23

Active objects, Iteration and
Introspection

Draft, February 1999.

Copyright Interactive Software Engineering,
1999. Duplication and distribution prohibited.

23.1 OVERVIEW

Objectsrepresentinformation equipped with operations. Operations and objects
are clearly defined concepts; no one would mistake an operation for an object.

For some applications — such as numerical computation, iteration,
writing complete assertions, building development environments, and
introspection(a system’s ability to explore its own properties) — the
operations may be so interesting on their own as to become information,
worthy of representation by objects that can be passed around to arbitrary
software elements, which can use them to execute the operations whenever
they want. Because this separates the place of an operation’s definition from
the place of its execution, the definition can be incomplete, since we can
provide any missing details at the time of each particular execution.

You can creat@ctive objectsto describe such partially or completely
specified computations. Active objects combine the power of higher-level
functionals — operations acting on other operations — with the full safety
of Eiffel's static typing system.

23.2 AQUICK PREVIEW

Why do we need active objects? The rest of this chapter will present a
detailed rationale, but it does not hurt to start with a few example uses. This
muinid - preview contains few explanations, so if this is your first brush with active
objects some of it may look mysterious; it will, however, give you an idea
of the mechanism’s power, and by chapter end all the details will be clear.

Assume you want to integrate a functignix: REAL: REAL over the
interval [0, 1]. With your_integratorof a suitable type NTEGRATOR

(detailed later) you will simply write the expression

& | your_integrator integral (~g (?), 0.0, 1.0) |

T Here ~g (?), the first argument tantegral, is an active expression
distinguished by a tilde characterappearing before the function nange,
The tilde avoids any confusion with a routine call sucky é35): at the place
we callintegral, we don’t want to computg yet! Instead, what we pass to
integral is a “active object” enablingntegral to call g when it pleases, on
whatever values it pleases.

566 ACTIVE OBJECTS, ITERATION AND INTROSPECTION §23.2

We must tellintegral where to substitute such values fomt the places
where its algorithm will need to evaluage¢o approximate the integral. This
is the role of the question maPkreplacing the argument ¢p

You may use the same scheme in

A your_integratot integral (~h (?, u, v), 0.0, 1.0)

. 1 .
] to compute the mtegrzjﬂ0 h (x, u,v) dx , whefle is a three-argument

functionh (x: REAL a: T1; b: T2): REALandu andv are arbitrary values.
You will use a question mark at the “open” position, corresponding to the
integration variable;, and fill in the “closed positions” with actual values

u andv. Note the flexibility of the mechanism, allowing you to use the same
routine to integrate functions involving an arbitrary number of extra values.

You can rely on a similar structure to provide iteration mechanisms on
data structures such as lists. Assume a €l&swith an attribute

intlist: LINKED_LIST[INTEGER

m=
i

and a function

integer_propertyi: INTEGER: BOOLEAN

returning true or false depending on a property invohiingou may write

intlist. for_all (~integer_property(?))

to denote a boolean value, true if and only if every integer in thérlisst
satisfiesinteger_property This expression might be very useful, for
example, in a class invariant. It is interesting to note that it will work for
any kind ofinteger_propertyeven if this function involves attributes or
other features oEC, that is to say, arbitrary properties of the current object.

Now assume that i6C you also have a list of employees:
emplist LINKED_LIST[EMPLOYEHF

and that clasE MPLOYEEhas a functioris_married BOOLEAN with no
argument, telling us about the current employee’s marital status. Then you
may also write irCC the boolean expression

=
i

emplist for_all { EMPLOYER ~is_married

to find out whether all employees in the list are married. The argument to
for_all is imitated from a normal feature calbme_employeeés_married

but instead of specifying a particular employee we just give the type
{EMPLOYEE, to indicate wherefor_all must evaluates_marriedfor a
succession of different targets, taken from the the list of employees. Note
again the tilde character, signifying that it's the feature we are passing to
for_all, not an expression resulting from evaluating it.

§23.2 A QUICK PREVIEW

567

What is remarkable in the last two examples is again the flexibility of
the resulting iteration mechanism and its adaptation to the object-oriented
form of computation: you can use the same iteration routine, foerall
from clas.INKED_LIST to iterate actions applying to either:

* The target of a feature, as withis_married a feature of class
EMPLOYEEwith no arguments, to be applied toBMPLOYERarget.

» The actual argument of a feature, as withinteger_propertywhich
evaluates a property of its argument— and may or may not, in
addition, involve properties of its target, an object of @2

It seems mysterious that a single iterator mechanism can handle both cases
equally welll We will see how to writefor_all and other iterators
accordingly. The trick is that they work on their “open” operands, and that
when we call them we may choose what we leave open: either the argument
as in theis_positive and integral case, where the open position is
represented by a question mark, or the target, as i therriedcase.

Now assume that you want to pass to some other software component,
in the style of STL — the C++ “Standard Template Library” — the
mechanisms needed to execute the cursor resetting and advance operations,
startandforth, on a particular list. Here nothing is left open: you fix the list,
and the operations have no arguments. You may write

I

‘ other_componentsome_featuréyour_list~start, your_list-forth) ‘

All operands — target and arguments — of the active objects passed to
other_componentre “closed”, soother_componentan execute call
operations on such objects without providing any further information.

Atthe other extreme, you might leave an active expression fully open, asin

I

| other_componenbther_featurd{ LINKED_LIST} ~extend(?)) |

so thatother_componentwhen it desires to apply a call operation, will
have to provide both a linked list, on which to execeit¢end and an actual
argument foextend

You will indeed be able, whenever you have an active object, to execute
on it a procedurecall, whose arguments are the open operands of the
original active expressiorcéll has no arguments if all operands are closed,
as in the next-to-last example). This will have the same effect as an
execution of the original feature -start, forth, extend— on a combination
of the closed and open arguments.

Inthe end an expression sucHasNKED _LIST ~extend?), which can
in fact be written just{LINKED_LIST} ~extend without any explicit
argument, or even justextendn the text of clas&€ INKED_LIST denotes a
“routine object”: a representation of the routimatendrom LINKED_LIST
such as could be used by browsing tools or otherspectivefacilities.

You may wonder how this can all work in a type-safe fashion. So it is
time to stop this preview and cut to the movie.

