of the active objects passed to
other_componentare “closed”, soother_componentcan execute call
operations on such objects without providing any further information.

At the other extreme, you might leave an active expression fully open, as in

so thatother_component, when it desires to apply a call operation, will
have to provide both a linked list, on which to executeextend, and an actual
argument forextend.

You will indeed be able, whenever you have an active object, to execute
on it a procedurecall, whose arguments are the open operands of the
original active expression (call has no arguments if all operands are closed,
as in the next-to-last example). This will have the same effect as an
execution of the original feature —start, forth, extend— on a combination
of the closed and open arguments.

In the end an expression such as{LINKED_LIST} ~extend(?), which can
in fact be written just{LINKED_LIST} ~extend without any explicit
argument, or even just~extendin the text of classLINKED_LIST, denotes a
“ routine object”: a representation of the routineextendfromLINKED_LIST,
such as could be used by browsing tools or otherintrospective facilities.

You may wonder how this can all work in a type-safe fashion. So it is
time to stop this preview and cut to the movie.

other_component. some_feature(your_list~start, your_list~forth)

other_component.other_feature({ LINKED_LIST} ~extend(?))

ACTIVE OBJECTS, ITERATION AND INTROSPECTION §23.3568
23.3 NORMAL CALLS

First we should remind ourselves of the basic properties offeature calls.
When programming with Eiffel we rely all the time on this fundamental
mechanism of object-oriented computation. We write things like

to mean: call featuref on the object attached toa0, with actual arguments
a1, a2, a3. In Eiffel this is all governed by type rules, checkable statically:
f must be a feature of the base class of the typea0; and the types ofa1and
the other actuals of the call must all conform to the types specified for the
corresponding formals in the declaration off.

In a frequent special casea0, the target of the call, is justCurrent,
denoting the current object. Then we may omit the question mark and the
target altogether, writing the call as just

which assumes thatf is a feature of the class in which this call appears. The
first form, with the question mark, is aqualifiedcall; the second form is
unqualified(hence the names [Q] and [U] given to our two examples).

In either form the call is syntactically an expression iff is a function or
an attribute, and an instruction iff is a procedure. Iff has been declared with
no formals (as in the case of a function without arguments, or an attribute)
we omit the list of actuals,(a1, a2, a3).

The effect of executing such a call is to apply featuref to the target
object, with the actuals given if any. Iff is a function or an attribute, the
value of the call expression is the result returned by this application.

To execute properly, the call needs the value of the target and the
actuals, for which this chapter needs a collective name:

In the examples the operands area0 (or Current in the unqualified version
[U]), a1, a2anda3. Also convenient is the notion ofpositionof an operand:

Positions, then, range from 0 to the number of arguments declared for the
feature. Position 0, the target position, is always applicable.

[Q] a0. f (a1, a2, a3)

[U] f (a1, a2, a3)

Operands of a call
The operands of a call include its target (explicit in a qualified
call, implicit in an unqualified call), and its arguments if any.

Operand position
The target of a call (implicit or explicit) has position 0. Thei-th
actual argument, for any applicablei, has positioni.

←Callswerestudied in
chapter21 and their
type properties in chap-
ter 22.

§23.4 DELAYING A CALL 569
23.4 DELAYING A CALL

For a call such as the above, we expect the effect just described to occur as a
direct result of executing the call instruction or expression: the computation
is immediate. In some cases, however, we might want to write an expression
that only describesthe calls intended computation, and toexecutethat
description later on, at a time of our own choosing, or someone else's. This
is the purpose of active expressions, which may be described asdelayed calls.

Why would we delay a call in this way? Here are some typical cases:

A •We might want the call to be applied to all the elements of a certain
structure, such as a list. In such a case we will specify the active
expression once, and then execute it many times without having to re-
specify it in the software text. The software element that will repeatedly
execute the same call on different objects is known as aniterator .
Functionfor_all, used earlier, was an example of iterator.

B •As a form of iterator programming in numerical computation, we might
use a mechanism that applies the call to various values in a certain
interval, to approximate the integral of a function over that interval. The
first example of this chapter relied on such anintegral function.

C •We might want the call to be executed by another software element:
passinganactiveobject to thatelement isaway togive it the right tooperate
on some of our own data structures, at a time of its own choosing. This
was illustrated with the calls passing toother_elementsome active
expressions representing operations applicable toyour_list.

D •We might want the call to be applied as initialization whenever future
execution creates a new object of a given type.

E •Finally, we may be interested in the active object as a way to gain
information about the feature itself, whether or not we ever intend to
execute the call. This may be part of the more general goal of providing
introspective capabilities: ways to enable a software system to explore
and manipulate information about its own properties.

These examples suggest an important property of active expressions, which
is the second principal way they differ from normal calls (the first being, of
course, timing): whereas to execute a normal call we need the value of all
its operands — target and actuals —, for an active expression we may want
to leave some of the operands open for later filling-in. This is clearly
necessary for casesA and B, in which the iteration or integration
mechanism will need to apply the feature repeatedly, using different
operands each time. In an integration

we will need to applyg to successive values of the interval[a, b].

Introspection is also
calledreflection, but
the first term is more
accurate.

g (x) dx
x = a
x = b

∫

ACTIVE OBJECTS, ITERATION AND INTROSPECTION §23.5570
For an active object we need to distinguish between two moments:

Since the only way to obtain an active object initially is throughactive
expressions, as specified next, it is meaningful to talk about the “active
expression defining it”.

For a normal call the two moments are the same. For an active object we
will have one construction time (zero if the expression is never evaluated),
and zero or more call times. At construction time, we may leave some
operands unspecified; they they will be called theopenoperands. At call
time, however, the execution needs all operands, so the call will need to
specify values for the open operands. These values may be different for
different executions (different call times) of the same active expression —
that is to say, for active objects having the same construction time.

