

Eiffel for .NET Binding
for db4o

User’s and Developer’s Manual

Ruihua Jin, Marco Piccioni

ETH Zurich, Chair of Software Engineering
ETH Zentrum, RZ Building

CH-8092 Zurich, Switzerland
rjin@student.ethz.ch, marco.piccioni@inf.ethz.ch

April 3, 2008

 2

Table of Contents

1 Introduction... 6

1.1 Summary ... 6

1.2 Structure of This Document .. 6

2 Mapping of Eiffel Types to .NET Types ... 7

2.1 Mapping of Eiffel Built-in Expanded Types to .NET CTS Types........................ 7

2.2 Mapping of Eiffel Expanded Types to .NET Value Types 8

2.3 Mapping of Eiffel Reference Types to .NET Types ... 10

2.4 Feature Adaptations in Inheritance ... 13

2.4.1 Renaming an Attribute ... 13
2.4.2 Renaming a Routine ... 14
2.4.3 Exporting Features.. 15
2.4.4 Undefining a Routine ... 16
2.4.5 Redefining a Routine.. 16
2.4.6 Turning an Argumentless Function into an Attribute.. 16
2.4.7 Selecting a Feature ... 18

2.5 Mapping of Eiffel Generic Types to .NET Types... 18

2.6 Tuples .. 21

3 Querying for Eiffel Objects in db4o Databases.. 22

3.1 Query-By-Example ... 22

3.2 SODA Query API.. 23

3.2.1 Using Valid Field Names ... 23
3.2.2 Including Attribute Names Renamed in Descendant Classes 24
3.2.3 Querying for Generic Objects or Tuples.. 25
3.2.4 SODA Query API for Eiffel Strings .. 26
3.2.5 Using the Right Db4o Version... 26

3.3 Native Queries... 26

 3

3.3.1 Native Queries for Eiffel Objects... 26
3.3.2 Native Queries for Generic Objects ... 28
3.3.3 Performance.. 29
3.3.4 Using Agents for Native Queries ... 29
3.3.5 Running Finalized Eiffel Assembly for Native Queries.. 31

3.4 Query-By-Example vs. SODA Query API vs. Native Queries........................... 32

4 Configuration .. 33

4.1 Activation Depth ... 34

4.1.1 Global Activation Depth .. 34
4.1.2 Class-Specific Activation Depth .. 34
4.1.3 Field-Specific Activation ... 35
4.1.4 Activating Fields Dynamically .. 35

4.2 Update Depth... 35

4.2.1 Global Update Depth.. 36
4.2.2 Class-Specific Update Depth ... 36
4.2.3 Field-Specific Update Depth.. 36
4.2.4 Setting Update Depth Dynamically ... 36

4.3 Delete Behavior... 36

4.3.1 Class-Specific Delete Behavior.. 37
4.3.2 Field-Specific Delete Behavior .. 37

4.4 Indexing... 37

4.4.1 Indexing of Classes... 37
4.4.2 Indexing of Fields... 38

5 Refactoring .. 39

5.1 Renaming Classes ... 39

5.2 Refactoring of Attributes... 40

5.2.1 Adding Attributes ... 40
5.2.2 Removing Attributes .. 40
5.2.3 Renaming Attributes... 41
5.2.4 Changing Attributes’ Types ... 41
5.2.5 Changing Visibility of Attributes... 42

5.3 Refactoring of Class Hierarchy ... 42

 4

6 Implementation ... 43

6.1 Helper Classes ... 43

6.1.1 ATTRIBUTE_NAME_HELPER ... 44
6.1.2 GENERICITY_HELPER ... 47

6.2 Translator .. 48

6.3 Wrapper Classes for Queries... 50

6.3.1 Wrapper Classes for SODA Query API... 50
6.3.2 Wrapper Class for Native Queries ... 56

6.4 Wrapper Classes for Configurations ... 56

6.4.1 Global Configuration for Eiffel Applications.. 56
6.4.2 CONFIGURATION ... 57
6.4.3 OBJECT_CLASS and OBJECT_FIELD ... 58

6.5 Wrapper Classes for Metadata of Stored Classes and Fields 59

6.5.1 STORED_CLASS ... 59
6.5.2 STORED_FIELD ... 60

7 Using .NET Delegates ... 61

8 Cross Compatibility between C# and Eiffel for .NET... 64

8.1 Using Eiffel to Retrieve C# Objects.. 64

8.2 Using C# to Retrieve Eiffel Objects.. 65

9 Persistence of C Structs.. 67

10 Conclusions and Future Work... 71

References ... 72

Appendix Getting Started with Db4o for Eiffel .. 73

Step 1: Download Db4o Assembly .. 73

Step 2: Download Reflector for .NET Assembly... 73

 5

Step 3: Download Source Code of Db4o for Eiffel.. 73

Step 4: Download EiffelStudio... 74

Step 5: Create an EiffelStudio Project.. 74

Step 6: Add Assemblies to Your Project.. 76

Step 7: Rename Classes to Avoid Name Clashes... 76

Step 8: Configure Db4o Databases for Eiffel Applications 77

Step 9: Open and Close a Db4o Database .. 78

Step 10: Store Eiffel Objects ... 78

Step 11: Retrieve Eiffel Objects .. 80

Query-By-Example... 80
SODA Query API ... 81
Native Queries .. 81

Step 12: What’s Next .. 82

 6

1 Introduction

1.1 Summary

Db4o is an already established OODBMS solution for Java and .NET, providing a powerful
and easy-to-use solution for object persistence.

 It is therefore desirable to make it accessible to programmers that use Eiffel, a well-
known, pure object-oriented programming language offering features like Design by Contract,
multiple inheritance, genericity and agents. Though Eiffel participated to the birth of the .NET
Framework and was integrated in it from the very start, it is not trivial that db4o can
flawlessly persist Eiffel objects as well as, say, C# objects. The aim of this project is to
identify peculiarities of persisting Eiffel objects and to provide solutions so that Eiffel
developers can use db4o as seamlessly as possible.

 The effort that this documentation describes is the implementation of the necessary db4o
framework classes to make it usable within Eiffel applications.

1.2 Structure of This Document

Chapter 2 gives an overview of how Eiffel types are mapped to .NET types without loosing
the multiple inheritance hierarchy information. Chapter 3 discusses the three db4o querying
mechanisms: Query-By-Example, SODA Query API and Native Queries, showing how we
can adapt them for querying Eiffel objects. Then chapter 4 shows how to configure the
activation depth, update depth, delete behavior and indexing. Chapter 5 discusses refactoring
of Eiffel classes. Chapter 6 introduces the classes implemented for the current project.
Chapter 7 illustrates how to use .NET delegates in Eiffel for db4o callbacks. Chapter 8 shows
how to use C# to persist Eiffel objects and the other way around, and chapter 9 shows how to
use Eiffel to persist C structs. At the end we draw some conclusions.

 7

2 Mapping of Eiffel Types to .NET Types

Eiffel and the .NET Framework have two different type systems. It is therefore important to
first explore the mapping strategy of Eiffel types to .NET types before getting on with
persistence of Eiffel objects in db4o databases.

2.1 Mapping of Eiffel Built-in Expanded Types to .NET CTS Types

The Eiffel expanded types defined in EiffelBase library (such as BOOLEAN and INTEGER)
are directly mapped to the types of the .NET Common Type System (CTS). Table 1 shows the
mapping.

Table 1. Mapping of Eiffel built-in expanded types to .NET CTS types

Eiffel basic type Equivalent CTS type
BOOLEAN System.Boolean

CHARACTER_8 System.Char

CHARACTER_32 System.UInt32

INTEGER_8 System.SByte

INTEGER_16 System.Int16

INTEGER_32 System.Int32

INTEGER_64 System.Int64

NATURAL_8 System.Byte

NATURAL_16 System.UInt16

NATURAL_32 System.UInt32

NATURAL_64 System.UInt64

REAL_32 System.Single

REAL_64 System.Double

 The mapping is quite straightforward. However, notice that type CHARACTER_32
becomes of type System.UInt32 at run-time. So if the developer has a class which
contains a field of type CHARACTER_32, then the field would be stored as
System.UInt32 in a db4o database.

 8

2.2 Mapping of Eiffel Expanded Types to .NET Value Types

Besides the built-in expanded types described above, Eiffel developers can define their own
expanded types. One simple example is an expanded POINT class which has two attributes
for the x- and the y-coordinates.
expanded class
 POINT

create
 default_create,
 make_with_x_y

feature
 make_with_x_y(a_x: INTEGER; a_y: INTEGER) is
 do
 set_x(a_x)
 set_y(a_y)
 end

 set_x(a_x: INTEGER) is
 do
 x := a_x
 end

 set_y(a_y: INTEGER) is
 do
 y := a_y
 end

 x, y: INTEGER

end

 The Eiffel for .NET compiler generates five .NET types for POINT, they are
Point
ReferencePoint
Impl.ReferencePoint
Create.Point
Create.ReferencePoint

 The UML diagram in Fig. 1 shows their inter-type relationships along with the fields and
methods each type contains (for the sake of clarity, fields and methods in ValueType,
EIFFEL_TYPE_INFO, Any are omitted).

 9

ValueType

+$$x : int
+$$y : int
#$$____type : RT_GENERIC_TYPE

Point

+MakeWithXY(in x : int, in y : int)
+SetX(in x : int)
+SetY(in y : int)
+X() : int
+Y() : int
+_set_X(in x : int)
+_set_Y(in y : int)

<<interface>>
ReferencePoint

<<interface>>
Any

+$$x : int
+$$y : int
#$$____type : RT_GENERIC_TYPE

Impl.ReferencePoint

+DefaultCreate() : Point
+MakeWithXY(in x : int, in y : int) : Point

Create.Point

+DefaultCreate() : ReferencePoint
+MakeWithXY(in x : int, in y : int) : ReferencePoint

Create.ReferencePoint

<<interface>>
EIFFEL_TYPE_INFO

Fig. 1. The .NET types generated for the Eiffel class POINT and the inter-type relationships between them.

 Interface EIFFEL_TYPE_INFO, defined in eiffelsoftware.runtime.dll, is
the root interface implemented by all Eiffel for .NET types, and interface Any is the interface
counterpart for the Eiffel class ANY (the implementation class of interface Any is
EiffelSoftware.Library.Base.Kernel.Impl.Any which is defined in
EiffelSoftware.Library.Base.dll).

 10

 Interface ReferencePoint contains methods which are defined in class POINT.
MakeWithXY, SetX and SetY correspond to make_with_x_y, set_x and set_y (note
that the routine names are adapted to the .NET naming conventions, and so are the attribute
names, see below). Methods X and _set_X are the getter and setter for the attribute x,
methods Y and _set_Y are the getter and setter for the attribute y.

 Classes Point and Impl.ReferencePoint both implement interface
ReferencePoint, and class Point inherits from ValueType. Fields $$x and $$y are
the .NET counterparts of the attributes x and y, with their names adapted to the .NET naming
conventions. Field $$____type is used to store type information of actual generic
parameters in case of a generic type.