568 ACTIVE OBJECTS, ITERATION AND INTROSPECTION §23.3

23.3 NORMAL CALLS

When programming with Eiffel we rely all the time on this fundamerchapter21 and their

mechanism of object-oriented computation. We write things like type properties in chap-

First we should remind ourselves of the basic propertideatiure calls . callswerestudiedin
ter22.

4 Q] a0. f (al, a2 a3
] to mean: call featuréon the object attached &0, with actual arguments

al, a2, a3. In Eiffel this is all governed by type rules, checkable statically:

f must be a feature of the base class of the @end the types adil and

the other actuals of the call must all conform to the types specified for the

corresponding formals in the declaratiorf.of

In a frequent special cas#), the target of the call, is justCurrent,
denoting the current object. Then we may omit the question mark and the
target altogether, writing the call as just

[U] f(al, a2 aj

which assumes théats a feature of the class in which this call appears. The
first form, with the question mark, is gualified call; the second form is
unqualified(hence the names [Q] and [U] given to our two examples).

In either form the call is syntactically an expressiofig a function or
an attribute, and an instructiorfifs a procedure. ifhas been declared with
no formals (as in the case of a function without arguments, or an attribute)
we omit the list of actual¢al, a2 a3).

The effect of executing such a call is to apply feattite the target
object, with the actuals given if any. fis a function or an attribute, the
value of the call expression is the result returned by this application.

To execute properly, the call needs the value of the target and the
actuals, for which this chapter needs a collective name:

TTRFTEET 30

Operands of a call

The operands of a call include its target (explicit in a qualified
call, implicit in an unqualified call), and its arguments if any.

In the examples the operands afor Currentin the unqualified version
[U]), a1, a2anda3. Also convenient is the notion gbsitionof an operand:

Operand position

The target of a call (implicit or explicit) has position 0. Thth
actual argument, for any applicalb)das position.

Positions, then, range from 0 to the number of arguments declared for the
feature. Position 0, the target position, is always applicable.

§23.4 DELAYING A CALL 569

23.4 DELAYING A CALL

For a call such as the above, we expect the effect just described to occur as a
direct result of executing the call instruction or expression: the computation
is immediate. In some cases, however, we might want to write an expression
that only describesthe calls intended computation, and @gecutethat
description later on, at a time of our own choosing, or someone else's. This
is the purpose of active expressions, which may be descriltkddaaged calls

Why would we delay a call in this way? Here are some typical cases:

A *We might want the call to be applied to all the elements of a certain
structure, such as a list. In such a case we will specify the active
expression once, and then execute it many times without having to re-
specify it in the software text. The software element that will repeatedly
execute the same call on different objects is known asterator.
Functionfor_all, used earlier, was an example of iterator.

B «As a form of iterator programming in numerical computation, we might
use a mechanism that applies the call to various values in a certain
interval, to approximate the integral of a function over that interval. The
first example of this chapter relied on suchrdegral function.

C «We might want the call to be executed by another software element:
passing an active objectto that elementis away to give it the right to operate
on some of our own data structures, at a time of its own choosing. This
was illustrated with the calls passing tiher elemensome active
expressions representing operations applicabjeuo list

D «We might want the call to be applied as initialization whenever future
execution creates a new object of a given type.

E «Finally, we may be interested in the active object as a way to mffdSpection is also

information about the feature itself, whether or not we ever intencalledreflection, but
execute the call. This may be part of the more general goal of provine, i 1 is more
introspective capabilities: ways to enable a software system to exg

and manipulate information about its own properties.

These examples suggest an important property of active expressions, which
is the second principal way they differ from normal calls (the first being, of
course, timing): whereas to execute a normal call we need the value of all
its operands — target and actuals —, for an active expression we may want
to leave some of the operands open for later filling-in. This is clearly
necessary for case8 and B, in which the iteration or integration
mechanism will need to apply the feature repeatedly, using different
operands each time. In an integration

(C2 gm0

we will need to applyg to successive values of the interpalb].

570 ACTIVE OBJECTS, ITERATION AND INTROSPECTION §23.5

For an active object we need to distinguish between two moments:

Construction time, call time
The construction time of an active object is the time of

evaluation of the active expression defining it.
Its call time is when a call to its associated operation is executed.

Since the only way to obtain an active object initially is throuagtive

expressionsas specified next, it is meaningful to talk about the “active

expression defining it”.
For a normal call the two moments are the same. For an active obje=! & jrecise definition
will have one construction time (zero if the expression is never evaluagcflggzzf]”oaf;?ands
and zero or more call times. At construction time, we may leave s, 0. i 0agB79
operands unspecified; they they will be called dpenoperands. At call
time, however, the execution needs all operands, so the call will ne:
specify values for the open operands. These values may be different for
different executions (different call times) of the same active expression —
that is to say, for active objects having the same construction time.

There is no requirement thall operands be left open at creation time:
we may specify some operands, which will be closed, and leave some other
open. In the example of computing, for some valuasdy, the integral

X=hb
Ix:a h (x, u, v) dx

wherehis a three-argument function, we pass to the integration mechanism an
active object that is closed on its last two operandsidv) but open orx.

Nothing forces you, on the other hand, to leave any open operand at all. An
active object with all operands closed corresponds to the kind of application
calledC above, in which we don’t want to execute the call ourselves but let
another software elemeather_elementarry it when it is ready. We choose
constructiontime, and package the call completely, including all the information
needed to carry it outpther_elementchooses call time. This style of
programming is used by iterators in the C++ STL library.

At the other extreme, an active object wih operands openhas no
information about the target and actuals, but includes all the relevant
information about the feature. This is useful in applicati&npassing
around information about a feature for introspection purposes, enabling a
system to deliver information about its own components.

23.5 WHAT IS AN ACTIVE EXPRESSION ?

A normal call is a syntactical component — instruction or expression —
meant only for one thing: immediate execution. If it is an expression
(because the feature is a function), it has a value, computed by the
execution, and so denotes an object.

§23.5 WHAT IS AN ACTIVE EXPRESSION? 571

separate from call time, the active expression candehpte an object That
object, called amctive objectcontains all the information needed to execute
the call later, at various call times. This includes in particular:

An active expression has a different status. Since construction time is

« Information about the routine itself and its base type.
 The values of all the closed operands.