There is no requirement thatall operands be left open at creation time:
we may specify some operands, which will be closed, and leave some other
open. In the example of computing, for some valuesu andv, the integral

whereh is a three-argument function, we pass to the integration mechanism an
active object that is closed on its last two operands (u andv) but open onx.

Nothing forces you, on the other hand, to leave any open operand at all. An
active object with all operands closed corresponds to the kind of application
calledC above, in which we don’t want to execute the call ourselves but let
another software elementother_elementcarry it when it is ready. We choose
constructiontime,andpackagethecallcompletely, includingall the information
needed to carry it out;other_elementchooses call time. This style of
programming is used by iterators in the C++ STL library.

At the other extreme, an active object withall operands openhas no
information about the target and actuals, but includes all the relevant
information about the feature. This is useful in applicationE: passing
around information about a feature for introspection purposes, enabling a
system to deliver information about its own components.

23.5 WHAT IS AN ACTIVE EXPRESSION ?

A normal call is a syntactical component — instruction or expression —
meant only for one thing: immediate execution. If it is an expression
(because the feature is a function), it has a value, computed by the
execution, and so denotes an object.

Construction time, call time
The construction time of an active object is the time of
evaluation of the active expression defining it.
Its call time is when a call to its associated operation is executed.

→ A precise definition
of “open” and
“closed” operands
appears on page579

h (x, u, v) dx
x = a
x = b

∫

§23.5 WHAT IS AN ACTIVE EXPRESSION? 571
An active expression has a different status. Since construction time is
separate from call time, the active expression can onlydenote an object. That
object, called anactive object, contains all the information needed to execute
the call later, at various call times. This includes in particular:

• Information about the routine itself and its base type.

• The values of all the closed operands.

What is the type of a call object? Three Kernel Library classes are used to
describe such types:ROUTINE, PROCEDUREand FUNCTION. Their
class headers start as follows:

A call object will be an instance ofPROCEDUREif the associated feature
is a procedure, ofFUNCTION if it is a function. The role of the formal
generic parameters is:

• BASE: type (class + generics if any) to which the feature belongs.

• OPEN: tuple of the types of open operands, if any.

• RES: result type for a function.

One of the fundamental features of classROUTINE is

In addition,FUNCTION has the feature

and, for convenience, the function

deferred class ROUTINE[BASE, OPEN–> TUPLE]

class PROCEDURE[BASE, OPEN–> TUPLE] inherit
ROUTINE[BASE, OPEN–> TUPLE]

class FUNCTION[BASE, OPEN–> TUPLE, RES] inherit
ROUTINE[BASE, OPEN–> TUPLE]

call (v: OPEN) is
--Call featurewithall itsoperands,usingvfor theopenoperands.

item: RES
-- Function result returned by last call tocall, if any

value(v: OPEN): RESis
-- Result of calling feature with all its operands,
-- usingv for the open operands.
-- (Usescall for the call.)

ensure
as_set_by_call: Result= item

ACTIVE OBJECTS, ITERATION AND INTROSPECTION §23.6572
Note that the formal generic parameters forROUTINE, PROCEDUREand
FUNCTIONprovide what we need to make the active object mechanism
statically type-safe. In particular theOPENparameter, a tuple type, gives the
exact list of open operand types; since the argument tocall andvalueis of
typeOPEN, the compiler can make sure that at call time the actual arguments
tocall will be of the proper types, conforming to the original feature’s formal
argument types at the open positions. The actuals at closed positions are set
at construction time, again with full type checking. So the combination of
open and closed actuals will be type-valid for the feature.

ROUTINE, PROCEDUREand FUNCTION have more features than
listed above. For a more complete interface specification, see the
corresponding sections in the presentation of Kernel Library classes.

23.6 ACTIVE EXPRESSIONS

How do we produce active objects? We useactive expressionsfor which
the basic syntactical rule is very simple: start from a normal feature call; in
the qualified case, replace its dot with a tilde; in the unqualified case, add a
tilde before the feature name

So if a valid call of the qualified form is

you get an active expression by replacing the dot with a tilde:

In the case of a valid unqualified call

wheref is a feature of the enclosing class, you obtain the corresponding call
expression by adding a tilde:

In either case, the new notation is not a call (instruction or expression) any
more, but an expression of a new syntactic kind,Active_expression, which
denotes a call object, of aPROCEDUREtype if f is a procedure and a
FUNCTION type if f is a function.

a0. f (a1, a2, a3)

a0~f (a1, a2, a3)

f (a1, a2, a3)

~ f (a1, a2, a3)

→ SectionsA.6.22 to
A.6.24,startingonpage
776.

§23.7 KEEPING OPERANDS OPEN 573
With a call expression, you can do all you are used to with other
expressions. You can assign it to an entity of the appropriate type;
assumingf is a procedure of a classCC, you may write, in classCC itself:

Note that here all operands are closed since we specified the targeta0 and
all the operandsa1, a2, a3, so the second formal generic is justTUPLE, and
the call tocall takes an empty tuple[] .

More commonly than assigning a call expression to an entity as here,
you will pass it as actual argument to a routine, as in

wheredo_something, in the corresponding class, takes a formalxdeclared as

or just

presumably to callcall onx at some later stage, as we will shortly learn to
do. This is the scheme that was calledC in the presentation of example
applications: passing a completely closed call object to another component
of the system, to let it execute the call when it chooses to. For example you
can passyour_list~startor your_list~extend(some_value).