 The two classes in namespace Create are, as the name suggests, for creation and
initialization of the related objects.

 Note that in Eiffel for .NET, expanded types cannot inherit from any other expanded
types, which is one of the few restrictions brought about by mapping Eiffel to .NET.

2.3 Mapping of Eiffel Reference Types to .NET Types

Since the Common Language Runtime of the .NET Framework only supports single
inheritance of classes, the primary concern with the Eiffel integration was how to preserve the
multiple inheritance structure of Eiffel types. This issue was solved using the “simulated”
multiple inheritance structure of .NET interfaces.

 For example, we have four Eiffel classes PARALLELOGRAM, RHOMBUS, RECTANGLE
and SQUARE, with RHOMBUS and RECTANGLE inheriting from PARALLELOGRAM, and
SQUARE inheriting from both RHOMBUS and RECTANGLE (see Fig. 2). Furthermore,
RECTANGLE renames height1 as width, height2 as height, and SQUARE renames
width as side_length. As we will see later, feature renaming requires special attentions
in using SODA Query API.

 11

+make(in h1 : int, in h2 : int)

+height1 : int
+height2 : int

PARALLELOGRAM

RHOMBUS RECTANGLE

height1 ~> width
height2 ~> height

+make_with_side_length(in side_length : int)

SQUARE

width ~> side_length

Fig. 2. Four Eiffel classes with their inter-class relationships.

 When an effective (fully implemented) Eiffel class, say SQUARE, is compiled for
the .NET Framework, three .NET types will be generated: the interface Square, the class
Impl.Square which inherits from System.Object and implements interface Square,
and the class Create.Square whose static method is generated according to the creation
procedure in SQUARE and is therefore used to create and initialize instances of
Impl.Square. The inheritance of SQUARE from RHOMBUS and RECTANGLE is preserved
through the inheritance of the Square interface from the Rhombus and Rectangle
interfaces. Fig. 3 shows the whole picture of the .NET counterpart (for the sake of clarity,
Create.X classes are omitted in the figure).

 12

+Height1() : int
+Height2() : int
+_set_Height1(in h1 : int)
+_set_Height2(in h2 : int)
+Make(in h1 : int, in h2 : int)

<<interface>>
Parallelogram

<<interface>>
Any

<<interface>>
EIFFEL_TYPE_INFO

<<interface>>
Rhombus

<<interface>>
Rectangle

Height1 ~> Width
Height2 ~> Height
_set_Height1 ~> _set_Width
_set_Height2 ~> _set_Height

+MakeWithSideLength(in sl : int)

<<interface>>
Square

Width ~> SideLength
_set_Width ~> _set_SideLength

+$$height1 : int
+$$height2 : int
#$$____type : RT_GENERIC_TYPE

Impl.Parallelogram

+$$height1 : int
+$$height2 : int
#$$____type : RT_GENERIC_TYPE

Impl.Rhombus
+$$width : int
+$$height : int
#$$____type : RT_GENERIC_TYPE

Impl.Rectangle

+$$height1 : int
+$$height2 : int
+$$sideLength : int
+$$height : int
#$$____type : RT_GENERIC_TYPE

Impl.Square

Fig. 3. The corresponding .NET types with their inter-type relationships.

 For the sake of completeness, a deferred (abstract) Eiffel class, say X, is compiled to
two .NET types: the interface X and the abstract class Impl.X. Create.X is not generated
for obvious reasons.

 As a matter of fact, in .NET all implementation classes Impl.X are direct subclasses of
System.Object. They are coupled with each other only through interfaces. As a result of
this special mapping strategy, when querying for Eiffel objects we should always use
interfaces as query extents to get correct results.

 13

2.4 Feature Adaptations in Inheritance

Eiffel brings to developers not only multiple inheritance, but also feature adaptation
techniques along with it. They are feature renaming, change of export status, undefinition,
redefinition and selection. Now we are going to look into the .NET types to see how feature
adaptations are realized in there.

2.4.1 Renaming an Attribute

In the example described in the previous section, RECTANGLE renames the inherited
attributes height1 as width and height2 as height. This change affects the
generation of Rectangle and Impl.Rectangle:

interface Parallelogram : Any
{
 int Height1();
 int Height2();
 void _set_Height1(int h1);
 void _set_Height2(int h2);
 ...
}

interface Rectangle : Parallelogram
{
 int Width();
 int Height();
 void _set_Width(int w);
 void _set_Height(int h);
 ...
}

class Impl.Rectangle : Rectangle
{
 public int $$width;
 public int $$height;
 public int Width() { ... }
 public int Height() { ... }
 public void _set_Width(int w) { ... }
 public void _set_Height(int h) { ... }
 ...
}

 14

 Basically in .NET every time you do a renaming, the interface for the class doing the
renaming adds a new method for that renamed feature, and in the implementation class the
new method is declared to implement the old method declaration. The declaration is done
through the attribute MethodImplAttribute.

 In our example with two attribute renaming, four new methods are added in interface
Rectangle. Since the four “old” methods declared in interface Parallelogram are not
part of the class interface of Impl.Rectangle anymore, the four new ones are declared to
implement the four old ones. The MSIL disassembler ildasm.exe reveals the code in the
Impl.Rectangle.Width() method and we can see that Width implements Height1:

.method public hidebysig virtual instance int32
 Width() cil managed
{
 .override RootCluster.Parallelogram::Height1
 // Code size 7 (0x7)
 .maxstack 8
 IL_0000: ldarg.0
 IL_0001: ldfld int32 RootCluster.Impl.Rectangle::$$width
 IL_0006: ret
} // end of method Rectangle::Width

 Corresponding to attributes width and height in RECTANGLE, the two fields in
Impl.Rectangle are named $$width and $$height.

2.4.2 Renaming a Routine

Suppose RECTANGLE renames the routine make as make_with_width_height. We
then have the following changes in Rectangle and Impl.Rectangle:

interface Parallelogram : Any
{
 void Make(int h1, int h2);
 ...
}

interface Rectangle : Parallelogram
{
 void MakeWithWidthHeight(int w, int h);
 ...
}

 15

class Impl.Rectangle : Rectangle
{
 void MakeWithWidthHeight(int w, int h) { ... }
 ...
}

with MakeWithWidthHeight implementing Make in Impl.Rectangle.

2.4.3 Exporting Features

In the example application, we defined the SQUARE class as follows:

class
SQUARE

inherit
RECTANGLE

rename
width as side_length

export
{NONE} height

select
side_length, height

end

RHOMBUS
export

{NONE} height1, height2
end

create

make_with_side_length

feature

make_with_side_length(sl: INTEGER) is
require

sl_positive: sl > 0
do

make(sl, sl)
height1 := sl
height2 := sl

end

end

 16

 Although features height, height1 and height2 are exported to {NONE}, their
corresponding fields

 $$height,

 $$height1,

 $$height2

and their corresponding getter and setter methods
 Height, _set_Height,

 Height1, _set_Height1

 Height2, _set_Height2

in class Impl.Square all have a visibility scope of public. However, this issue should
not be a concern of the project, since db4o stores all the fields of an object, regardless whether
they are public, protected or private.

2.4.4 Undefining a Routine

The corresponding method in the .NET implementation class is implemented according to the
routine which is not undefined.

2.4.5 Redefining a Routine

The corresponding method in the .NET implementation class is implemented according to the
new implementation of the routine in the Eiffel class.

2.4.6 Turning an Argumentless Function into an Attribute

Suppose we have two classes, SYMMETRY and PARALLELOGRAM:

 17

deferred class
SYMMETRY

feature

center: POINT is
-- Returns the center of the geometry figure.

deferred
end

end

 Let’s further suppose that in class PARALLELOGRAM, the routine center is redefined
as an attribute.
class

PARALLELOGRAM

inherit

SYMMETRY
redefine

center
end

feature

center: POINT

...
end

 In the .NET counterpart we then have
interface Symmetry : Any
{
 Point Center();
}

interface Parallelogram : Symmetry
{
 Point Center();
 void _set_Center(Point p);
 ...
}

 18

class Impl.Parallelogram : Parallelogram
{
 Point $$center;
 Point Center();
 void _set_Center(Point p);
 ...
}

 As shown, two new methods are added in the interface Parallelogram, and one new
field $$center is added in the class Impl.Parallelogram.

2.4.7 Selecting a Feature

Feature selection only plays a part in dynamic binding. Since in Eiffel for .NET, all the
implementation classes do not have any subclasses, the only concern about calling the right
method in an implementation class is reduced to the question of how to find out the new
method which implements the old method declared in an interface, which is solved easily
with the help of MethodImplAttribute.

2.5 Mapping of Eiffel Generic Types to .NET Types

An Eiffel generic type, say GLIST[G]

class
GLIST[G]

feature
item: G

end

is mapped to the following .NET types if the actual parameter G is of a reference type:

 19

interface GlistReference : Any
{
 RT_TYPE _db4o_for_eiffel_type_9986();
 RT_TYPE _db4o_for_eiffel_type_9987();
 RT_TYPE _GLIST_Formal#1();
 void _set_Item(object);
 object Item();
}

class Impl.GlistReference : GlistReference
{
 RT_GENERIC_TYPE $$____type;
 object $$item;
 ...
}

 As GLIST[STRING] and GLIST[RECTANGLE] would both become of type
GlistReference at run-time, the two would conform to each other from the point of view
of the .NET run-time system. The Eiffel for .NET run-time system, however, knows the type
information of actual generic parameters. Taking advantage of this, we implemented a helper
class called GENERICITY_HELPER which inherits from INTERNAL in assembly
eiffelsoftware.runtime.dll, and its routines can be used to decide the
conformance between two generic or non-generic objects according to the Eiffel’s
conformance rule.

Eiffel’s conformance rule. A type U conforms to a type T only if the base class of U is a
descendant of the base class of T; also, for generically derived types, every actual parameter
of U must (recursively) conform to the corresponding formal parameter in T.

 The developer should always make use of this helper class to filter out non-conforming
objects when querying for a generic class of reference types. See chapter 3 for details.

 If we have a constrained generic type like

class GLIST[G -> PARALLELOGRAM]

then in interface GlistReference we have

 20

interface GlistReference : Any
{
 RT_TYPE _db4o_for_eiffel_type_9986();
 RT_TYPE _db4o_for_eiffel_type_9987();
 RT_TYPE _GLIST_Formal#1();
 void _set_Item(Parallelogram);
 Parallelogram Item();
}

and in class Impl.GlistReference we have

class Impl.GlistReference : GlistReference
{
 RT_GENERIC_TYPE $$____type;
 Parallelogram $$item;
 ...
}

 With a constraint on the formal parameter G, we cannot create instances of GLIST[X] if
X is not a descendant class of PARALLELOGRAM. So a query for GLIST[PARALLELOGRAM]
or GLIST[RECTANGLE] objects would only return those objects which conform to
GLIST[PARALLELOGRAM]. A constraint on formal parameters therefore helps to get a
more fine-grained query result even if the conformance of objects in a query result is not
always guaranteed.