What is the type of a call object? Three Kernel Library classes are used to
describe such typefROUTINE PROCEDUREand FUNCTION Their
class headers start as follows:

deferred classROUTINE[BASE OPEN—>TUPLH

classPROCEDURHEBASE OPEN—> TUPLH inherit
ROUTINE[BASE OPEN—> TUPLH

classFUNCTION[BASE OPEN—> TUPLE RES inherit
ROUTINE[BASE OPEN—>TUPLH

A call object will be an instance 3! ROCEDURE(f the associated feature
is a procedure, oFUNCTIONIf it is a function. The role of the formal
generic parameters is:

* BASE type (class + generics if any) to which the feature belongs.
* OPEN tuple of the types of open operands, if any.
* RES result type for a function.

One of the fundamental features of clR&SUTINEis

call (v: OPEN is
-- Callfeature with all its operands, usintpr the open operands.

In addition,FUNCTIONhas the feature

itemt RES
-- Function result returned by last calldall, if any

and, for convenience, the function

value(v: OPEN: RESis
-- Result of calling feature with all its operands,
-- usingv for the open operands.
-- (Usescall for the call.)
ensure
as_set by calResult= item

572 ACTIVE OBJECTS, ITERATION AND INTROSPECTION §23.6

Note that the formal generic parameters ROUTINE PROCEDUREand
FUNCTION provide what we need to make the active object mechanism
statically type-safe. In particular tii@PENparameter, a tuple type, gives the
exact list of open operand types; since the argumeoéliicandvalueis of
typeOPEN the compiler can make sure that at call time the actual arguments
to call will be of the proper types, conforming to the original feature’s formal
argument types at the open positions. The actuals at closed positions are set
at construction time, again with full type checking. So the combination of
open and closed actuals will be type-valid for the feature.

listed above. For a more complete interface specification, seeA%%Z“Star“”gO”page

ROUTINE PROCEDUREand FUNCTION have more features tha= sections\.6.22to
corresponding sections in the presentation of Kernel Library classes.

23.6 ACTIVE EXPRESSIONS

How do we produce active objects? We @sxtive expressiontor which

the basic syntactical rule is very simple: start from a normal feature call; in
the qualified case, replace its dot with a tilde; in the unqualified case, add a
tilde before the feature name

So if a valid call of the qualified form is
| a0. f (al, a2 a3 |

=
H

you get an active expression by replacing the dot with a tilde:
‘ a0~f (a1, a2 ad ‘

In the case of a valid unqualified call

f(al a2 aj

e
i

wheref is a feature of the enclosing class, you obtain the corresponding call
expression by adding a tilde:

| ~f(al, a2 a3 |

In either case, the new notation is not a call (instruction or expression) any
more, but an expression of a new syntactic kilxdiive expressioywhich
denotes a call object, of BROCEDUREype if f is a procedure and a
FUNCTIONtype iff is a function.

§23.7 KEEPING OPERANDS OPEN 573

With a call expression, you can do all you are used to with O'his example assumes
expressions. You can assign it to an entity of the appropriate tthattr??'tsngntge”el”c
assuming is a procedure of a clag3C, you may write, in clas€Citself; 5013t botnaciass

and a type
| 4 | x: PROCEDURHCC, TUPLH

x:=a0~f(al, a2 ad

x call ([])

Note that here all operands are closed since we specified the a@rged
all the operandal, a2, a3, so the second formal generic is jG&iPLE, and
the call tocall takes an empty tuplé.

More commonly than assigning a call expression to an entity as here,
you will pass it as actual argument to a routine, as in

some_other_componerto_somethingaO~f (al, a2 a3))

I

wheredo_somethingn the corresponding class, takes a form@dclared as

x. PROCEDURECC, TUPLH

or just

x: PROCEDURHANY TUPLH

presumably to caltall onx at some later stage, as we will shortly learn Z~scheme wason
do. This is the scheme that was callédn the presentation of examplpages69.
applications: passing a completely closed call object to another component

of the system, to let it execute the call when it chooses to. For example you

can pasgour_list-startor your_list-extend'some_value

23.7 KEEPING OPERANDS OPEN

The examples just seen are still of limited interest because all their operands
are closed. What if you want to keep some operands open for latter filling-
in at call time, for example by an iteration or integration mechanism?

For arguments (we will see how to handle the target in a short while™*'Apout the target see
basic technique is very simple: to keep an actual open, just replace if '—EA\C/)'I'D\‘EGNTHE TA5R75
question mark. This yields examples such as page

w:=a0~f (al, a2 ?)
x:=al~f (a1, ?, a3
y:=al0~f(al, ?,?)
z:=a0~f(?,?,7?

=

I

—

574

ACTIVE OBJECTS, ITERATION AND INTROSPECTION §23.8

The respective types of these call expressions are, assuming ithat
procedure with formals declared of typek T2 andT3;

w: PROCEDURETO, TUPLE[T3]]

x. PROCEDURETO, TUPLE[TZ]]

y: PROCEDURETO, TUPLE[T2, T3]

z PROCEDURHTO, TUPLE[TY, T2, T3]

If f were a function, the types would ugeUNCTION instead of
PROCEDUREwith one more actual generic representing the result type.

You will have noted how the generic parameterfR@UTINEand its _, The role of the first
heirs all provide a full specification of the types involved, enabling stgeneric parameter
type checking. Consider in particular the role of the second ger? > ¥ibediscussed
parameter OPEN in ROUTINE [BASE OPEN —> TUPLE and, AND TYPE”, 23.13,
correspondinglyPROCEDUREand FUNCTION OPEN represents theage 581
tuple of types of all the open operands. In the first case abovey, fonly
the last argument, of typ€3, is left open; in the last case, farall three
arguments are open. (But in all examples so far the ta@jstclosed.) This
immediately indicates what argument types are permissible in catkslito

(or valuefor a function) on the corresponding call objects:

w. call ([e3))

x. call ([e2)

y. call ([e2 e3)
z.call (el e2 e3)

where the types of expressioa$ e2, e3must conform tor'l, T2andT3
respectively. The effect of these calls is the same as what we would obtain
through the following normal calls (call time same as construction time):

a0.f(al, a2 ej3
a0. f(al, e2 a3
ao0.f(al, e2 el
a0.f(el ez eld

23.8 EXPLICIT TYPES FOR OPEN OPERANDS

As a variant of the “question mark” specification for open operands, you
might want to specify explicitly a certain type for some of the arguments.
Instead of the first example

l:“.TJ

w:=a0~f(al, a2 ?)