23.7 KEEPING OPERANDS OPEN

The examples just seen are still of limited interest because all their operands
are closed. What if you want to keep some operands open for latter filling-
in at call time, for example by an iteration or integration mechanism?

For arguments (we will see how to handle the target in a short while) the
basic technique is very simple: to keep an actual open, just replace it by a
question mark. This yields examples such as

x: PROCEDURE[CC, TUPLE]
…
x := a0~f (a1, a2, a3)
…
x. call ([])

some_other_component. do_something(a0~f (a1, a2, a3))

x: PROCEDURE[CC, TUPLE]

x: PROCEDURE[ANY, TUPLE]

w := a0~f (a1, a2, ?)
x := a0~f (a1, ?, a3)
y := a0~f (a1, ?, ?)
z := a0~f (?, ?, ?)

This example assumes
thatCCis non-generic,
so that it is both a class
and a type.

← SchemeC wason
page569.

→ About the target see
“LEAVING THE TAR-
GETOPEN”, page575.

ACTIVE OBJECTS, ITERATION AND INTROSPECTION §23.8574
The respective types of these call expressions are, assuming thatf is a
procedure with formals declared of typesT1, T2 andT3:

If f were a function, the types would useFUNCTION instead of
PROCEDURE, with one more actual generic representing the result type.

You will have noted how the generic parameters ofROUTINEand its
heirs all provide a full specification of the types involved, enabling static
type checking. Consider in particular the role of the second generic
parameter OPEN in ROUTINE [BASE, OPEN –> TUPLE] and,
correspondingly,PROCEDUREand FUNCTION. OPEN represents the
tuple of types of all the open operands. In the first case above, forw, only
the last argument, of typeT3, is left open; in the last case, forz, all three
arguments are open. (But in all examples so far the targeta0 is closed.) This
immediately indicates what argument types are permissible in calls tocall
(or valuefor a function) on the corresponding call objects:

where the types of expressionse1, e2, e3must conform toT1, T2 andT3
respectively. The effect of these calls is the same as what we would obtain
through the following normal calls (call time same as construction time):

23.8 EXPLICIT TYPES FOR OPEN OPERANDS

As a variant of the “question mark” specification for open operands, you
might want to specify explicitly a certain type for some of the arguments.
Instead of the first example

you may write

w: PROCEDURE[T0, TUPLE[T3]]
x: PROCEDURE[T0, TUPLE[T2]]
y: PROCEDURE[T0, TUPLE[T2, T3]]
z: PROCEDURE[T0, TUPLE[T1, T2, T3]]

w. call ([e3])
x.call ([e2])
y. call ([e2, e3])
z. call ([e1, e2, e3])

a0.f (a1, a2, e3)
a0. f (a1, e2, a3)
a0. f (a1, e2, e3)
a0. f (e1, e2, e3)

w := a0~f (a1, a2, ?)

wu := a0~f (a1, a2, {U3})

→ The role of the first
generic parameter,
BASE,willbediscussed
in “THE BASE CLASS
AND TYPE”, 23.13,
page 581.

§23.9 LEAVING THE TARGET OPEN 575
to specify that you are leaving open the last argument, and that the
corresponding actual must be of type conforming toU3. This will be called
the braces convention, complementing the “question mark convention”
seen so far. In this case the type ofwu is

Clearly, this is only permitted for a typeU3 that conforms toT3, the type
of the last formal argument. This is a general rule: where a normal call
requires an operand of typeTi, a corresponding active expression may use
{ Ui} , for any typeUi conforming toTi. This means that the argument is
left open, and that any corresponding actual at call time must be of a type
conforming toUi.

We may now reinterpret the question mark convention in terms of the
braces convention: a question mark at an argument position is simply an
abbreviation for {Ti}, whereTi is the type of the corresponding formal. For
exampley, defined earlier asa0~f (a1, ?, ?) could instead have been written

23.9 LEAVING THE TARGET OPEN

The examples of open operands seen so far were open only for some or all
of the arguments; the target was closed. Your may also want to leave the
target open. Looking again at our staple example, we see that if we start
from a normal call of the qualified form

we cannot use the question mark convention to replace the targeta0, since
we need to identify the class of whichf is a feature. But the braces
convention will work. You may write

to denote a call object open on its target (of typeT0) and closed on all
arguments. Of course you can open any or all of the arguments too, as in

where we get withu, for the first time, a call object open on all its operands,
target and arguments.

wu: PROCEDURE[T0, TUPLE[U3]]

a0~f (a1, {T2}, { T3})

a0. f (a1, a2, a3)

s := {T0} ~f (a1, a2, a3)

t := {T0} ~f (a1, a2, ?)
u := {T0} ~f (?, ?, ?)

→ The expression foru
can be abbreviated to
just {T0} ~ f. See
“COMPLETELY
OPEN CALL OB-
JECTS”, page 580.

ACTIVE OBJECTS, ITERATION AND INTROSPECTION §23.9576
The types for the last call expressions are:

Note once again how the second generic parameter of theROUTINE
classes corresponds to the open operands — target and arguments included.

The next section discusses the role of the first generic parameter, always
representing the target type.

The order of the open operands is the one in which they operands would
appear in a normal call: target, then first argument and so on. Calls tocall
on the corresponding routine objects will be instructions of the form

with expressionse0, e1, e2, e3of types conforming toT0, T1, T2, T3. Note
how, when it comes to applyingcall (or value for a function) to a call
object, the target, if left open in the call expression, must be passed as part
of the actual argument tuple, in the same way as an open argument.