 On the other hand, if the actual parameter G is of an expanded type, say POINT as in a
previous example, then two more .NET types would be generated:

interface GlistPoint : Any, GlistReference
{
 RT_TYPE _db4o_for_eiffel_type_9986();
 RT_TYPE _db4o_for_eiffel_type_9987();
 RT_TYPE _GLIST_Formal#1();
 void _set_Item(Point);
 Point Item();
}

class Impl.GlistPoint : Any, GlistPoint
{
 RT_GENERIC_TYPE $$____type;
 Point $$item;
 ...
}

 21

 As you see, for each generic class of expanded types, a new interface and a class which
implements this interface will be generated. This approach ensures that GLIST[RECTANGLE]
and GLIST[POINT] objects will become of different .NET types at run-time:
GLIST[RECTANGLE] objects are of type GlistReference, and GLIST[POINT]
objects are of type GlistPoint. This also means that the developer would get a correct
query result when querying for GLIST[POINT] or GlistPoint objects.

2.6 Tuples

The .NET interface for tuples is

interface EiffelSoftware.Library.Base.Kernel.Dotnet.Tuple :
Hashable

and the corresponding implementation class is

class EiffelSoftware.Library.Base.Kernel.Dotnet.Impl.Tuple
 : Hashable, Tuple
{
 RT_GENERIC_TYPE $$____type;
 object[] $$nativeArray;
 ...
}

 Both are defined in the assembly EiffelSoftware.Library.Base.dll.

 All tuples are generic, and the actual generic parameters are stored in an array of type
object. The developer also needs to use the provided helper class GENERICITY_HELPER
to get conforming objects when querying for a certain kind of tuple.

 22

3 Querying for Eiffel Objects in db4o Databases

Db4o supplies three querying systems: Query-By-Example, SODA Query API and Native
Queries. We are now going to compare them from the point of view of Eiffel applications.

3.1 Query-By-Example

In Query-By-Example we provide the object container with a template object, and then the
object container returns all the objects whose fields match all the non-default fields of the
template object.

 Since in .NET all instances of Eiffel types don’t directly inherit from each other but are
only related to each other through interfaces, Query-By-Example, which uses the .NET
reflection mechanism to determine subclasses of a class, is only able to retrieve direct
instances of the template type. For example, the query

retrieve_rectangle is
 local
 object_container: IOBJECT_CONTAINER
 template: RECTANGLE
 query_result: IOBJECT_SET
 closed: BOOLEAN
 do
 object_container := {DB_4O_FACTORY}.open_file(“f.db4o”)
 create template.make(10, 0)
 query_result := object_container.get(template)
 closed := object_container.close
 rescue
 if (object_container /= Void) then
 closed := object_container.close
 end
 end

only returns direct instances of RECTANGLE with width=10, while SQUARE objects are not
returned. This is because template_object becomes of type Impl.Rectangle at run-
time, and Impl.Square does not inherit from Impl.Rectangle.

 23

 Query-By-Example already has several limitations by its own, and only fits with very
simple queries. Although a wrapper class for Query-By-Example which returns not only the
direct instances but also instances of subclasses could be implemented, we did not implement
it because it would not overcome the restricted functionalities that are part of the approach
itself.

3.2 SODA Query API

The SODA Query API provides Eiffel applications with an efficient, though type-unsafe way
of querying for objects. There are three issues we should be aware of when we are querying
for Eiffel objects with SODA Query API, and they originate from

 feature name translation for the sake of the .NET naming conventions,

 feature renaming in descendant classes, and

 mapping of Eiffel generic types to .NET types.

3.2.1 Using Valid Field Names

When building a query graph, a SODA query “descends” to a field by specifying the field
name. The following query specifies the interface {RHOMBUS} as the query extent and
descends to field $$height1 to constrain it with the value 10. The query retrieves all
RHOMBUS (including SQUARE) objects whose height1 is equal to 10
(({RHOMBUS}).to_cil is the Eiffel notation for the .NET interface type of RHOMBUS):

retrieve_rhombus1 is
 local
 object_container: IOBJECT_CONTAINER
 iquery: IQUERY
 iconstraint, isubconstr: ICONSTRAINT
 query_result: IOBJECT_SET
 closed: BOOLEAN
 do
 object_container := {DB_4O_FACTORY}.open_file(“f.db4o”)
 iquery := object_container.query
 iconstraint := iquery.constrain(({RHOMBUS}).to_cil)
 isubconstr := iquery.descend(“$$height1”).constrain(10)
 query_result := iquery.execute
 closed := object_container.close

 24

 rescue
 if (object_container /= Void) then
 closed := object_container.close
 end
 end

 As mentioned above, Eiffel for .NET compiler adapts attribute names to the .NET
naming conventions and also prepends “$$” to each if the attribute is defined in an Eiffel
class. The developer could use our wrapper classes QUERY and CONSTRAINT for the db4o
IQUERY and ICONSTRAINT interfaces to have field name translation done by the wrapper.
For a query like above, we could write

retrieve_rhombus2 is
 local
 object_container: IOBJECT_CONTAINER
 query: QUERY
 constraint, sc: CONSTRAINT
 query_result: IOBJECT_SET
 closed: BOOLEAN
 do
 object_container := {DB_4O_FACTORY}.open_file(“f.db4o”)
 create query.make_from_query(object_container.query)
 constraint := query.constrain({RHOMBUS})
 sc := query.descend("height1", {RHOMBUS}).constrain(10)
 query_result := query.execute
 closed := object_container.close
 rescue
 if (object_container /= Void) then
 closed := object_container.close
 end
 end

3.2.2 Including Attribute Names Renamed in Descendant Classes

The second issue with SODA Query API originates from renaming a feature in descendant
classes. In our example, if we rename the feature width to side_length in the SQUARE
class, then a SODA query for RECTANGLE objects will not return SQUARE objects, because
the Impl.Square class only has a field called $$sideLength instead of $$width. To
retrieve a correct query result, we have to modify the query as follows:

 25

iquery := object_container.query
iconstraint := iquery.constrain({RECTANGLE})
wcon := iquery.descend(“$$width”).constrain(10)
slcon := iquery.descend(“$$sideLength”).constrain(10)
isubconstr := wcon.or_(slcon)
query_result := iquery.execute

 The two wrapper classes QUERY and CONSTRAINT also take this case into
consideration, and they get the field value constraints OR-joined if the field is renamed in
descendant classes. For the above query, we write

create query.make_from_query(object_container.query)
constraint := query.constrain({RECTANGLE})
sc := query.descend("width", {RECTANGLE}).constrain(10)
query_result := query.execute

 The developer should be aware of the fact that having too many attribute renamings may
cause performance loss in querying because of a larger query graph.

3.2.3 Querying for Generic Objects or Tuples

As described in chapter 2, when we are querying for generic objects of reference types, we
may get non-conforming objects in the query result returned. In this case, we should use
routine get_conforming_objects in class GENERICITY_HELPER to filter out all the
non-conforming objects:

get_conforming_objects(a_list: ILIST;
 an_object: SYSTEM_OBJECT): LIST [SYSTEM_OBJECT]
 -- List of objects in `a_list'
 -- which conform to `an_object'
 require
 list_not_void: a_list /= Void
 an_object_not_void: an_object /= Void

 For example, to get a correct query result for GLIST[PARALLELOGRAM], we write

create query.make_from_query(object_container.query)
constraint := query.constrain({GLIST[PARALLELOGRAM]})
query_result := query.execute
result_list := get_conforming_objects(query_result,
 create {GLIST[PARALLELOGRAM]})

 26

 Similar for tuples, to query for TUPLE[GLIST[INTEGER]], we write

create query.make_from_query(object_container.query)
constraint := query.constrain({TUPLE[GLIST[INTEGER]]})
query_result := query.execute
result_list := get_conforming_objects(query_result,
 create {TUPLE[GLIST[INTEGER]]})

3.2.4 SODA Query API for Eiffel Strings

Currently Eiffel developers cannot add constraints on an Eiffel string attribute in a SODA
query. In fact the following call

iquery.descend("eiffel_str").constrain("a").starts_with(False)

would fail.

3.2.5 Using the Right Db4o Version

Db4o was not able to return correct query results of SODA queries until version 7.1.26, so the
developer should always use a more recent version. See the related issue report on “SODA
queries return wrong query results for .NET interfaces” at
http://tracker.db4o.com/browse/COR-1086 for details.

 As of this writing, there is another unsolved bug related to SODA Query API, see “AND,
NOT constraints return wrong query results” at http://tracker.db4o.com/browse/COR-1131 for
details.

3.3 Native Queries

The most compelling plus of Native Queries is that they enforce a type-safe approach.

3.3.1 Native Queries for Eiffel Objects

The Eiffel developer creates a descendant class of PREDICATE class (since there is a name
clash with PREDICATE in EiffelBase Library, the developer has to first rename one of them,

 27

in our example, we rename PREDICATE in assembly Db4objects.Db4o.dll as
DB4O_PREDICATE) and defines a Boolean function match to run Native Queries. The
match method tells the query engine whether to include or exclude a candidate object in the
query result. Here is an example of querying for all PARALLELOGRAM objects whose
height1 is greater than 10:

class
 PARALLELOGRAM_PREDICATE

inherit
 DB4O_PREDICATE

feature
 match(p: PARALLELOGRAM): BOOLEAN is
 -- Is `p.height1' greater than 10?
 do
 Result := p.height1 > 10
 end

end

 Then we pass an instance of PARALLELOGRAM_PREDICATE as argument to the
query method of IOBJECT_CONTAINER:

retrieve_parallelogram is
 local
 object_container: IOBJECT_CONTAINER
 query_result: IOBJECT_SET
 closed: BOOLEAN
 do
 object_container := {DB_4O_FACTORY}.open_file(“f.db4o”)
 query_result := object_container.query(
 create {PARALLELOGRAM_PREDICATE})
 closed := object_container.close
 rescue
 if (object_container /= Void) then
 closed := object_container.close
 end
 end

 28

3.3.2 Native Queries for Generic Objects

If we want to query for generic objects of reference types, say GLIST[PARALLELOGRAM],
then we must make use of the conforms_to_object method in the helper class
GENERICITY_HELPER:

conforms_to_object(obj1: ANY; obj2: ANY): BOOLEAN
 -- Does `obj1' conform to `obj2'?
 require
 obj1_not_void: obj1 /= Void
 obj2_not_void: obj2 /= Void

 In the match method we first restrict the candidate objects to be of the same type as the
template object create {GLIST[PARALLELOGRAM]}, then we define our own matching
criteria:

class
 GLIST_PREDICATE

inherit
 DB4O_PREDICATE
 GENERICITY_HELPER

feature
 match(gl: GLIST[PARALLELOGRAM]): BOOLEAN is
 -- Does `gl' fulfill matching criteria?
 do
 Result := conforms_to_object(gl,
 create {GLIST[PARALLELOGRAM]})
 Result := Result and then gl.item.height1 > 10
 end

end

 For a query for generic objects of expanded types like GLIST[POINT], we don’t need
to use the helper class.