you may write

wu = a0~f (al, a2 {U3})

§23.9 LEAVING THE TARGET OPEN 575

corresponding actual must be of type conformingy® This will be called

to specify that you are leaving open the last argument, and that the

the braces convention complementing the “question mark convention”
seen so far. In this case the typevofis

wu: PROCEDURETO, TUPLE[U3]]

Clearly, this is only permitted for a typgd3 that conforms tal'3, the type

of the last formal argument. This is a general rule: where a normal call
requires an operand of tydg a corresponding active expression may use
{U;}, for any type U; conforming toT;. This means that the argument is
left open, and that any corresponding actual at call time must be of a type
conforming toU;.

We may now reinterpret the question mark convention in terms of the
braces convention: a question mark at an argument position is simply an
abbreviation for {;}, whereT; is the type of the corresponding formal. For
exampley, defined earlier ag0~f (al, ?, ?) could instead have been written

a0~f (@l {72, {T3})

23.9 LEAVING THE TARGET OPEN

The examples of open operands seen so far were open only for some or all
of the arguments; the target was closed. Your may also want to leave the
target open. Looking again at our staple example, we see that if we start
from a normal call of the qualified form

I

a0. f (a1, a2 a3

we cannot use the question mark convention to replace the &bggnhce
we need to identify the class of whidhis a feature. But the braces
convention will work. You may write

I

=

I

—

s:={TQ} ~f (al, a2 aj3)

to denote a call object open on its target (of tyji® and closed on all
arguments. Of course you can open any or all of the arguments too, as in

= -) - The expression far

t:={T0~f(al, a2 ?) can be abbreviated to
u:={To~f(?,2,?) just{TO} ~f. See
“COMPLETELY

_ o _ _ OPEN CALL OB-
where we get withy, for the first time, a call object open on all its operanJeCTS”, page 580

target and arguments.

576 ACTIVE OBJECTS, ITERATION AND INTROSPECTION §23.9

The types for the last call expressions are:

s PROCEDURHTO, TUPLE[TO]]
t: PROCEDURHTO, TUPLE[TO, T3]
u: PROCEDURETO, TUPLE[TO, T1, T2, T3]

Note once again how the second generic parameter oRETINE
classes corresponds to the open operands — target and arguments included.

The next section discusses the role of the first generic parameter, always
representing the target type.

The order of the open operands is the one in which they operands would
appear in a normal call: target, then first argument and so on. Calidlto
on the corresponding routine objects will be instructions of the form

s. call ([ed)
t. call ([e0 e3)
u. call ([eQ el e2 e3)

with expressions(e1, e2 e3of types conforming td0, T1, T2, T3. Note
how, when it comes to applyingall (or value for a function) to a call
object, the target, if left open in the call expression, must be passed as part
of the actual argument tuple, in the same way as an open argument.

These active expressions will have the same effect as the normal calls

e0. f (al, a2 ad
e0. f(al, a2 e3
e0. f (el e2 ejd

In the unqualified case, a normal call of the form

f(al, a2 aj

may be viewed as an shorthand for the qualified f@unrent. f (al, a2, a3).
Correspondingly, you may write the open-target active expression as

- CC s the enclosing
{CC~f(al a2 a3 class, assumed to be

non-generic.

but you may also use a question mark for the target:

?~f(al, a2 ad

=
i

Here too you may of course leave some of the arguments open, or — The expression for
them as in can be abbreviated tojust
?~f.“COMPLETELY
OPEN CALL OB-
vi=?~f(2,2,7) JECTS”, page 580

§23.10 A SUMMARY OF THE POSSIBILITIES 577

23.10 ASUMMARY OF THE POSSIBILITIES

Although you may have the impression that the active object
mechanism has many variants, it is in fact very simple. So to avoid any
confusion, or impression of confusion, here is an informal description
listing all the possibilities:

How active expressions are made

To obtain an active expression, youist

1 - Startfromavalid routine call— of any form, qualified or nag

2 < Replace the dot by a tildeif the call is qualified; otherwise,
add a tilde before the routine name.

In addition, to make some operands open,yay

3+ Replaceanyoperandthetarget, oranyargument) by aquestion
mark, called &laceholdein the syntax, or a type in braces, as
in{YOUR_TYPE called arExplicit_type descriptor

4 -« |f all the arguments are placeholders, omit the argument
list altogether, parentheses included.

—

That's all there is to it!
In the next sections we continue exploring the details, and study the
precise syntax, validity and semantics of active expressions.

23.11 ACTIVE EXPRESSION SYNTAX

4 We have now seen examples of all the variant8aifve_expressiofso it ifhurried skip td'COM-
Fi 'ip is time to give the syntax. (This section introduces no new concept, SSLETELY OPEN CALL

hurried reader may skip to the next one.) p;%JeEggTOS"' 2312,

The new construct isctive_expressiona variant oExpression

Active_expressior® [Active_targe} Active_unqualified
Active_target2 Entity | Parenthesizeldlype_descriptor

Type_descripto Explicit_type_descriptdPlaceholder
Explicit_type _descripto® "{" Type"}"
Placeholde "?"

Active_unqualified® "~ Feature_namjé\ctive_actualp

.sents the actual argu-
normalCall is the tilde of aActive_unqualifieqlwhich has no equivalent i, o 1o the active

the corresponding construttnqualified_call This guarantees that an actiobject, if any, and is
I expression can never be confused for a normal call. specified next.

@ The major difference between the syntax offertive_expressiomnd of aActive_actualsepre-

578 ACTIVE OBJECTS, ITERATION AND INTROSPECTION 823.11

also to operator featureifix andPrefiy). The technique is very simpleTURE NAME CONSIS-
just designate the feature by fgature_namend add a tilde to it as yonéiﬁ?égs'l'\ég'PLE '
would do with an identifier feature. You may remember that the Fec....