These active expressions will have the same effect as the normal calls

In the unqualified case, a normal call of the form

may be viewed as an shorthand for the qualified formCurrent. f (a1, a2, a3).
Correspondingly, you may write the open-target active expression as

but you may also use a question mark for the target:

Here too you may of course leave some of the arguments open, or all of
them as in

s: PROCEDURE[T0, TUPLE[T0]]
t: PROCEDURE[T0, TUPLE[T0, T3]]
u: PROCEDURE[T0, TUPLE[T0, T1, T2, T3]]

s. call ([e0])
t. call ([e0, e3])
u. call ([e0, e1, e2, e3])

e0. f (a1, a2, a3)
e0. f (a1, a2, e3)
e0. f (e1, e2, e3)

f (a1, a2, a3)

{ CC} ~f (a1, a2, a3)

? ~f (a1, a2, a3)

v := ?~ f (?, ?, ?)

CC is the enclosing
class, assumed to be
non-generic.

→ The expression forv
canbeabbreviatedto just
?~ f. “COMPLETELY
OPEN CALL OB-
JECTS”, page 580.

§23.10 A SUMMARY OF THE POSSIBILITIES 577
23.10 A SUMMARY OF THE POSSIBILITIES

Although you may have the impression that the active object
mechanism has many variants, it is in fact very simple. So to avoid any
confusion, or impression of confusion, here is an informal description
listing all the possibilities:

That’s all there is to it!

In the next sections we continue exploring the details, and study the
precise syntax, validity and semantics of active expressions.

23.11 ACTIVE EXPRESSION SYNTAX

We have now seen examples of all the variants ofActive_expression, so it
is time to give the syntax. (This section introduces no new concept, so the
hurried reader may skip to the next one.)

The new construct isActive_expression, a variant ofExpression:

The major difference between the syntax of anActive_expressionand of a
normalCall is the tilde of aActive_unqualified, which has no equivalent in
the corresponding construct,Unqualified_call. This guarantees that an active
expression can never be confused for a normal call.

How active expressions are made
To obtain an active expression, youmust:
1 • Start from a valid routine call — of any form, qualified or not.

2 • Replace the dot by a tildeif the call is qualified; otherwise,
add a tilde before the routine name.

In addition, to make some operands open, youmay:
3 • Replaceanyoperand(thetarget,oranyargument)byaquestion

mark, called aPlaceholderin the syntax, or a type in braces, as
in {YOUR_TYPE} , called anExplicit_type_descriptor.

4 • If all the arguments are placeholders, omit the argument
list altogether, parentheses included.

Active_expression=∆ [Active_target] Active_unqualified

Active_target=∆ Entity |Parenthesized|Type_descriptor

Type_descriptor=∆ Explicit_type_descriptor|Placeholder

Explicit_type_descriptor=∆ "{" Type"}"

Placeholder=∆ "?"

Active_unqualified=∆ "~" Feature_name[Active_actuals]

If hurriedskip to“COM-
PLETELY OPEN CALL
OBJECTS”, 23.12,
page 580.

Active_actuals repre-
sents the actual argu-
ments to the active
object, if any, and is
specified next.

ACTIVE OBJECTS, ITERATION AND INTROSPECTION §23.11578
Note that the mechanism is applicable not only to identifier features but
also to operator features (Infix andPrefix). The technique is very simple:
just designate the feature by itsFeature_name, and add a tilde to it as you
would do with an identifier feature. You may remember that the Feature
Name Consistency principle allows us, if§ is the operator of an infix
feature, to treatinfix "§" as a normal feature name and use it in any place
where a feature identifier would be legal; same thing forprefix "‡" if ‡ is
a prefix operator. So you can use active expressions such as

Coming back to the general case, theActive_targetmay be absent, in which
case the call will be considered closed on its target: the current object. In this
case the associated feature must be a feature of the current class, and the
Active_expression will start with a tilde and a feature name, as in

In all other cases the active expression has an explicitActive_target, for
which the specification shows three possibilities:Entity, Parenthesizedand
Type_descriptor. Examples of aActive_target of each kind are

This syntax requires you, if you want to use as target an expression other
than a simple entity, to enclose it in parentheses, as in the second example.
There is no loss of expressiveness, since the expression you put in
parentheses can still be as complicated as you like. The reason for forcing
parentheses is a concern for readability. With suitable precedence rules, it
would not be hard for a compiler to parsea.k (x). l (y).m~f (a1, a2, a3).
Instead, you must write

where the parentheses around the target remove any confusion arising from
the presence of both dots (part of the multi-level qualifiedCall serving as
target of the active expression) and tildes.

a~infix "+" (b) -- All closed
~infix "+" (?) -- Open on argument, closed on target
?~ prefix "+" -- All open (open on target, no argument)

~f (a1, a2, a3)
~ f

e0 -- An Entity
(a.k (x). l (y).m) -- A Parenthesizedcontaining a complex expression
{ U0} -- A Type_descriptor(explicit)

(a.k (x). l (y).m)~ f (a1, a2, a3)

← See“THE FEA-
TURE NAME CONSIS-
TENCY PRINCIPLE”,
5.14, page 185.

§23.11 ACTIVE EXPRESSION SYNTAX 579
The third possibility for a target includes aType_descriptor. This may
be anExplicit_type_descriptorlisting the target type in braces:

or simply a question mark, orPlaceholder, indicating an open target of the
current type:

This expression assumes thatf is a feature of the enclosed class; it
represents an active object that is open on its target.

The part after the tilde is what the syntax productions callActive_
unqualified, which resembles theUnqualified_callcomponent of normal
calls, but with two more possibilities for aActive_actual:

One of theActive_actual variantsis Actual, meaning a normal actual
argument for a call (Expressionor, for an external routine,Address). The
new variant isType_descriptor, which as we have seen includesPlaceholder,
a question mark, andExplicit_type_descriptor, a type in braces.