 29

3.3.3 Performance

The db4o team is making a big effort to optimize Native Queries so that they can be run
against indexes. Eiffel applications, however, cannot take advantage of the optimization
algorithms yet, which means, Native Queries in Eiffel applications cannot be optimized.

 The reason is the following: the match method in subclasses of DB4O_PREDICATE is
declared like

match(candidate: SOME_TYPE): BOOLEAN

candidate becomes of an interface type SomeType at run-time, and db4o cannot optimize
interface method calls in the match method body.

 The open question is therefore whether and how Native Queries in Eiffel applications
can be optimized to be run against indexes.

3.3.4 Using Agents for Native Queries

In the .NET version of db4o the developer can use delegates for Native Queries. As Eiffel has
its own powerful mechanism of modeling operations, called agents, we decided to integrate
agents into the concept of Native Queries for Eiffel applications.

 An agent is an encapsulation of a routine. A typical agent expression is of the form

agent c.my_function(?, a, b)

where a and b are closed arguments (set at the time of the agent’s definition), whereas ? is an
open argument, set at the time of any call to the agent. This agent is closed on the target c.

 We can also define agents with an open target like

agent {C}.my_function(?, a, b)

where {C} denotes the class to which feature my_function belongs.

We implemented a class called EIFFEL_PREDICATE[OBJECT_TYPE] that inherits
from DB4O_PREDICATE and GENERICITY_HELPER. It is to be initialized with an agent.

 30

 Class EIFFEL_PREDICATE[OBJECT_TYPE] has the following contract view:
class interface
 EIFFEL_PREDICATE[OBJECT_TYPE]

create
 make_open_target_agent,
 make_closed_target_agent

feature -- Match

 match(obj: OBJECT_TYPE): BOOLEAN
 -- Does `obj' match requirements?
 -- Uses either `open_target_predicate’ or
 -- `closed_target_predicate’ to
 -- decide for match result;
 -- Also tests whether `obj' conforms to
 -- `sample_object’ if `sample_object’ is generic.

invariant
 one_predicate: open_target_predicate /= Void xor
 closed_target_predicate /= Void
 sample_not_void: sample_object /= Void

end -- class EIFFEL_PREDICATE

 The return value of the match method is equal to the value of the agent (also note that
match first tests whether candidate objects conform to sample_object if
sample_object is generic, which means, we don’t need to do the conformance test for
generic objects when we are using EIFFEL_PREDICATE).

 Suppose now that there is a Boolean function diagonal_greater_than(INTEGER)
in the PARALLELOGRAM class, and we want to query for all parallelograms with diagonal
greater than 10. Thanks to the agent mechanism, we don’t need to define any new query
method, but simply create an EIFFEL_PREDICATE instance and initialize it with

agent {PARALLELOGRAM}.diagonal_greater_than(10)

which is open on the target and closed on the argument. At run-time the target of the agent
becomes the candidate object passed to the match method. To run the Native Query, we
write

 31

query_result := object_container.query(create
 {EIFFEL_PREDICATE[PARALLELOGRAM]}.make_open_target_agent(
 agent {PARALLELOGRAM}.diagonal_greater_than(10),
 create {PARALLELOGRAM}.make(1, 1)))

 Agents also fit in the situations where the related class does not have a Boolean function
corresponding to the query. In this case, we define a function in some class MY_QUERY like

diagonal_greater_than(PARALLELOGRAM; INTEGER): BOOLEAN

and initialize an EIFFEL_PREDICATE object with

agent a_query.diagonal_greater_than(?, 10)

which is closed on the target, open on the first and closed on the second argument. At run-
time the first argument becomes the candidate object passed to the match method. To run the
Native Query, we write

query_result := object_container.query(create
 {EIFFEL_PREDICATE[PARALLELOGRAM]}.make_closed_target_agent(
 agent a_query.diagonal_greater_than(?, 10),
 create {PARALLELOGRAM}.make(1,1)))

 Note that if the developer uses EIFFEL_PREDICATE for the convenience of agents, he
must endure some performance overhead caused by running agents. It was measured that
EIFFEL_PREDICATE queries with open target agents run slower than DB4O_PREDICATE
queries (that is queries that just inherit from DB4O_PREDICATE without using agents) by a
factor of 1 – 3, and EIFFEL_PREDICATE queries with closed target agents run slower than
DB4O_PREDICATE queries by a factor of 2 – 4. The more candidate objects, the more
significant is the performance penalty.

3.3.5 Running Finalized Eiffel Assembly for Native Queries

Note that since the native query expression builder of db4o uses Mono.Cecil.dll to load
the assembly which contains the Predicate.Match method in order to build an
expression tree for the method, and Mono.Cecil seems to have some trouble with loading
multi-module assemblies, the developer should always use the finalized Eiffel assembly to
run Native Queries.

 32

3.4 Query-By-Example vs. SODA Query API vs. Native Queries

Besides the limitations of Query-By-Example as described in db4o documentations, we have
an additional limitation in Eiffel for .NET: Query-By-Example works only correctly if there
are no descendant classes of the template class.

 Native Queries are easy-to-use and type-safe, but at the moment they cannot be
optimized to be run against indexes in Eiffel applications. So if performance is significant for
the application, you may prefer SODA queries. Furthermore, avoiding feature renaming in
descendant classes can prevent further performance loss when running a SODA query.

 33

4 Configuration

Db4o provides a configuration interface to help developers fine-tune its behavior, such as
setting the activation depth, the update depth, the delete behavior and the indexing for a class
or for a field in a class. Because of the special mapping strategy of Eiffel types to .NET types,
we must be careful when we are doing class-related and field-related configurations (recall
that except for implementation classes of expanded types, all the other Eiffel implementation
classes are direct subclasses of System.Object, and their fields are not inherited from any
other classes). Three wrapper classes, CONFIGURATION, OBJECT_CLASS and
OBJECT_FIELD, were implemented to make sure that once some configuration is done on a
class C then the same configuration is also done on its descendant classes, and once some
configuration is done on an attribute of a class C, then the same configuration is also done on
the corresponding attributes of the descendant classes of C.

 CONFIGURATION is the wrapper class for ICONFIGURATION, it is used for database-
wide configurations, and its object_class function returns an OBJECT_CLASS object
for configuration of the specified class.
object_class(clazz: SYSTEM_OBJECT): OBJECT_CLASS
 -- `OBJECT_CLASS' object to configure
 -- specified class
 -- `clazz' can be `TYPE[SYSTEM_OBJECT]',
 -- `SYSTEM_TYPE' or
 -- any other object used as a template.
 require
 clazz_not_void: clazz /= Void

 OBJECT_CLASS is used for class-specific configurations, and its object_field
function returns an OBJECT_FIELD object for configuration of the specified field.
object_field(fieldname: SYSTEM_STRING): OBJECT_FIELD
 -- `OBJECT_FIELD’ object to configure
 -- specified field.
 require
 nonempty_fieldname:
 not {SYSTEM_STRING}.is_null_or_empty(fieldname)

 OBJECT_FIELD is used for field-specific configurations.

 34

4.1 Activation Depth

When objects are retrieved from the database, their fields are loaded into memory only to a
certain depth, which is called “activation depth”. One must be careful when retrieving an
object with a deep reference graph, because the default activation depth for any object is 5.

 Suppose we have a class BTREE which represents a binary tree:
class
 BTREE

feature

 left, right: BTREE
 ...

end

 Then we can use the db4o configuration interface to set the activation depth for BTREE.
There are various ways to define the activation depth which applies during the whole database
transaction: global, class-specific or field-specific; or we can also dynamically activate fields
of retrieved objects.

4.1.1 Global Activation Depth

The following procedure shows you how to set the global activation depth for any object to 7:
configure_activation_depth is
 local
 config: CONFIGURATION
 do
 create config.make_global
 config.activation_depth_integer(7)
 end

4.1.2 Class-Specific Activation Depth

The following method calls show you how to set the minimum and maximum activation depth
for the specified class and its descendant classes:

config.object_class({BTREE}).minimum_activation_depth_integer(7)
config.object_class({BTREE}).maximum_activation_depth(7)

 35

 With cascade activation of BTREE, the whole tree from the root to the leaves will be
activated on retrieving. This setting can lead to increased memory consumption.
config.object_class({BTREE}).cascade_on_activate(True)

4.1.3 Field-Specific Activation

We can also automate activation for specific fields:
config.object_class({BTREE}).object_field(
 “left”).cascade_on_activate(True)

 The above method call cascades activation of the left attribute of BTREE objects.
However, as of this writing, the IOBJECT_FIELD.cascade_on_activate method
does not work as specified, and the activation depth for left is still the default one after the
method call.

4.1.4 Activating Fields Dynamically

The configurations described in section 4.1.1 – 4.1.3 are to be done before opening a database
file and they apply during the next database transaction. On the other hand, we can also
dynamically activate field references after retrieving objects from the database. The methods
are defined in the IOBJECT_CONTAINER interface:
object_container.activate(object, depth)

 To free some memory space, we can also deactivate fields using
object_container.deactivate(object, depth)

4.2 Update Depth

When we update an object, we must also pay attention to the update depth. The update depth
for a class defines the number of levels of member objects which are to be updated
automatically. The default update depth for all objects is 0, which means that
IOBJECT_CONTAINER.set(object) method will only update the object passed as a
parameter and any changes to its member objects will be lost. Db4o also provides different
methods for setting the update depth.

 36

4.2.1 Global Update Depth

The following procedure shows you how to set the global update depth for any object to 3:
configure_update_depth is
 local
 config: CONFIGURATION
 do
 create config.make_global
 config.update_depth(3)
 end

4.2.2 Class-Specific Update Depth

We can also specify the update depth for a certain class and its descendant classes:
config.object_class({BTREE}).update_depth(3)

or we can cascade update for a certain class and its descendant classes:
config.object_class({BTREE}).cascade_on_update(True)

4.2.3 Field-Specific Update Depth

The following method call cascades update for the specified field:
config.object_class({BTREE}).object_field(
 “left”).cascade_on_update(True)

4.2.4 Setting Update Depth Dynamically

The following method allows to dynamically set the update depth for a certain object:
object_container.ext.set(object, depth)

4.3 Delete Behavior

As db4o deletes only the object passed to object_container.delete(obj) with the
referenced objects remaining in the database, we must define the delete behavior for a specific
class or field to also delete the referenced objects.

 37

4.3.1 Class-Specific Delete Behavior

The following method call cascades delete for class BTREE:
configure_delete_behavior is
 local
 config: CONFIGURATION
 do
 create config.make_global
 config.object_class({BTREE}).cascade_on_delete(True)
 end

4.3.2 Field-Specific Delete Behavior

The following method call cascades delete for attribute left of class BTREE:
config.object_class({BTREE}).object_field(
 “left”).cascade_on_delete(True)

 We should keep in mind that there is no referential integrity check on delete.

4.4 Indexing

Indexing helps achieve maximum querying performance. Because of Eiffel’s specific strategy
of preserving multiple inheritance on the .NET platform, we have to pay attention when we
are setting indexes for classes or fields.