Name Consistency principle allows us, §fis the operator of an infix

feature, to treainfix "8" as a normal feature name and use it in any place

where a feature identifier would be legal; same thingpi@fix "1" if fis

a prefix operator. So you can use active expressions such as

@ Note that the mechanism is applicable not only to identifier features “s&«THE FEA-

[d | a~infix "+" (b) -- All closed
- ~infix "+" (?) -- Open on argument, closed on target
] ?~ prefix "+" -- All open (open on target, no argument)

Coming back to the general case, fhidive targeimay be absent, in which

case the call will be considered closed on its target: the current object. In this
case the associated feature must be a feature of the current class, and the
Active_expressiomwill start with a tilde and a feature name, as in

~f (al, a2 aj
~f

==

In all other cases the active expression has an expgliditve target for
which the specification shows three possibilitiestity, Parenthesizeand
Type_descriptorExamples of dctive targetof each kind are

e0 -- An Entity
] (@« k (¥)«I (y)» m) -- A Parenthesizecbntaining a complex expression
{U0} -- A Type_descripto(explicit)

This syntax requires you, if you want to use as target an expression other
than a simple entity, to enclose it in parentheses, as in the second example.
There is no loss of expressiveness, since the expression you put in
parentheses can still be as complicated as you like. The reason for forcing
parentheses is a concern for readability. With suitable precedence rules, it
would not be hard for a compiler to paraek (x). | (y). m~f (al, a2, a3).
Instead, you must write

BEETHOND

®

-

@. k(). (y).m~f (aL, a2 ad

-E

where the parentheses around the target remove any confusion arising from
the presence of both dots (part of the multi-level qualifizdl serving as
target of the active expression) and tildes.

§23.11 ACTIVE EXPRESSION SYNTAX 579

The third possibility for a target includesTgpe_descriptorThis may
be anExplicit_type descriptolisting the target type in braces:

%

{TO} ~f (a1, a2 a3

or simply a question mark, détlaceholderindicating an open target of the
current type:

-

ETHNTAL

?~f(al, a2 a3

This expression assumes thais a feature of the enclosed class; it
represents an active object that is open on its target.

The part after the tilde is what the syntax productions gallive
unqualified which resembles the&lnqualified_callcomponent of normal
calls, but with two more possibilities forfective _actual

Active_actuals? "(" Active_actual_list)"

Active_actual_list? {Active_actual'," ...}

Active_actual® Actual | Type_descriptor

One of theActive_actual variantds Actual, meaning a normal actual
argument for a callxpressioror, for an external routinéjddres$. The
new variantisiype_descriptgwhich as we have seen includésceholder
a question mark, anéxplicit_type_descriptora type in braces.

We can define precisely what “open” and “closed” mean for The operands of a

operands of an active expression: call were defined on
page568as including

I HEFIEET M2 MS

its target and its argu-

Open and closed operands ments if any

Theopen operandsof anActive _expressiotinclude:

» lts target if there is a\ctive_targetand it is aType_descriptor
(Explicit_type_descriptoor Placeholdex

e Any Active_actualthat is alype_descriptor
Theclosed operandsnclude all non-open operands.

An earlier definition also introduced the notionagierand positiopwhich . “Operand position”

we can now extend to a definition of open and closed positions: was defined on pagéa
the target position is 0,

lml-l:-’ |:-:x_-|J

i+ and the argument posi-
Open and closed operand positions sty
The open operand positionsof an Active_expressiorare the
operand positions of its open operands, andctbeed operand

positionsthose of its closed operands.

580

ACTIVE OBJECTS, ITERATION AND INTROSPECTION §23.12

23.12 COMPLETELY OPEN CALL OBJECTS

. =

k

In some cases it will be useful to write a call expression that denotes a call
object closed on all of its arguments, and possibly on its target too.

We have seen how to obtain this effect by using question marks
(Placeholdérat every argument position:

~f(?.?2.? - ifi ~ The first expression
a0~f(?,?,?) Quallflgq, arguments open, target closed wascallecton pagé73
~f(2,2,?) -- Unqualified, arguments open, target closed thesecondonewascalled
v on page7a

An abbreviation is permitted for this case: omit the parenthesized argument
list (theActive_actualgart) altogether, yielding respectively

a0~f -- Quallified, arguments open, target closed
~f -- Unqualified, arguments open, target closed

These examples all have closed targets; in the unqualified case the target is
the current object. The fully open variants, with open targets, are:

~ - ifi ~ The first expression
{TO} ~f Quialified, all operands open (target and arguments) hasthesamevalueass

?~f -- Equivalent to previous oneT 0 is current type defined on pagg75

The syntax just given explicitly allows all these abbreviated forms. It is Z~the Argument rule
same as the full form ifhas no arguments.; butfihas arguments, a norm¥as o pagéesa

call without actuals, such a. f, or justf in the non-qualified case, woul- The Active Expres-
violate the Argument rule. In contrast, the Active Expression n;';’gggg‘gw"'appea“’”
introduced later in this chapter, explicitly allows you to omit thetive

actuals even for a feature with arguments, as an abbreviation for a list of

completely open actuals.

This abbreviated form has the advantage of conveying the idea that the
denoted object is not just a call object but a true “feature object”, carrying
properties of the feature in its virginal state, not tainted by any particular
choice of actual argument. The last two variants shown do not even name
a target. This is the kind of object that we need for simthospective
applications as writing a system that enables its users to browse through its
own classes.

§23.13 THE BASE CLASS AND TYPE 581

23.13 THE BASE CLASS AND TYPE

7

Introspection support is also one of the concerns behind the first generic
parameter oROUTINE PROCEDURENdFUNCTION The specification

[ROUTINE[BASE OPEN—>TUPLH

includes, as first generic parameter, the tj#eSErepresenting the typc., Although intuitively
(class with generic parameters) to which a call object’s associated feclear, the notion of

g “associated feature” of
belongs. This is the type of the target expected by the feature. a call object has not yet

The examples seen so far do not B#€SEat all, because procedutall been defined precisely

does not need it. If the call object is closed on its target, as in The definition is part of
the Active Expression
ly:=a0~f(aL,??) | rule, pagesee

then it includes, here throudgt®, the target information that a later call to
call may require. In the other case — open target — as in
[t:={T0}~f(al, a2 ?) |

then the target type is specified, hélf6, and provides the information
needed to determine the right versionfofn this case th&ASEgeneric
parameter is in fact redundant, since it is identical to the first component of
the tuple type corresponding@PEN the type ot, for example, is

ROUTINE[TO, TUPLE[TO, T3]

where the two tuple components correspond to the two open operands: the
target, and the last argument.