We can define precisely what “open” and “closed” mean for the
operands of an active expression:

An earlier definition also introduced the notion ofoperand position, which
we can now extend to a definition of open and closed positions:

{ T0} ~ f (a1, a2, a3)

?~f (a1, a2, a3)

Active_actuals=∆ "(" Active_actual_list ")"

Active_actual_list=∆ {Active_actual "," …}

Active_actual=∆ Actual |Type_descriptor

Open and closed operands
Theopen operandsof anActive_expression include:
• Its target if there is aActive_targetand it is aType_descriptor

(Explicit_type_descriptor or Placeholder).

• Any Active_actual that is aType_descriptor.

Theclosed operands include all non-open operands.

Open and closed operand positions
The open operand positionsof an Active_expressionare the
operand positions of its open operands, and theclosed operand
positions those of its closed operands.

← The operands of a
call were defined on
page568 as including
its target, and its argu-
ments if any.

← “Operand position”
wasdefinedonpage568:
the target position is 0,
and the argument posi-
tions start at 1.

ACTIVE OBJECTS, ITERATION AND INTROSPECTION §23.12580
23.12 COMPLETELY OPEN CALL OBJECTS

In some cases it will be useful to write a call expression that denotes a call
object closed on all of its arguments, and possibly on its target too.

We have seen how to obtain this effect by using question marks
(Placeholder) at every argument position:

An abbreviation is permitted for this case: omit the parenthesized argument
list (theActive_actuals part) altogether, yielding respectively

These examples all have closed targets; in the unqualified case the target is
the current object. The fully open variants, with open targets, are:

The syntax just given explicitly allows all these abbreviated forms. It is the
same as the full form iff has no arguments.; but iff has arguments, a normal
call without actuals, such asa0. f, or justf in the non-qualified case, would
violate the Argument rule. In contrast, the Active Expression rule,
introduced later in this chapter, explicitly allows you to omit theActive_
actuals, even for a feature with arguments, as an abbreviation for a list of
completely open actuals.

This abbreviated form has the advantage of conveying the idea that the
denoted object is not just a call object but a true “feature object”, carrying
properties of the feature in its virginal state, not tainted by any particular
choice of actual argument. The last two variants shown do not even name
a target. This is the kind of object that we need for suchintrospective
applications as writing a system that enables its users to browse through its
own classes.

a0~ f (?, ?, ?) -- Qualified, arguments open, target closed
~f (?, ?, ?) -- Unqualified, arguments open, target closed

a0~ f -- Qualified, arguments open, target closed
~f -- Unqualified, arguments open, target closed

{ T0} ~ f -- Qualified, all operands open (target and arguments)
?~f -- Equivalent to previous one ifT0 is current type

← The first expression
wascalledzonpage573;
thesecondonewascalled
v on page576.

← The first expression
hasthesamevalueasuas
defined on page575.

← The Argument rule
was on page558.

→ The Active Expres-
sion rule will appear on
page589.

§23.13 THE BASE CLASS AND TYPE 581
23.13 THE BASE CLASS AND TYPE
Introspection support is also one of the concerns behind the first generic
parameter ofROUTINE, PROCEDUREandFUNCTION. The specification

includes, as first generic parameter, the typeBASErepresenting the type
(class with generic parameters) to which a call object’s associated feature
belongs. This is the type of the target expected by the feature.

The examples seen so far do not useBASEat all, because procedurecall
does not need it. If the call object is closed on its target, as in

then it includes, here througha0, the target information that a later call to
call may require. In the other case — open target — as in

then the target type is specified, hereT0, and provides the information
needed to determine the right version off. In this case theBASEgeneric
parameter is in fact redundant, since it is identical to the first component of
the tuple type corresponding toOPEN; the type oft, for example, is

where the two tuple components correspond to the two open operands: the
target, and the last argument.

In both the closed target and open target cases, then, we don’t need the
BASEgeneric parameter if all we do with call objects is executecall on them.

BASEis useful for other purposes. WithoutBASEa call closed on its
target, as withy above, could not contain any information about the class
(and associated type) where the call’s associated feature is defined. To open
the gate to full “introspection” service — enabling a system to explore its
own properties — classROUTINE uses a feature

that yields the base type of an active object’s associated feature. ClassTYPE
from the Kernel Library provides information about a type and its base class.

ClassTYPEis, even more fundamentally thanROUTINEand its heirs,
the starting place for introspection. Example features include:

• name: the upper name of the type’s base class.
• generics: the list of actual generic parameters, if any, used in the type’s

derivation, each itself an instance ofTYPE.
• routines: the list of routines of a class, each an instance of

PROCEDURE or FUNCTION.
• attributes: the list of attributes, each an instance ofATTRIBUTE.

ROUTINE[BASE, OPEN–> TUPLE]

y := a0~ f (a1, ?, ?)

t := {T0} ~ f (a1, a2, ?)

 ROUTINE[T0, TUPLE[T0, T3]]

base_type: TYPE

→ Although intuitively
clear, the notion of
“associated feature” of
a call object has not yet
been defined precisely.
The definition is part of
the Active Expression
rule, page589.

ACTIVE OBJECTS, ITERATION AND INTROSPECTION §23.14582
ClassANYhas a feature

which yields an object describing the type of the current object.

So within a class of whichf is a feature,generatorhas the same value as
(~ f). base_type; if a is of typeT andf is a feature ofT, thent. generatorhas
the same value as({ T} ~ f). base_type.

A more complete interface specification ofTYPEappears in the description
of the Kernel Library classes.

Thanks to the presence ofBASEamong the generic parameters of
ROUTINEand its heirs, we can give a proper type to featurebase_type, and
as a result gain access to a whole library of introspection mechanisms.