4.4.1 Indexing of Classes

Let’s continue with the example illustrated in section 2.3, indexing class PARALLELOGRAM
means indexing PARALLELOGRAM, RHOMBUS, RECTANGLE and SQUARE. Using the
wrapper class OBJECT_CLASS we can write:
configure_class_index is
 local
 config: CONFIGURATION
 do
 create config.make_global
 config.object_class({PARALLELOGRAM}).indexed(True)
 end

 38

4.4.2 Indexing of Fields

Indexing attribute height1 of class PARALLELOGRAM means indexing
PARALLELOGRAM.height1, RHOMBUS.height1, RECTANGLE.width and
SQUARE.side_length. Using the wrapper classes we only need to define field index once
to get all the related fields indexed:
configure_field_index is
 local
 config: CONFIGURATION
 do
 create config.make_global
 config.object_class({PARALLELOGRAM}).object_field(
 “height1”).indexed(True)
 end

 39

5 Refactoring

As application design changes in time, one of the challenges of object persistence is therefore
keeping object databases up-to-date with the latest class schema without loss of old data. In
the following sections we are going to examine db4o support for schema evolution.

5.1 Renaming Classes

Here is the procedure of how to configure the related db4o object container when a class is to
be renamed:

1. Backup the database and application;
2. Close all open object containers if any;
3. Make a copy of the class to be renamed, and rename the class (do not remove old class

yet);
4. Call OBJECT_CLASS.rename_(new_name) without having an object container

open;
5. Open database file and close it again without actually working with it;
6. Remove the old class.

 There is one issue related to renaming generic classes. Suppose we rename GLIST[G]
as GENERIC_LIST[G], then we should take two use cases into consideration:

 If the formal generic parameter G in the generic class GLIST[G] is only of reference
type at run-time, then no additional work is to be done;

 If G becomes of expanded type, say POINT, at run-time, then we must also rename
GlistPoint as GenericListPoint.

 The conclusion for renaming generic classes is that we should call

OBJECT_CLASS.rename_(new_name)

once for all GLIST[G] instances with G being of a reference type, and once for each G of an
expanded type.

 40

5.2 Refactoring of Attributes

Attributes can be added or removed to or from a class, and they can also be assigned new
types to. In the latter two cases, we need an additional API to be able to access values of the
old attribute definition. Db4o provides this functionality through the interfaces
ISTORED_CLASS and ISTORED_FIELD. We implemented two wrapper classes
STORED_CLASS and STORED_FIELD to allow Eiffel developers to use class and
attribute entities as defined in the code without the need of going into the .NET assembly to
find out the corresponding .NET entity names.

 There is one important point to be aware of: The functions in STORED_CLASS and
STORED_FIELD only return information on the specified class and the specified attribute
respectively. Descendant classes or attributes in descendant classes are not taken into
consideration. The main justification is that as STORED_CLASS and STORED_FIELD
represent metadata of classes and fields stored in the db4o database, they are static
information. It may be better to have fine-grained information on class level.

 On the other hand, the routines in the wrapper classes OBJECT_CLASS and
OBJECT_FIELD configure the dynamic behavior of db4o databases, they are used to inform
db4o databases about the whole class inheritance hierarchy in the way that configurations of
descendant classes are also involved in there (see chapter 4 for details).

5.2.1 Adding Attributes

If you add a new attribute, db4o automatically starts storing the new data. Older instances of
the stored class (from before the attribute was added) are still loaded, but the new attribute is
set to its default value, or null. This is a dangerous choice, because the new class invariant
may be invalidated by silently letting the object get into the system. A more correct choice
would be to throw an exception, to force the developer to deal with the potential hassle using,
for example, the appropriate callbacks to correctly initialize the newly added attributes.

5.2.2 Removing Attributes

If you remove an attribute, db4o ignores the stored value when activating instances of the
class. The stored value is not removed from the database until the next defragment, and is still
accessible via the STORED_CLASS / STORED_FIELD API.

 41

5.2.3 Renaming Attributes

The following is the procedure of how to configure the related db4o object container when an
attribute, say att in class C, is to be renamed as new_att:

1. Backup the database and application;
2. Close all open object containers if any;
3. Make a copy of class C, and name it differently, e.g. C_OLD;
4. Rename attribute att in C as new_att;
5. Call the following methods without having an object container open:

config.object_class({C}).object_field(“att”).rename_(
 {C_OLD}, “new_att”)

6. Open the database file and close it again without actually working with it;
7. Remove class C_OLD.

 This approach is slightly different from the one described in the db4o documentation.
Here we need two class definitions to do attribute renaming: one is the class definition with
the old attribute name, this helps us find out the corresponding .NET field name of the old
attribute name; the other one is the class definition with the new attribute name, and with its
help we can find out the corresponding .NET field name of the new attribute name. That’s
why we need to pass two arguments to the routine rename_, the first one being
SYSTEM_TYPE of the old class, the second one being the new attribute name.

5.2.4 Changing Attributes’ Types

If you modify an attribute’s type, db4o internally creates a new attribute of the same name,
but with the new type. The values of the old typed attribute are still present, but hidden. If you
change the type back to the old type, the old values will still be there.

 You can access the values of the previous attribute data using the STORED_FIELD API.
In class STORED_CLASS the routine
stored_field(fieldname: SYSTEM_STRING;
 fieldtype: SYSTEM_OBJECT): STORED_FIELD
 -- Existing stored field of this stored class.
 require
 nonempty_fieldname:
 not {SYSTEM_STRING}.is_null_or_empty(fieldname)
 fieldtype_not_void: fieldtype /= Void

 42

gives you access to the attribute whose type was changed.

 In class STORED_FIELD, the routine
get(on_object: SYSTEM_OBJECT): SYSTEM_OBJECT
 -- Field value on `on_object'
 require
 on_object_not_void: on_object /= Void

returns the old attribute value for the specified object.

5.2.5 Changing Visibility of Attributes

In Eiffel for .NET, all the attributes and routines are compiled to public fields and public
methods, even if the corresponding Eiffel features are exported to {NONE}. This leads to the
fact that the change in visibility in an attribute does not have an impact on schema evolution.

5.3 Refactoring of Class Hierarchy

From the db4o documentation we learned that db4o does not directly support the following
two refactorings:

 Inserting classes into an inheritance hierarchy;

 Removing classes from an inheritance hierarchy.

 However, the above statement only holds for native .NET applications, it is not true for
Eiffel for .NET applications.

 As we know, in Eiffel for .NET the multiple inheritance of Eiffel types is realized
through the multiple inheritance of .NET interfaces. With respect to refactoring this means:

 Inserting classes into an inheritance hierarchy is reduced to the refactoring issue of
adding fields defined in the new classes to the classes implementing the subinterfaces;

 Removing classes from an inheritance hierarchy is reduced to the refactoring issue of
removing fields defined in the removed classes from the classes implementing the
subinterfaces.

 43

6 Implementation

The classes implemented fall into five categories:

 Helper classes
 ATTRIBUTE_NAME_HELPER

 GENERICITY_HELPER

 Translator
 POINTER_TRANSLATOR

 Wrapper classes for queries
 QUERY

 CONSTRAINT

 EIFFEL_PREDICATE

 Wrapper classes for configurations
 CONFIGURATION

 OBJECT_CLASS

 OBJECT_FIELD

 EIFFEL_CONFIGURATION

 Wrapper classes for metadata of stored classes and fields
 STORED_CLASS

 STORED_FIELD

 In the following sections we are going to give an introduction to each of these classes.

6.1 Helper Classes

Class ATTRIBUTE_NAME_HELPER provides routines for translation of Eiffel attribute
names to the corresponding .NET field names, and class GENERICITY_HELPER provides
routines for conformance test.

 44

6.1.1 ATTRIBUTE_NAME_HELPER

Class ATTRIBUTE_NAME_HELPER is a framework class and it is not intended for direct use.
It inherits from INTERNAL which is located in the assembly
EiffelSoftware.Runtime.dll. INTERNAL gives access to the run-time type
information of Eiffel objects and it also provides routines for mapping of Eiffel types to .NET
types.
get_net_field_name(attrname: SYSTEM_STRING;

 extent: SYSTEM_TYPE): SYSTEM_STRING
 -- The corresponding .NET field name for `attrname'
 -- in `extenttype'
 require
 attrname_not_void_or_empty:
 not {SYSTEM_STRING}.is_null_or_empty(attrname)
 extent_not_void: extent /= Void
 ensure
 result_not_void_or_empty:
 not {SYSTEM_STRING}.is_null_or_empty(Result)

 get_net_field_name returns the corresponding .NET field name of an Eiffel
attribute in a certain class. To do so, it traverses through the fields in the implementation class
to find the field marked with the custom attribute EIFFEL_NAME_ATTRIBUTE whose value
is equal to the name of the original Eiffel attribute; on the other hand, if there is already a field
with the name equal to the first argument attrname, then the name of this field will be
returned.
get_all_field_names(netfieldname: SYSTEM_STRING;
 extenttype: SYSTEM_TYPE): LINKED_LIST [SYSTEM_STRING]
 -- All related field names of `netfieldname',
 -- including `netfieldname' and its new names
 -- in implementation classes of `extenttype'
 require
 netfieldname_not_void_or_empty:
not {SYSTEM_STRING}.is_null_or_empty(netfieldname)
 extenttype_not_void: extenttype /= Void
 ensure
 result_not_void: Result /= Void
 no_empty_result: Result.count > 0

Given a field name in a certain implementation class and the interface the class
implements, get_all_field_names returns a list of all the related field names which can
be found in all the implementation classes of the interface. Continuing with the example
introduced in section 2.3, the call

 45

get_all_field_names(“$$height1”, {PARALLELOGRAM})

would return a list containing “$$height1”, “$$width” and “$$sideLength”.
get_descendant_field_name(netfieldname: SYSTEM_STRING;
 interface: SYSTEM_TYPE; destype: SYSTEM_TYPE): SYSTEM_STRING
 -- Field name corresponding to `netfieldname'
 -- in `destype'
 require
 eiffel_field: netfieldname.starts_with_string("$$")
 interface: interface.is_interface
 implementation: not destype.is_interface
 ensure
 result_not_void_or_empty:
 not {SYSTEM_STRING}.is_null_or_empty(Result)

get_descendant_field_name finds out the corresponding field name for
`netfieldname’ in the implementation class `destype’ which implements
`interface’. For a call
get_descendant_field_name(“$$height1”, {PARALLELOGRAM},
 impl_rectangle)

where impl_rectangle is the System.Type object for the implementation class
Impl.Rectangle, it would proceed as follows:

1. Find out the name of the getter method for the field $$height1, it is Height1;
2. Use INTERFACE_MAPPING to find out the name of the method in Impl.Rectangle

which implements the Height1 method in interface Parallelogram, it is Width
(see section 2.4.1 for details);

3. Convert Width to $$width, and $$width is the result of the function.

However, things become trickier when we have attributes of anchor types which are
renamed in descendant classes. Suppose we have class GLIST[G] and class GSUBLIST[G]
declared as follows:
class
 GLIST[G]

feature
 item: G
 next: like Current
...
end

 46

class
 GSUBLIST[G]

inherit
 GLIST[G]
 rename
 item as subitem,
 next as subnext
 end
...
end

Then for a call
get_descendant_field_name(“$$next”, {GLIST[SYSTEM_OBJECT]},
 impl_gsublistreference)

where impl_gsublistreference is the System.Type object for the implementation
class Impl.GsublistReference, it would proceed as follows:

1. Find out the name of the getter method for the field $$next, it is Next;
2. Use INTERFACE_MAPPING to find out the name of the method in
Impl.GsublistReference which implements the Next method in interface
GlistReference, it is _Next38 which is implemented as follows:
.method public hidebysig newslot virtual
 instance class GlistReference
 _Next38() cil managed
{
 .override GlistReference::Next
 // Code size 12 (0xc)
 .maxstack 8
 IL_0000: ldarg.0
 IL_0001: callvirt instance class GsublistReference
 Impl.GsublistReference::Subnext()
 IL_0006: castclass GlistReference
 IL_000b: ret
} // end of method GsublistReference::_Next38

In the method body we see that _Next38 simply calls the method Subnext in class
Impl.GsublistReference. To extract the string Subnext from the method body,
we use the Reflector for .NET assembly which allows to easily view, navigate, search,
decompile and analyze .NET assemblies in C#, Visual Basic and IL.