In both the closed target and open target cases, then, we don’'t need the
BASEgeneric parameter if all we do with call objects is execatéon them.

BASEis useful for other purposes. WithoBASEa call closed on its
target, as withy above, could not contain any information about the class
(and associated type) where the call’'s associated feature is defined. To open
the gate to full “introspection” service — enabling a system to explore its
own properties — clas8OUTINEuses a feature

| base_typeTYPE

that yields the base type of an active object’s associated feature. TOIRES
from the Kernel Library provides information about a type and its base class.

ClassTYPEis, even more fundamentally th&OUTINEand its heirs,
the starting place for introspection. Example features include:
» name the upper name of the type’s base class.

« genericsthe list of actual generic parameters, if any, used in the type’s
derivation, each itself an instanceTofPE

e routines the list of routines of a class, each an instance of
PROCEDUREor FUNCTION

« attributes the list of attributes, each an instanc@&A®TRIBUTE

582

ACTIVE OBJECTS, ITERATION AND INTROSPECTION 823.14

ClassANYhas a feature ~ OnANYand uni-
versal features see
generator TYPE chapter28.

which yields an object describing the type of the current object.

So within a class of whicli is a featuregeneratorhas the same value as
(~f). base_typgif ais of typeT andf is a feature off, thent. generatorhas
the same value 4§T} ~f). base_type

A more complete interface specificationTof PEappears in the descriptio= on classTYPEsee
of the Kernel Library classes. A.6.25, page 779

Thanks to the presence ®&ASEamong the generic parameters _
ROUTINEand its heirs, we can give a proper type to feahase typeand
as a result gain access to a whole library of introspection mechanisms.

23.14 USING ACTIVE OBJECTS

=

H

—

=

k

—

All the details of the active object mechanism have now been introdu s Validity and seman-
although we haven't yet taken the trouble to look at the validity rules tics are in the next sec-
precise semantics. We should now revisit and extend the exar'o™ 2315 page 588

sketched at the very beginning of this chapter and see how to make u.c...

work in practice: not just the client side (integrating a function, iterating an

operation) but the suppliers too (the integrator, the iterators).

The first set of examples was about integration. We assumed functions

g (x: READ: REAL
h(x: REAL a T1 b: T2): REAL

and wanted to integrate them over a real interval such as [0, 1], that is to
say, approximate the two integrals

Ix 0 g(x)dx I _0 h(x u, v) dx

We declare

your_integrator INTEGRATOR

and, with the proper definition of functiantegralin classSINTEGRATOR
we will obtain the integrals through the expressions

your_integratorintegral (~g (?), 0.0, 1.0)
your_integrator integral (~h (?, u, v), 0.0, 1.0)

§23.14 USING ACTIVE OBJECTS 583

The question mark indicates, in each case, the open argument: the place where
integral will substitute various real values fowhen evaluating or h.

Note that if we wanted in clas® to integrate a real-valued function
from classREAL, such asbswhich is declared iREALas

abs REALis
-- Absolute value
do... end

we would obtain it simply through the expression

your_integratorintegral ({ REAL ~abs 0.0, 1.0)

I Let us now see how to write functiomtegral to make all these uses
possible. We use a primitive algorithm — this is not a treatise on numerical
methods — but what matters is that any integration technique will have the
same overall form, requiring it to evaludtéor various values in the given
interval. Here classINTEGRATORwill have a real attributestep
representing the integration step, with an invariant clause statingtéyat
is positive. Then we may wrifategral as:

integral

e (f: FUNCTION[ANY TUPLE[REAL, REAL;
| low, hight REAL): REALIs
-- Integral off over the intervallpw, high]

require
meaningful_intervallow <= high
local
x: REAL
do
from
X :=low
invariant
x>=low; x <= high+ step
-- Resultapproximates the integral over
-- the interval [ow, low.max(x —step]
until x> highloop
Result= Result+ step 0| f.value([x])
X=X+ step
end
end

The boxed expression is where the algorithm needs to evaluate the function
f passed tintegral. Remember thatalue as defined in cladgsSUNCTION
calls the associated function, substituting any arguments hatéhe open

584 ACTIVE OBJECTS, ITERATION AND INTROSPECTION 823.14

positions, and returning the function’s result.The argumentadiieis a
tuple (of typeOPEN the second generic parameteFfNCTION); this is
why we need to enclosein brackets, giving a one-argument tupig:

In the first two example uses;g (?) and ~h (?, u, v), this argument
corresponds to the question mark argumentsdadh. In the last example
the call expression passed itdegral was { REAL ~abs where the open
operand is the target, represented REAL, and successive calls alue
in integralwill substitute successive values)adis targets for evaluatiraps

In the case oh the closed argumentsandv are evaluated at the time
of the evaluation of the active expressieh (?, u, v), and so they remain
the same for every successive callvalue within a given execution of
integral.

Note the typeFUNCTION[ANY TUPLE [REAL, REAL declared in
integral for the argument. It means that the corresponding actual must be
a call expression describing a function from any class (hence the first actual
generic parameteANY) that has one open operand of tyREAL (hence
TUPLE[REAL) and returns a real result (henR&AL). Each of the three
example functiongy, h and abs can be made to fit this bill through a
judicious choice of open operand position.

Now the iteration examples. In a claS€ we want to manipulate both
a list of integers and a list of employees

intlist: LINKED_LIST[INTEGER
emplist LINKED_LIST[EMPLOYEE

=

I

—

and apply the same functidor_all to both cases:

a if intlist. for_all (~is_positive(?)) then ... end
HT*- if intlist. for_all (~over_threshold?)) then ... end
if emplist for_all {EMPLOYEE ~is_married then ... end

The functionfor_all is one of the iterators defined in claBRAVERSABLE

of EiffelBase, and available as a result in all descendant classes describing
traversable structures, such BREEand LINKED LIST This boolean-
valued function determines whether a certain property holds for every
element of a sequential structure. The property is passed as argument to
for_all in the form of a call expression with one open argument.