23.14 USING ACTIVE OBJECTS

All the details of the active object mechanism have now been introduced,
although we haven’t yet taken the trouble to look at the validity rules and
precise semantics. We should now revisit and extend the examples
sketched at the very beginning of this chapter and see how to make them
work in practice: not just the client side (integrating a function, iterating an
operation) but the suppliers too (the integrator, the iterators).

The first set of examples was about integration. We assumed functions

and wanted to integrate them over a real interval such as [0, 1], that is to
say, approximate the two integrals

We declare

and, with the proper definition of functionintegral in classINTEGRATOR,
we will obtain the integrals through the expressions

generator: TYPE

g (x: REAL): REAL
h (x: REAL; a: T1; b: T2): REAL

your_integrator: INTEGRATOR

your_integrator. integral (~g (?), 0.0, 1.0)
your_integrator. integral (~h (?, u, v), 0.0, 1.0)

→ OnANYand uni-
versal features see
chapter28.

→ On classTYPE see
A.6.25, page 779.

→ Validity and seman-
tics are in the next sec-
tion, 23.15, page 588.

h (x, u, v) dx
x = 0
x = 1

∫g (x) dx
x = 0
x = 1

∫

§23.14 USING ACTIVE OBJECTS 583
The question mark indicates, in each case, the open argument: the place where
integral will substitute various real values forx when evaluatingg or h.

Note that if we wanted in classD to integrate a real-valued function
from classREAL, such asabs which is declared inREAL as

we would obtain it simply through the expression

Let us now see how to write functionintegral to make all these uses
possible. We use a primitive algorithm — this is not a treatise on numerical
methods — but what matters is that any integration technique will have the
same overall form, requiring it to evaluatef for various values in the given
interval. Here classINTEGRATORwill have a real attributestep
representing the integration step, with an invariant clause stating thatstep
is positive. Then we may writeintegral as:

The boxed expression is where the algorithm needs to evaluate the function
f passed tointegral. Remember thatvalue, as defined in classFUNCTION,
calls the associated function, substituting any arguments (herex) at the open

abs: REALis
-- Absolute value

do … end

your_integrator. integral ({ REAL} ~abs, 0.0, 1.0)

integral
(f: FUNCTION[ANY, TUPLE[REAL], REAL];
low, high: REAL): REALis

-- Integral off over the interval [low, high]
require

meaningful_interval: low <= high
local

x: REAL
do

from
x := low

invariant
x >= low ; x <= high+ step
-- Result approximates the integral over
-- the interval [low, low.max (x – step)]

until x > high loop
Result:= Result+ step ∗
x := x + step

end
end

f.value([x])

ACTIVE OBJECTS, ITERATION AND INTROSPECTION §23.14584
positions, and returning the function’s result.The argument ofvalue is a
tuple (of typeOPEN, the second generic parameter ofFUNCTION); this is
why we need to enclosex in brackets, giving a one-argument tuple:[x].

In the first two example uses,~g (?) and ~h (?, u, v), this argument
corresponds to the question mark arguments tog andh. In the last example
the call expression passed tointegral was {REAL} ~abs, where the open
operand is the target, represented by{REAL} , and successive calls tovalue
in integralwill substitute successive values ofx as targets for evaluatingabs.

In the case ofh the closed argumentsu andv are evaluated at the time
of the evaluation of the active expression~h (?, u, v), and so they remain
the same for every successive call tovalue within a given execution of
integral.

Note the typeFUNCTION [ANY, TUPLE [REAL], REAL] declared in
integral for the argumentf. It means that the corresponding actual must be
a call expression describing a function from any class (hence the first actual
generic parameter,ANY) that has one open operand of typeREAL(hence
TUPLE [REAL]) and returns a real result (henceREAL). Each of the three
example functionsg, h and abs can be made to fit this bill through a
judicious choice of open operand position.

Now the iteration examples. In a classCC we want to manipulate both
a list of integers and a list of employees

and apply the same functionfor_all to both cases:

The functionfor_all is one of the iterators defined in classTRAVERSABLE
of EiffelBase, and available as a result in all descendant classes describing
traversable structures, such asTREEand LINKED_LIST. This boolean-
valued function determines whether a certain property holds for every
element of a sequential structure. The property is passed as argument to
for_all in the form of a call expression with one open argument.

intlist: LINKED_LIST[INTEGER]
emplist: LINKED_LIST[EMPLOYEE]

if intlist. for_all (~is_positive(?)) then … end
if intlist.for_all (~over_threshold(?)) then … end

if emplist.for_all ({ EMPLOYEE} ~ is_married) then … end

§23.14 USING ACTIVE OBJECTS 585
Our examples use three such properties of a very different nature. The first
two are functions of the client classCC, assessing properties of their
integer argument. The result of the first depends only on that argument:

Alternatively the property may, as in the second example, involve other
aspects ofCC, such as an integer attributethreshold:

Hereover_thresholdcompares the value ofi to a field of the current object.
Surprising as it may seem at first, functionfor_all will work just as well in
this case; the key is that the call expression~over_threshold(?), open on
its argument, is closed on its target, the current object; so the active object
it produces has the information it needs to access thethresholdfield.

In the third case, the argument tofor_all is { EMPLOYEE} ~ is_married;
this time we are not using a function ofCCbut a functionis_marriedfrom
another classEMPLOYEE, declared there as

Unlike the previous two, this function takes no argument since it assesses
a property of its target; We can still, however, pass it tofor_all: it suffices
to make the target open.