3. Convert Subnext to $$subnext, and $$subnext is the result of the function.

 47

is_eiffel_type(t: SYSTEM_TYPE): BOOLEAN
 -- Is `t' an Eiffel type?
 require
 t_not_void: t /= Void

An Eiffel class can only rename attributes inherited from an Eiffel class, and also there is
no mapping done for an attribute name if the attribute is inherited from a non-Eiffel class. The
routine is_eiffel_type can be used to check whether a type is an Eiffel type or not. It
makes use of the fact that all the Eiffel types implement the interface EIFFEL_TYPE_INFO.
get_descendant_types(t: SYSTEM_TYPE): LINKED_LIST[SYSTEM_TYPE]
 -- A list of all implementation classes of `t'
 require
 t_not_void: t /= Void
 ensure
 result_not_void: Result /= Void

get_descendant_types returns a list of all the implementation classes of the given
interface in the current application domain.
get_descendant_eiffel_types(t: SYSTEM_TYPE)
 : LINKED_LIST[SYSTEM_TYPE]
 -- A list of all implementation classes of `t'
 -- which are defined in Eiffel assemblies
 require
 t_not_void: t /= Void
 ensure
 result_not_void: Result /= Void

get_descendant_eiffel_types returns a list of all the implementation classes
of the given interface which are defined in the Eiffel assemblies loaded in the current
application domain (Eiffel assemblies are marked with the attribute
EIFFEL_CONSUMABLE_ATTRIBUTE).

6.1.2 GENERICITY_HELPER

Class GENERICITY_HELPER is used in SODA queries and Native Queries when generic
objects or tuples are queries for, see section 3.2.3 and 3.3.2 for details. It inherits from class
INTERNAL which provides detailed run-time type information of Eiffel objects. The public
routines in GENERICITY_HELPER have the following contract view:

 48

conforms_to_object(obj1: ANY; obj2: ANY): BOOLEAN
 -- Does `obj1' conform to `obj2'?
 -- The result takes conformance of generically derived
 -- types into account.
 require
 obj1_not_void: obj1 /= Void
 obj2_not_void: obj2 /= Void

get_conforming_objects(a_list: ILIST;
 an_object: SYSTEM_OBJECT): LIST[SYSTEM_OBJECT]
 -- List of objects in `a_list' which conform to
 -- `an_object'
 require
 list_not_void: a_list /= Void
 an_object_not_void: an_object /= Void

6.2 Translator

Db4o provides a way to specify a custom way of storing and retrieving objects through the
IOBJECT_TRANSLATOR and IOBJECT_CONSTRUCTOR interfaces.

In Eiffel for .NET, there is a field named $$____type in every implementation class,
it is used to store the run-time type information of actual generic parameters in case of a
generic type. $$____type contains a RuntimeTypeHandle which has a field Value of
type System.IntPtr which encapsulates a pointer to an internal data structure that
represents the type. With the original db4o setting, System.IntPtr cannot be stored, it
means a_glist.$$____type.type.Value = 0 after retrieving and activating the
Impl.GlistReference object. If we then access a_glist.item, an exception would
be thrown with the following exception message:
Tag: Object reference not set to an instance of an object.
System.NullReferenceException: Object reference not set to an
instance of an object.
 at
EiffelSoftware.Runtime.Types.RT_CLASS_TYPE.conform_to(RT_TYPE
other)

The solution is a translator for POINTER which is the Eiffel counterpart for
System.IntPtr. Since RuntimeTypeHandle.Value remains unchanged only within
one application run, it makes no sense to store the pointer value. Class
POINTER_TRANSLATOR, on storing an instance of POINTER, searches for the

 49

corresponding TypeHandle and then stores the type name and its containing assembly’s
location (i.e., the absolute path of the assembly) in the format of

full_name_of_type, location_of_assembly

On retrieving and activating of a certain POINTER object, the translator reads the type
name and the assembly’s location from the database, and initializes a valid POINTER object.
With this approach, no exception is thrown when accessing a generic attribute of an object.

Class POINTER_TRANSLATOR inherits from interface IOBJECT_CONSTRUCTOR and
implements the following four methods of the interface:
on_activate(container: IOBJECT_CONTAINER;
 application_object: SYSTEM_OBJECT;
 stored_object: SYSTEM_OBJECT)
 -- db4o calls this method during activation.

on_instantiate(container: IOBJECT_CONTAINER;
 stored_object: SYSTEM_OBJECT): SYSTEM_OBJECT
 -- Convert `stored_object' to a POINTER.
 -- db4o calls this method when `stored_object' needs
 -- to be instantiated.
 require else
 container_not_void: container /= Void
 stored_object_not_void: stored_object /= Void

on_store(container: IOBJECT_CONTAINER;
 application_object: SYSTEM_OBJECT): SYSTEM_OBJECT
 -- Convert the POINTER `application_object' to its
 -- corresponding type name and assembly’s location
 -- in the format of
 -- `full_name_of_type, location_of_assembly’
 -- db4o calls this method during storage and query
 -- evaluation.
 require else
 container_not_void: container /= Void
 application_obj_not_void: application_object /= Void
 ensure then
 result_not_void: Result /= Void

stored_class: SYSTEM_TYPE
 -- {SYSTEM_STRING} converted to

 50

Class POINTER_TRANSLATOR uses two hash tables for an efficient lookup: one has
POINTER instances as key and type, assembly strings as value, and it is used on
storing POINTER instances; the other one has type, assembly strings as key and
POINTER instances as value, and it is used on instantiating POINTER objects. On
initialization of a POINTER_TRANSLATOR instance, both hash tables are created and then
filled with key-value pairs found in all the assemblies in the current application domain, and
after that they are updated each time a new assembly is loaded into the current application
domain.

Also note that since several database sessions may exist at the same time, and the
translator including its hash tables is shared among the sessions (the database configuration is
global), we need a thread-safe way to update the hash tables. Monitors are used for this
purpose.

There is one disadvantage of storing type, assembly strings for a certain
POINTER: once you move the assembly to another location, then POINTER_TRANSLATOR
is not able to map the type, assembly string to the POINTER any more and an
exception will be thrown (from within the routine
POINTER_TRANSLATOR.on_instantiate), which means, retrieving generic objects
would then fail. If you have to move an assembly to another location, you could implement
your own translator similar to POINTER_TRANSLATOR to update the type, assembly
strings.

6.3 Wrapper Classes for Queries

6.3.1 Wrapper Classes for SODA Query API

Two wrapper classes QUERY and CONSTRAINT are implemented to ensure correct query
results of SODA queries for Eiffel objects (see section 3.2 for details).

Class QUERY exposes the following features:
query: IQUERY
 -- The actual db4o query object

executed: BOOLEAN
 -- Is query already executed?

 51

constrain(constraint: SYSTEM_OBJECT): CONSTRAINT
 -- Add `constraint' to `Current' node and
 -- return a new `CONSTRAINT' for this query node or
 -- `Void' for objects implementing the `IEVALUATION'
 -- interface.
 require
 constraint_not_void: constraint /= Void
 not_executed: not executed

constraints: ICONSTRAINTS
 -- An `ICONSTRAINTS' object that holds an array of all
 -- constraints on this node.
 require
 not_executed: not executed

descend(eiffel_fieldname: SYSTEM_STRING;
 extenttype: SYSTEM_TYPE): QUERY
 -- A reference to a descendant node of
 -- `eiffel_fieldname' in the query graph
 require
 not_executed: not executed
 fieldname_not_void_or_empty:
not {SYSTEM_STRING}.is_null_or_empty(eiffel_fieldname)
 extenttype_not_void: extenttype /= Void

execute: IOBJECT_SET
 -- Execute query and return the result of query.
 require
 not_executed: not executed

order_ascending: QUERY
 -- Add an ascending order criteria to this node of the
 -- query graph and return `Current' to allow the
 -- chaining of method calls.
 require
 not_executed: not executed

order_descending: QUERY
 -- Add a descending order criteria to this node of the
 -- query graph and return `Current' to allow the
 -- chaining of method calls.
 require
 not_executed: not executed

 52

sort_by(comparator: IQUERY_COMPARATOR): QUERY
 -- Sort the resulting `IOBJECT_SET' by `comparator'
 -- and return `Current' to allow the chaining of
 -- method calls.
 require
 not_executed: not executed
 comparator_not_void: comparator /= Void

optimize(config: ICONFIGURATION)
 -- Optimize `Current' and its child query nodes
 -- by setting index for fields involved.

Class CONSTRAINT exposes the following features:
constraint: ICONSTRAINT
 -- The actual ICONSTRAINT object for SODA query

and_(with: CONSTRAINT): CONSTRAINT
 -- Link `Current' with `with' for AND evaluation,
 -- return a new constraint, that can be used for
 -- further calls to `and_’ or `or_’.
 require
 with_not_void: with /= Void

by_example: CONSTRAINT
 -- Set the evaluation mode to object comparison (query
 -- by example), return `Current' to allow the chaining
 -- of method calls.

contains: CONSTRAINT
 -- Set the evaluation mode to containment comparison,
 -- return `Current' to allow the chaining of method
 -- calls.

ends_with(case_sensitive: BOOLEAN): CONSTRAINT
 -- Set the evaluation mode to string ends_with
 -- comparison, comparison will be case sensitive if
 -- `case_sensitive' is true,
 -- case insensitive otherwise,
 -- return `Current' to allow the chaining of method
 -- calls.