§23.14 USING ACTIVE OBJECTS 585

Our examples use three such properties of a very different nature. The first
two are functions of the client clagsC, assessing properties of their
integer argument. The result of the first depends only on that argument:

| 4 | is_positive(i: INTEGER: BOOLEANIis
L -- Isi positive?
I do Result= (i > 0) end

Alternatively the property may, as in the second example, involve other
aspects 0€C, such as an integer attributeeshold

|) | over_thresholdi: INTEGER: BOOLEAfsNs
. -- Isi greater thamhreshold@®
I do Result= (i > threshold end

Surprising as it may seem at first, functifmm_all will work just as well in

this case; the key is that the call expressi@ver_threshold?), open on

its argument, is closed on its target, the current object; so the active object
it produces has the information it needs to accesthtbsholdfield.

@ Hereover_thresholadompares the value ofo a field of the current object.

In the third case, the argumentfty_all is{ EMPLOYER ~is_married
this time we are not using a function 6 but a functioris_marriedfrom
another clasEMPLOYEE declared there as

| o | is_married BOOLEANis do...end

Unlike the previous two, this function takes no argument since it assesses
a property of its target; We can still, however, pass iftoio all: it suffices
to make the target open.

The types of the call expressions are the following:

Thisassumes againthat

FUNCTION[CC, TUPLE[INTEGER, BOOLEAN CCis non-genericso
-- In first two examplesi§_positiveandover_thresholyl tha; it it?both aclass
and a type

FUNCTION[EMPLOYEE TUPLE[EMPLOYEHR, BOOLEAN
-- In theis_marriedexample

You may also applyfor_all to functions with an arbitrary number of
arguments, as long as you leave only one operand (target or argument) open,
and it is of the appropriate type. You may for example write the expressions
| 4 | intlist . for_all (~some_criterior(el, ?, €2 e3)
T emplist. for_all {(EMPLOYEE ~some_functiorie4, e5

586 ACTIVE OBJECTS, ITERATION AND INTROSPECTION 823.14

assuming irCC andEMPLOYEE respectively, the functions

some_criterion(al: T1 i: INTEGER a2 T2 a3 T3 -InCC
some_functioifa4: T4; a5 T5) -- In EMPLOYEE

for arbitrary typesT], ..., T5. Since argumentsl, ...,e5are closed in the
calls, these types do not in any way affect the types of the call expressions,
which remainas abovEUNCTION[CC, TUPLE[INTEGER, BOOLEAN
andFUNCTION[EMPLOYEE TUPLE[EMPLOYER.

Let us now see how to write the iterator mechanisms themselves, such
asfor_all. They should be available in all classes representing traversable
structures, so they must be introduced in a high-level class of EiffelBase,
TRAVERSABLIEG]. Some of the iterators are unconditional, such as

do_all (action ROUTINE[ANY TUPLE[G]]) is
-- Apply actionto every item of the structure in turn.
require
... Appropriate preconditions ...

=

§

—

do
from startuntil offloop
action.call ([item])
forth
end
end

This uses the four fundamental iteration facilities, all declared in the rDescendants 6fRA-
general form possible as deferred featuresTRAVERSABLEStart to /ERSABLEfiect ihese
. eaturesinvariousways
position the iteration cursor at the beginning of the structiweth to o provide iteration
advance the cursor to the next item in the structaffap tell us if we havemechanisms on lists,
exhausted all itemspt off is a precondition oforth); anditemto return ash t@bles, trees and

. .. many other structures.
the item at cursor position.

The argumentaction is declared afROUTINE [ANY TUPLE [G]],
meaning that we expect a routine with an arbitrary base type, with an open
operand of typeG, the formal generic parameter GiRAVERSABLE
representing the type of the elements of the traversable structure. Feature
itemindeed returns a result of tyge (representing the element at cursor
position), so that it is valid to pass as argument the one-argument tuple
[item] in the callaction. call ([item]) that the loop repeatedly executes.

We normally expecactionto denote a procedure, so its type could be more
accurately declared &ROCEDURHANY TUPLE [G]]. UsingROUTINE
pErTHOn | leaves open the possibility of passing a function, even though the idea of
b treating a function as an action does not conform to the Command-Query
Separation principle of the Eiffel method.

§23.14 USING ACTIVE OBJECTS 587

r1

|

Wheredo_all appliesactionto all elements of a structure, other iterators
provide conditional iteratiion, selecting applicable items through another
call expression argumerneést Here is the “while” iterator:

while_do
(action ROUTINE[ANY TUPLE[G]]
test FUNCTION[ANY TUPLE[G], BOOLEAN) is
-- Apply actionto every item of the structure up to,
-- but not including, the first one not satisfyitegt
-- If all satisfytest apply to all items and move cursoff.
require
... Appropriate preconditions ...
do
from startuntil
off or else nottest value([item)])
loop
action. call ([item])
forth
end
end

Note how the algorithm appliesall to action representing a routine
(normally a procedure), angblueto test representing a boolean-valued
function. In both cases the argument is the one-element[itguié.

The iterators of TRAVERSABLEcover common control structures:
while_dq do_while (same aswhile_dobut with “test at the end of the
loop”, that is to say, applgctionto all items up tcand includingfirst one
satisfyingtes); until_dag do_untit do_if.

Yet another of the iterators GRAVERSABLE for_all, which we used
in the examples. It is easy to writefar_all loop algorithm similar to the
preceding ones, but easier yet to deforeall in terms ofwhile_da

for_all (test FUNCTION[G, TUPLE BOOLEAN): BOOLEANs
-- Do all items satisfyes®
require
... Appropriate preconditions ...
do
while_do(~do_nothingtes)
Result= off

end

Procedurelo_nothingfrom classANY has no effect; here we simply app". do_nothings cited
it as long adestis true of successive items. If we find ourseladthen in 28.6, page 670
for_all should return true; otherwise we have found an element

satisfying thdest

588 ACTIVE OBJECTS, ITERATION AND INTROSPECTION 823.15

Assuming a proper definition oflo_until the declaration ofexists
providing the second basic quantifier of predicate calculus, is nicely
symmetric withfor_all:

exists(test FUNCTION[G, TUPLE BOOLEAN): BOOLEANis
- -- Does at least one item satisésf?
] require
... Appropriate preconditions ...
do
do_until(~do_nothingtes)
Result= not off
end

23.15 VALIDITY AND SEMANTICS

4 Itremains to provide the validity and semantic rules of active expressions,

“=Y% complementing the syntax already given. This will simply be a more
‘@ precise specification of concepts already studied, so on first reading you

can skip to the next chapter.