The types of the call expressions are the following:

You may also applyfor_all to functions with an arbitrary number of
arguments, as long as you leave only one operand (target or argument) open,
and it is of the appropriate type. You may for example write the expressions

is_positive(i: INTEGER): BOOLEAN is
-- Is i positive?

do Result:= (i > 0) end

over_threshold(i: INTEGER): BOOLEAfsN is
-- Is i greater thanthreshold?

do Result:= (i > threshold) end

is_married: BOOLEANis do ... end

FUNCTION[CC, TUPLE[INTEGER], BOOLEAN]
-- In first two examples (is_positive andover_threshold)

FUNCTION[EMPLOYEE, TUPLE[EMPLOYEE], BOOLEAN]
-- In theis_marriedexample

intlist .for_all (~some_criterion(e1, ?, e2, e3))

emplist. for_all ({ EMPLOYEE} ~some_function(e4, e5)

Thisassumesagain that
CC is non-generic, so
that it is both a class
and a type.

ACTIVE OBJECTS, ITERATION AND INTROSPECTION §23.14586
assuming inCC andEMPLOYEE, respectively, the functions

for arbitrary typesT1, ..., T5. Since argumentse1, ..., e5are closed in the
calls, these types do not in any way affect the types of the call expressions,
which remain as above:FUNCTION[CC,TUPLE[INTEGER], BOOLEAN]
andFUNCTION[EMPLOYEE, TUPLE[EMPLOYEE].

Let us now see how to write the iterator mechanisms themselves, such
asfor_all. They should be available in all classes representing traversable
structures, so they must be introduced in a high-level class of EiffelBase,
TRAVERSABLE[G]. Some of the iterators are unconditional, such as

This uses the four fundamental iteration facilities, all declared in the most
general form possible as deferred features inTRAVERSABLE: start to
position the iteration cursor at the beginning of the structure;forth to
advance the cursor to the next item in the structure;off to tell us if we have
exhausted all items (not off is a precondition offorth); and item to return
the item at cursor position.

The argumentaction is declared asROUTINE [ANY, TUPLE [G]] ,
meaning that we expect a routine with an arbitrary base type, with an open
operand of typeG, the formal generic parameter ofTRAVERSABLE,
representing the type of the elements of the traversable structure. Feature
item indeed returns a result of typeG (representing the element at cursor
position), so that it is valid to pass as argument the one-argument tuple
[item] in the callaction. call ([item]) that the loop repeatedly executes.

We normally expectaction to denote a procedure, so its type could be more
accurately declared asPROCEDURE[ANY, TUPLE [G]] . UsingROUTINE
leaves open the possibility of passing a function, even though the idea of
treating a function as an action does not conform to the Command-Query
Separation principle of the Eiffel method.

some_criterion(a1: T1; i: INTEGER; a2: T2; a3: T3) -- In CC

some_function(a4: T4; a5: T5) -- In EMPLOYEE

do_all (action: ROUTINE[ANY, TUPLE [G]]) is
-- Apply action to every item of the structure in turn.

require
… Appropriate preconditions …

do
from startuntil off loop

action.call ([item])
forth

end
end

Descendants ofTRA-
VERSABLEeffect these
featuresinvariousways
to provide iteration
mechanisms on lists,
hash tables, trees and
many other structures.

§23.14 USING ACTIVE OBJECTS 587
Wheredo_all appliesaction to all elements of a structure, other iterators
provide conditional iteratiion, selecting applicable items through another
call expression argument,test. Here is the “while” iterator:

Note how the algorithm appliescall to action, representing a routine
(normally a procedure), andvalue to test, representing a boolean-valued
function. In both cases the argument is the one-element tuple[item].

The iterators ofTRAVERSABLEcover common control structures:
while_do; do_while (same aswhile_dobut with “test at the end of the
loop”, that is to say, applyaction to all items up toand includingfirst one
satisfyingtest); until_do; do_until; do_if.

Yet another of the iterators ofTRAVERSABLEis for_all, which we used
in the examples. It is easy to write afor_all loop algorithm similar to the
preceding ones, but easier yet to definefor_all in terms ofwhile_do:

Proceduredo_nothing, from classANY, has no effect; here we simply apply
it as long astest is true of successive items. If we find ourselvesoff then
for_all should return true; otherwise we have found an element not
satisfying thetest.

while_do
(action: ROUTINE[ANY, TUPLE[G]]
test: FUNCTION[ANY, TUPLE[G], BOOLEAN]) is

-- Apply action to every item of the structure up to,
-- but not including, the first one not satisfyingtest.
-- If all satisfy test, apply to all items and move cursoroff.

require
… Appropriate preconditions …

do
from startuntil

off or else not test. value([item])
loop

action. call ([item])
forth

end
end

for_all (test: FUNCTION[G, TUPLE, BOOLEAN]): BOOLEANis
-- Do all items satisfytest?

require
… Appropriate preconditions …

do
while_do(~do_nothing, test)
Result:= off

end

→ do_nothing is cited
in 28.6, page 670.

ACTIVE OBJECTS, ITERATION AND INTROSPECTION §23.15588
Assuming a proper definition ofdo_until, the declaration ofexists,
providing the second basic quantifier of predicate calculus, is nicely
symmetric withfor_all:

23.15 VALIDITY AND SEMANTICS
It remains to provide the validity and semantic rules of active expressions,
complementing the syntax already given. This will simply be a more
precise specification of concepts already studied, so on first reading you
can skip to the next chapter.

For ease of reference here is a repetition of the syntax productions:

To define the validity of an active expression we need to be able to consider
its “target type”, explicit or implicit:

exists(test: FUNCTION[G, TUPLE, BOOLEAN]): BOOLEANis
-- Does at least one item satisfytest?

require
… Appropriate preconditions …

do
do_until(~do_nothing, test)
Result:= not off

end

Active_expression=∆ [Active_target] Active_unqualified

Active_target=∆ Entity |Parenthesized|Type_descriptor

Type_descriptor=∆ Explicit_type_descriptor|Placeholder

Explicit_type_descriptor=∆ "{" Type"}"

Placeholder=∆ "?"