 53

equal_: CONSTRAINT
 -- Used in conjunction with `CONSTRAINT.smaller' or
 -- `CONSTRAINT.greater' to create constraints like
 -- "smaller or equal", "greater or equal".
 -- Return `Current' to allow the chaining of method
 -- calls.

get_object: SYSTEM_OBJECT
 -- The `SYSTEM_OBJECT' the query graph was constrained
 -- with to create `Current'.

greater: CONSTRAINT
 -- Set the evaluation mode to ">",
 -- return `Current' to allow the chaining of method
 -- calls.

identity: CONSTRAINT
 -- Set the evaluation mode to identity comparison,
 -- return `Current' to allow the chaining of method
 -- calls.

like_: CONSTRAINT
 -- Set the evaluation mode to "like" comparison,
 -- return `Current' to allow the chaining of method
 -- calls.

not_: CONSTRAINT
 -- Turn on not_ comparison,
 -- return `Current' to allow the chaining of method
 -- calls.

or_(with: CONSTRAINT): CONSTRAINT
 -- Link `Current' with `with' for OR evaluation,
 -- return a new constraint, that can be used for
 -- further calls to `and_’ or `or_’.
 require
 with_not_void: with /= Void

smaller: CONSTRAINT
 -- Set the evaluation mode to "<",
 -- return `Current' to allow the chaining of method
 -- calls.

 54

starts_with(case_sensitive: BOOLEAN): CONSTRAINT
 -- Set the evaluation mode to string starts_with
 -- comparison, comparison will be case sensitive if
 -- `case_sensitive' is true,
 -- case insensitive otherwise,
 -- return `Current' to allow the chaining of method
 -- calls.

The usage of SODA queries for Eiffel objects is almost the same as the usage of SODA
queries for native .NET objects, except for the routine descend. If there is only one
descend("a_field_name") in a query, then we can rely on the type information of the
extent specified for the query to find out the .NET name of a_field_name. Problems arise
when we have more than one descend in sequence, in these cases field name mapping
cannot be done if run-time type information for the class containing the field lacks in the
query wrapper. Here are some use cases illustrating the issue:

 Using non-Eiffel .NET classes

Suppose there is a .NET class Stack with a field top of type System.Object,
then an Eiffel for .NET application uses it to stack CAR objects and then stores several
Stacks in the database. In a query, the client wants to get all Stacks whose top car
is a Ferrari.

constraint := query.constrain({STACK})
subquery := query.descend("top").descend("model")

Since the .NET reflection mechanism returns System.Object as the type of
Stack.top, how do we know top is a CAR object at runtime? And how to get
the .NET name of model in CAR?

 Genericity

Suppose there is a generic class GLIST[G] with item: G, and its client uses it as
GLIST[CAR]. In the .NET assembly, GLIST[G] becomes GlistReference
and item becomes of type System.Object. The question is still how to map
model of CAR to its .NET name?

constraint := query.constrain({GLIST[CAR]})
subsubquery := query.descend("item").descend("model")

Since tuples are all generic (every tuple has an attribute $$nativeArray which is
of type object[]), this question is also relevant when querying for tuples.

 55

 Type redeclaration in descendant classes
Suppose we have PARALLELOGRAM with center: POINT_2D and its descendant
class PARALLELOGRAM_3D which redeclares center as center: POINT_3D
(POINT_3D inherits from POINT_2D). we want to query for PARALLELOGRAM
objects whose z is smaller than 5:

constraint := query.constrain({PARALLELOGRAM})
subsubquery := query.descend("center").descend("z")

How to find the .NET name for z?

 To make the above queries possible, we implemented the descend routine with the
following signature where the first argument is the attribute name, and the second argument is
the SYSTEM_TYPE object of the class which contains the specified attribute.
descend(eiffel_fieldname: SYSTEM_STRING;
 extenttype: SYSTEM_TYPE): QUERY
 -- A reference to a descendant node of
 -- `eiffel_fieldname' in the query graph
 require
 not_executed: not executed
 fieldname_not_void_or_empty:
not {SYSTEM_STRING}.is_null_or_empty(eiffel_fieldname)
 extenttype_not_void: extenttype /= Void

 Using the wrapper classes QUERY and CONSTRAINT, the queries would be

 Using non-Eiffel .NET classes
constraint := query.constrain({STACK})
subquery := query.descend("top", {STACK})
subsubquery := subquery.descend("model", {CAR})
subsubconstraint := subsubquery.constrain("Ferrari")
queryresult := query.execute

 Genericity
constraint := query.constrain({GLIST[CAR]})
subquery := query.descend("item", {GLIST[CAR]})
subsubquery := subquery.descend("model", {CAR})
subsubconstraint := subsubquery.constrain("Ferrari")
queryresult := query.execute

 56

 Type redeclaration in descendant classes
constraint := query.constrain({PARALLELOGRAM})
subquery := query.descend("center", {PARALLELOGRAM})
subsubquery := subquery.descend("z", {POINT_3D})
subsubconstraint := subsubquery.constrain(5).smaller
queryresult := query.execute

 This approach seems a little redundant, but it manages to solve the problem.

6.3.2 Wrapper Class for Native Queries

Class EIFFEL_PREDICATE[OBJECT_TYPE] is the wrapper class for
DB4O_PREDICATE, meant to allow Eiffel developers using agents for Native Queries. See
section 3.3.4 for a detailed explanation of the class.

6.4 Wrapper Classes for Configurations

6.4.1 Global Configuration for Eiffel Applications

In class EIFFEL_CONFIGURATION, database settings for Eiffel applications are configured
globally for all the db4o transactions. It has the following contract view:
class interface
 EIFFEL_CONFIGURATION

create
 configure

feature -- Configuration
 configuration: CONFIGURATION
 -- Global configuration for db4o transactions

 configure
 -- Do global configuration for db4o transactions.

 install_translators
 -- Install translator for POINTER.

end -- class EIFFEL_CONFIGURATION

 57

 Before opening any db4o transaction, make sure that you have called the following
method in your client application
configure_global is
 local
 c: EIFFEL_CONFIGURATION
 do
 create c.configure
 end

In the current version of EIFFEL_CONFIGURATION, only POINTER_TRANSLATOR
is installed. We also wanted to install TypeHandlers for Eiffel strings, i.e. classes STRING
and STRING_32, however, as of this writing, TypeHandlers do not work correctly yet, so
Eiffel developers are encouraged to implement TypeHandlers for Eiffel strings and install
them in EIFFEL_CONFIGURATION once TypeHandlers work correctly.

Custom TypeHandlers let you control the way objects are stored to the database and
retrieved in a query. See
http://developer.db4o.com/Resources/view.aspx/Reference/Implementation_Strategies/TypeH
andlers for details.

6.4.2 CONFIGURATION

Class CONFIGURATION is the wrapper class for ICONFIGURATION, and it exposes the
same methods as ICONFIGURATION, except for object_class which has the following
signature:
object_class(clazz: SYSTEM_OBJECT): OBJECT_CLASS
 -- `OBJECT_CLASS’ object to configure the specified
 -- class. `clazz' can be `TYPE[SYSTEM_OBJECT]',
 -- `SYSTEM_TYPE' or an object used as a template.
 require
 clazz_not_void: clazz /= Void

 IOBJECT_CLASS is used to configure dynamic behavior of how db4o deals with
objects stored in the database, such as activation depth, update depth, delete behavior,
indexing, etc. Configurations of the descendant classes must therefore also be involved.
That’s why we implemented a wrapper class for IOBJECT_CLASS, which is called
OBJECT_CLASS, so that the Eiffel developers only need to call configurations on an
interface, say {PARALLELOGRAM}, to have all the implementation classes of
Parallelogram configured accordingly, that is, Impl.Parallelogram,
Impl.Rhombus, Impl.Rectangle and Impl.Square (see the example in section 2.3).

 58

6.4.3 OBJECT_CLASS and OBJECT_FIELD

Class OBJECT_CLASS exposes the same methods as IOBJECT_CLASS, except for
object_field which has the following signature:
object_field(fieldname: SYSTEM_STRING): OBJECT_FIELD
 -- `OBJECT_FIELD’ object to configure the specified
 -- field.
 require
 nonempty_fieldname: not
{SYSTEM_STRING}.is_null_or_empty(fieldname)

Class OBJECT_FIELD exposes the same methods as IOBJECT_FIELD except for
rename_ which has the following signature (see section 5.2.3 for an explanation of the
routine):
rename_(old_eiffel_type: SYSTEM_TYPE;
 new_name: SYSTEM_STRING)
 -- Rename this field as `new_name’.
 require
 nonempty_new_name: not
{SYSTEM_STRING}.is_null_or_empty(new_name)

For configurations of implementation classes of a certain interface, we create and
initialize an OBJECT_CLASS instance with a SYSTEM_TYPE object of the interface, and
then call the corresponding configuration method to configure the implementation classes
accordingly. For example,
local
 config: CONFIGURATION
do
 create config.make_global
 config.object_class({PARALLELOGRAM}).update_depth(2)
end

sets the update depth of Impl.Parallelogram, Impl.Rhombus, Impl.Rectangle
and Impl.Square to 2.

For configurations of some field in the implementation classes of a certain interface, we
create and initialize an OBJECT_FIELD instance with an OBJECT_CLASS instance and a
field name, and then call the corresponding configuration method to configure the fields
(including those renamed in the descendant classes) in all the implementation classes of the
interface. For example,

 59

local
config: CONFIGURATION
oc: OBJECT_CLASS

do
 create config.make_global

oc := config.object_class({PARALLELOGRAM})
oc.object_field("height1").indexed(True)

end

sets field indexes for the fields Impl.Parallelogram.$$height1,
Impl.Rhombus.$$height1, Impl.Rectangle.$$width and
Impl.Square.$$sideLength.

6.5 Wrapper Classes for Metadata of Stored Classes and Fields

6.5.1 STORED_CLASS

Class STORED_CLASS is the wrapper class for ISTORED_CLASS. It provides metadata
information of the stored classes.

 STORED_CLASS exposes the same methods as ISTORED_CLASS except for
stored_field which has the following signature:
stored_field(fieldname: SYSTEM_STRING;
 fieldtype: SYSTEM_OBJECT): STORED_FIELD
 -- Existing stored field of this stored class.
 require
 nonempty_fieldname: not
{SYSTEM_STRING}.is_null_or_empty(fieldname)
 fieldtype_not_void: fieldtype /= Void

 A STORED_CLASS instance is initialized with an interface type or a template object,
and it only provides metadata information of the direct implementation class of the interface,
in case of {PARALLELOGRAM}, we only get information about the class
Impl.Parallelogram, no information is given about Impl.Rhombus or
Impl.Rectangle, etc.

 60

6.5.2 STORED_FIELD

Class STORED_FIELD is the wrapper class for ISTORED_FIELD. It provides metadata
information of the stored fields in a stored class.