For ease of reference here is a repetition of the syntax productionz" These productions
first appeared on pages

Active_expressior® [Active_targe} Active_unqualified 577ands79

Active_target® Entity | Parenthesizeldlype_descriptor
Type_descripto Explicit_type_descriptdrPlaceholder

Explicit_type_descripto® "{" Type"}"
Placeholde "?"
Active_unqualified2 "~" Feature_namctive_actualk
Active_actuals? "(" Active_actual_list)"
Active_actual_list® {Active_actual'," ...}

Active_actual2 Actual| Type_descriptor

To define the validity of an active expression we need to be able to consider
its “target type”, explicit or implicit:

T Target type of an active expression 5 e onclonms abes,
; A with generic parame-
The target type of aaf.ﬁ«ctwe_expressmnrsj o ters added if necessary
1 «If there is noActive_targef or a Active_targetwhich is a to make up a type. See
Type_descriptoof thePlaceholdekind, the current type. “CURRENT CLASS,
. . . _ _ CURRENT TYPE”,
2 «If there is @Active_targetand it is anEntity or Parenthesized 12.17, page 379
its type.
3 «If there is aActive_targetand it is aType_descriptoof the
Explicit_type descriptokind, the type that it lists (in braces).

§23.15 VALIDITY AND SEMANTICS 589

This is enough to introduce the validity rule, which also defines the notion
of “associated feature” of an active object:

Active Expression rule CPAR

AL e An Active_expressiorappearing in a clas§€, with a feature
identifierfi and target typ&0is valid if and only if it satisfies the
following six conditions:

[CIEENEE 1 «fi is the name of a feature @f0, called theassociated feature
of the active expression.

2 «If there is aActive_targefthat feature is export-valid farOin
(0

3 «Ifthe Active_actualgpart its present, the number of elements
its Active_actual_lisis equal to the number of formalsfof

4 « Any Active_actualof the Actual kind is of a type conforming
to the type of the corresponding formakF.in

5 ¢ Any Active_actuaWwhich is aType_descriptoof the Explicit_
type_descriptorkind lists, between the braces, a type
conforming to the type of the corresponding formdl in

n

6 ¢ If TOis separate, any non-expanded formdlisfseparate.

Clause6 is a consistency condition for concurrent computation, and parallels
a similar clause discussed in the chapter on normal calls.

The phrasing of the rule implies that certain forms of the construct are
automatically valid:

« If any Active_actuais of thePlaceholdekind, represented simply by a
question mark, neither claugenor clauses applies, so the argument
raises no type validity problem. This is as expected, since such an
argument is left open for future filling-in.

« If there is noActive_actualpart, clause8 to 5 do not apply. Iff has no
formals, we are calling an argumentless feature with no actuals, as we
should. Iff has one or more formal arguments, we view the absence of
explicit actuals of an abbreviation for actuals that are all of the
Placeholdekind (question marks): assumirigakes three arguments,
a0~f is simply an abbreviation foaO~f (?, ?, ?). In this case the
implicit arguments are all open, and hence automatically valid.

We may formalize the last observation through a definition which will also
be useful for the semantics:

590

ACTIVE OBJECTS, ITERATION AND INTROSPECTION 823.15

Unfolded form of an active expression
The unfolded form of aActive expressioulcis:

» dcitself if it includes aActive_actualgart, or if the associated

feature has no formals.
» Otherwisedc extended with @\ctive actualpart made up
of Active_actual components all of thePlaceholdei
(question markkind.

Type and value of an active expression

Consider anActive_expressiorexpressiord, whose associated

featuref has a generating typeQ. Letil, ..., im (m= 0) be its

open operand positions, if any, and T, .., Tj,, be the types of

f's formals at positiondl, ..., im (takingT;; to beTOif i1 = 0).

The type ofd is:

« PROCEDURHTO, TUPLE([Tj, .., Ti] if f is a procedure;

* FUNCTION[TO, TUPLE [T, .., Tinl, R if is a function of
result typeR.

Evaluatingd at a certairconstruction timeyields a reference to

aninstanc®0ofthe type ofi, containing information identifying:

o f.

» The open operand positions.

» The values of the closed operands at the time of evaluatidn

We now have enough to define the semantics of an active expression:

~ “Open operand posi-
tion” was defined on
page579

of

Although this will be an implicit consequence of the preceding description,
it doesn'’t hurt to state explicitly what some of the informatio®ibis good

for: enabling calls on active objects.

Effect of executingcall on an active object

Let DO be an active object with associated featti@nd open

positionsil, ...,im (m= 0). The information irDO enables a call

to procedurecall, executed at angall time posterior toDO's

construction time, with targeD0 and (if required) actual

argumentsyq, .., &y, to perform the following:

» Produce the same effect as a call,tosing the closed operan
at the closed positions amgl, .., &, evaluated at call time, &
the open positions.

» In addition, iff is a function, setting the value of qudatgmfor
DO to the result returned by such a call.

ds
At)
~ itemfrom class
FUNCTION intendedto
hold the result of the last
evaluation, was intro-
duced on pagg71

	23 Active objects, iteration and introspection
	23.1 OVERVIEW
	23.2 A QUICK PREVIEW
	23.3 NORMAL CALLS
	23.4 DELAYING A CALL
	23.5 WHAT IS AN ACTIVE EXPRESSION?
	23.6 ACTIVE EXPRESSIONS
	23.7 KEEPING OPERANDS OPEN
	23.8 EXPLICIT TYPES FOR OPEN OPERANDS
	23.9 LEAVING THE TARGET OPEN
	23.10 A SUMMARY OF THE POSSIBILITIES
	23.11 ACTIVE EXPRESSION SYNTAX
	23.12 COMPLETELY OPEN CALL OBJECTS
	23.13 THE BASE CLASS AND TYPE
	23.14 USING ACTIVE OBJECTS
	23.15 VALIDITY AND SEMANTICS