Active_unqualified=∆ "~" Feature_name[Active_actuals]

Active_actuals=∆ "(" Active_actual_list ")"

Active_actual_list=∆ {Active_actual "," …}

Active_actual=∆ Actual |Type_descriptor

Target type of an active expression
The target type of anActive_expression is:
1 • If there is noActive_target, or a Active_targetwhich is a

Type_descriptor of thePlaceholder kind, the current type.
2 • If there is aActive_targetand it is anEntity or Parenthesized,

its type.
3 • If there is aActive_targetand it is aType_descriptorof the

Explicit_type_descriptorkind, the type that it lists (in braces).

← These productions
first appeared on pages
577 and579.

← The “current type”
is the enclosing class,
with generic parame-
ters added if necessary
to make up a type. See
“CURRENT CLASS,
CURRENT TYPE”,
12.17, page 379.

§23.15 VALIDITY AND SEMANTICS 589
This is enough to introduce the validity rule, which also defines the notion
of “associated feature” of an active object:

Clause6 is a consistency condition for concurrent computation, and parallels
a similar clause discussed in the chapter on normal calls.

The phrasing of the rule implies that certain forms of the construct are
automatically valid:

• If any Active_actualis of thePlaceholderkind, represented simply by a
question mark, neither clause4 nor clause5 applies, so the argument
raises no type validity problem. This is as expected, since such an
argument is left open for future filling-in.

• If there is noActive_actualspart, clauses3 to 5 do not apply. Iff has no
formals, we are calling an argumentless feature with no actuals, as we
should. Iff has one or more formal arguments, we view the absence of
explicit actuals of an abbreviation for actuals that are all of the
Placeholderkind (question marks): assumingf takes three arguments,
a0~ f is simply an abbreviation fora0~ f (?, ?, ?). In this case the
implicit arguments are all open, and hence automatically valid.

We may formalize the last observation through a definition which will also
be useful for the semantics:

Active Expression rule CPAR

An Active_expressionappearing in a classC, with a feature
identifierfi and target typeT0 is valid if and only if it satisfies the
following six conditions:
1 •fi is the name of a feature ofT0, called theassociated feature

of the active expression.

2 • If there is aActive_target, that feature is export-valid forT0 in
C.

3 • If theActive_actualspart its present, the number of elements in
its Active_actual_list is equal to the number of formals off.

4 • Any Active_actualof theActual kind is of a type conforming
to the type of the corresponding formal inf.

5 • Any Active_actualwhich is aType_descriptorof theExplicit_
type_descriptor kind lists, between the braces, a type
conforming to the type of the corresponding formal inf.

6 • If T0 is separate, any non-expanded formal off is separate.

ACTIVE OBJECTS, ITERATION AND INTROSPECTION §23.15590
We now have enough to define the semantics of an active expression:

Although this will be an implicit consequence of the preceding description,
it doesn’t hurt to state explicitly what some of the information inD0 is good
for: enabling calls on active objects.

Unfolded form of an active expression
The unfolded form of anActive_expressiondc is:
• dc itself if it includes aActive_actualspart, or if the associated

feature has no formals.

• Otherwise,dc extended with aActive_actualspart made up
of Active_actual components all of thePlaceholder
(question mark) kind.

Type and value of an active expression
Consider anActive_expressionexpressiond, whose associated
featuref has a generating typeT0. Let i1, …, im (m ≥ 0) be its
open operand positions, if any, and letTi1, .., Tim be the types of
f’s formals at positionsi1, …, im (takingTi1 to beT0 if i1 = 0).
The type ofd is:
• PROCEDURE[T0, TUPLE [Ti1, ..,Tim]] if f is a procedure;

• FUNCTION [T0, TUPLE [Ti1, .., Tim], R] if is a function of
result typeR.

Evaluatingd at a certainconstruction timeyields a reference to
an instanceD0of the typeofd, containing information identifying:
• f.

• The open operand positions.

• The values of the closed operands at the time of evaluation ofd.

Effect of executingcall on an active object
Let D0 be an active object with associated featuref and open
positionsi1, …, im (m≥ 0). The information inD0 enables a call
to procedurecall, executed at anycall time posterior toD0’s
construction time, with targetD0 and (if required) actual
argumentsai1, ..,aim, to perform the following:
• Produce the same effect as a call tof, using the closed operands

at the closed positions andai1, .., aim, evaluated at call time, at
the open positions.

• In addition, if f is a function, setting the value of queryitemfor
D0 to the result returned by such a call.

← “Open operand posi-
tion” was defined on
page579.

← item from class
FUNCTION,intendedto
hold the result of the last
evaluation, was intro-
duced on page571.

	23 Active objects, iteration and introspection
	23.1 OVERVIEW
	23.2 A QUICK PREVIEW
	23.3 NORMAL CALLS
	23.4 DELAYING A CALL
	23.5 WHAT IS AN ACTIVE EXPRESSION?
	23.6 ACTIVE EXPRESSIONS
	23.7 KEEPING OPERANDS OPEN
	23.8 EXPLICIT TYPES FOR OPEN OPERANDS
	23.9 LEAVING THE TARGET OPEN
	23.10 A SUMMARY OF THE POSSIBILITIES
	23.11 ACTIVE EXPRESSION SYNTAX
	23.12 COMPLETELY OPEN CALL OBJECTS
	23.13 THE BASE CLASS AND TYPE
	23.14 USING ACTIVE OBJECTS
	23.15 VALIDITY AND SEMANTICS