 STORED_FIELD exposes the same methods as ISTORED_FIELD except for
rename_ which has the following signature:
rename_(old_eiffel_type: SYSTEM_TYPE; new_name: SYSTEM_STRING)
 -- Rename this field as `new_name'.
 require
 nonempty_new_name: not
{SYSTEM_STRING}.is_null_or_empty(new_name)

Class STORED_FIELD only gives information about the field in the direct
implementation class of a specified interface. Fields in other implementation classes of the
interface are not involved. For example,
local
 sc: STORED_CLASS
 sf: STORED_FIELD
do
 create sc.make(object_container.ext, {PARALLELOGRAM})
 sf := sc.stored_field(“height1”, {INTEGER})
 sf.create_index
end

only creates an index for the field Impl.Parallelogram.$$height1, but not for the
fields Impl.Rhombus.$$height1, Impl.Rectangle.$$width or
Impl.Square.$$sideLength.

 61

7 Using .NET Delegates

Db4o enables the client to add listeners to an IOBJECT_CONTAINER for the following
events

 QueryStarted

 QueryFinished

 Creating (first time an object is about to be saved)

 Created (after the object is saved)

 Activating

 Activated

 Deactivating

 Deactivated

 Updating

 Updated

 Deleting

 Deleted

 Committing

 Committed

 These callbacks can be used to gather statistics information, to perform validity or
constraints check and stop the execution if necessary, or to initiate some special behavior after
the action has been taken.

 For QueryStarted and QueryFinished events the client registers
QueryEventHandler delegate:
public delegate void QueryEventHandler(
 Object sender, QueryEventArgs args)

 For Creating, Activating, Deactivating, Updating and Deleting events
the client registers CancellableObjectEventHandler delegate:
public delegate void CancellableObjectEventHandler(
 Object sender, CancellableObjectEventArgs args)

 62

 For Created, Activated, Deactivated, Updated and Deleted events the
client registers ObjectEventHandler delegate:
public delegate void ObjectEventHandler(
 Object sender, ObjectEventArgs args)

 For Committing and Committed events the client registers
CommitEventHandler delegate:
public delegate void CommitEventHandler(
 Object sender, CommitEventArgs args)

 Delegates are supported in Eiffel for .NET. For example, in a C# program we write the
following code to register an OnCreated event handler to container:
IObjectContainer OpenObjectContainer()
{
 try {
 IObjectContainer db = Db4oFactory.OpenFile("f.db4o");
 IEventRegistry registry =
EventRegistryFactory.ForObjectContainer(db);
 registry.Created += new ObjectEventHandler(OnCreated);
 return db;
 } catch (Exception ex) {
 }
 return null;
}

static void OnCreated(object sender, ObjectEventArgs args)
{
 // handling code
}

 The Eiffel for .NET counterpart is
open_object_container: IOBJECT_CONTAINER is
 local
 registry: IEVENT_REGISTRY
 handler: OBJECT_EVENT_HANDLER
 do
 Result := {DB_4O_FACTORY}.open_file("f.db4o")
 registry :=
{EVENT_REGISTRY_FACTORY}.for_object_container(Result)
 create handler.make(Current, $on_created)
 registry.add_created(handler)
 rescue
 Result := Void
 end

 63

on_created(sender: SYSTEM_OBJECT; args: OBJECT_EVENT_ARGS) is
 do
 -- handling code
 end

 The Eiffel’s specific mechanism for objects which represent operations, called agents, is
more powerful than .NET delegates because of its support for open and closed arguments and
for open and closed target. However, agents are not compatible with .NET delegates (all
agents are of type FUNCTION or PROCEDURE, while all delegates are descendants of the
DELEGATE class), which means for the above example,
create handler.make(Current, $on_created)
registry.add_created(handler)

cannot be replaced with
// compile-time error: non-conforming actual argument in
// feature call
registry.add_created(agent on_created(?, ?))

 Conclusion: we can only use delegates, not agents, to register db4o callbacks.

 64

8 Cross Compatibility between C# and Eiffel for .NET

Since Eiffel for .NET and C# are both languages supported on the .NET Framework, it might
be interesting to see whether objects stored with an Eiffel application can be retrieved by a C#
application and vice versa. The answer is yes, except for code involving genericity and tuples.

8.1 Using Eiffel to Retrieve C# Objects

An Eiffel application needs two things to be able to retrieve C# objects: the assembly which
contains the class definitions of the objects and the database file.

 There is nothing special with regard to querying for classes, structs and interfaces. We
just write queries as we would do in a C# program. For example, to retrieve all
PARALLELOGRAM instances whose _height1 is greater than 10, we write:
retrieve is
 local
 db: IOBJECT_CONTAINER
 closed: BOOLEAN
 query: IQUERY
 c: ICONSTRAINT
 resultos: IOBJECT_SET
 do
 db := {DB_4O_FACTORY}.open_file("NetObjects.db4o")
 query := db.query
 c := query.constrain (({PARALLELOGRAM}).to_cil)
 c := query.descend("_height1").constrain (10).greater
 resultos := query.execute
 closed := db.close
 rescue
 if (not closed and then db /= Void) then
 closed := db.close
 end
 end

 ({PARALLELOGRAM}).to_cil is the Eiffel notation to get the type of
PARALLELOGRAM. Queries for structs or interfaces are done in a similar way.

 Eiffel for .NET does not consume .NET generics, so if there are .NET generic objects
stored in a database file, then you cannot retrieve them in an Eiffel for .NET application.

 65

8.2 Using C# to Retrieve Eiffel Objects

To get correct query results of Eiffel objects, it is important to

1. Install PointTranslator before opening the database, see section 6.2 and 6.4 for
details;

2. Always query for interfaces both in SODA and Native Queries because the multiple
inheritance hierarchy structure of Eiffel types is preserved through the multiple inheritance
hierarchy structure of .NET interfaces;

3. Use the helper classes, especially QUERY and CONSTRAINT for SODA queries (see
section 3.2 for reasons described in detail).

 The following is an example which shows how to retrieve all instances of
Parallelogram whose height1 is greater than 10 (Parallelogram is an interface):
void Retrieve()
{
 IObjectContainer db =
 Db4oFactory.OpenFile("eiffel_objects.db4o");
 try
 {
 Query eiffelQuery =
 Db4oForEiffel.Create.Query.MakeFromQuery(db.Query());
 Constraint eiffelConstraint =
 eiffelQuery.Constrain(typeof(Parallelogram));
 Query eiffelSubquery =
 eiffelQuery.Descend("height1", typeof(Parallelogram));
 Constraint eiffelSubconstraint =
 eiffelSubquery.Constrain(10).Greater();
 IObjectSet resultos = eiffelQuery.Execute();
 }
 finally
 {
 db.Close();
 }
}

 It is difficult to get a correct query result for an Eiffel generic type or tuple in C#. In
Eiffel we have the helper class GENERICITY_HELPER which takes advantage of the Eiffel
for .NET run-time system to get the type information of actual generic parameters of an Eiffel
generic object. To tell whether a candidate object is of the right (generic) type, the routines in

 66

GENERICITY_HELPER need a sample object which provides the necessary type information
of actual generic parameters. For example, the object

create {GLIST[PARALLELOGRAM]}

has PARALLELOGRAM as its first actual generic parameter. However, on the C# side, we
don’t have a straightforward way to create an Eiffel generic object with the necessary type
information of the actual generic parameters. That means, GENERICITY_HELPER cannot be
used for conformance tests in C# applications, and we may get non-conforming objects in a
query result for Eiffel generic objects.

 67

9 Persistence of C Structs

Eiffel for .NET can be used to persist C structs in db4o databases.

 First, we define a struct in, say, point.h:
typedef struct {
 int x;
 int y;
} Point;

 Second, we implement an Eiffel wrapper class POINT for struct Point:
class
 POINT

create
 make,
 make_with_x_y

feature {NONE} -- Initialization
 make is
 -- Creation method
 do
 create internal_item.make(structure_size)
 end

 make_with_x_y(a_x, a_y: INTEGER) is
 -- Initialize Current with `a_x' and `a_y'.
 do
 make
 set_x(a_x)
 set_y(a_y)
 end

feature -- Command
 set_x(a_x: INTEGER) is
 -- Set `x' with `a_x'.
 do
 c_set_x(item, a_x)
 x := a_x
 ensure
 set: x = a_x
 end

 68

 set_y(a_y: INTEGER) is
 -- Set `y' with `a_y'.
 do
 c_set_y(item, a_y)
 y := a_y
 ensure
 set: y = a_y
 end

feature -- Query
 structure_size: INTEGER is
 -- Size of Current structure.
 do
 Result := c_size_of_point
 end

 x: INTEGER
 -- x position

 y: INTEGER
 -- y position

 item: POINTER is
 -- Pointer to C struct
 do
 Result := internal_item.item
 ensure
 not_void: Result /= default_pointer
 end

feature {NONE} -- Implementation
 internal_item: MANAGED_POINTER
 -- Managed pointer to the struct.

feature {NONE} -- C externals
 c_size_of_point: INTEGER is
 -- Point struct size.
 external
 "C [macro %"point.h%"]"
 alias
 "sizeof(Point)"
 end

 69

 c_set_x(a_item: POINTER; a_x: INTEGER) is
 -- Set `a_item''s x with `a_x'
 external
 "C inline use %"point.h%""
 alias
 "[
 {
 ((Point *)$a_item)->x = (EIF_INTEGER)$a_x;
 }
]"
 end

 c_set_y(a_item: POINTER; a_y: INTEGER) is
 -- Set `a_item''s y with `a_y'
 external
 "C inline use %"point.h%""
 alias
 "[
 {
 ((Point *)$a_item)->y = (EIF_INTEGER)$a_y;
 }
]"
 end

 c_x(a_item: POINTER): INTEGER is
 -- `a_item''s x
 external
 "C inline use %"point.h%""
 alias
 "[
 ((Point *)$a_item)->x
]"
 end

 c_y(a_item: POINTER): INTEGER is
 -- `a_item''s y
 external
 "C inline use %"point.h%""
 alias
 "[
 ((Point *)$a_item)->y
]"
 end

end

 70

 Note that in POINT we have two attributes x: INTEGER and y: INTEGER which
correspond to int x and int y in struct Point. We need this duplication to make
sure that besides the memory location of a Point, its x- and y-coordinates are also stored in
the database.

 Third, store POINT instances as usual:
store is
 -- Store `POINT' instances.
 local
 p: POINT
 do
 create p.make_with_x_y(1, 2)
 object_container.store(p)
 end

 To retrieve all the POINT instances whose x is greater than 1, we write
retrieve is
 -- Retrieve `POINT' instances.
 local
 query: IQUERY
 constr: ICONSTRAINT
 resultos: IOBJECT_SET
 p: POINT
 do
 query := object_container.query
 constr := query.constrain(({POINT}).to_cil)
 constr := query.descend("$$x").constrain (1).greater
 resultos := query.execute
 end

 ({POINT}).to_cil is the Eiffel notation for the run-time type of POINT.

 71

10 Conclusions and Future Work

Eiffel is well integrated in the .NET Framework. The multiple inheritance hierarchy structure
of Eiffel classes is preserved, and feature adaptation techniques also work well in the .NET
run-time system. However, there are some issues around Eiffel genericity.

 Eiffel applications can use all db4o features, but we must be careful when querying for
Eiffel objects and when doing class- or field-related configurations.

While in case of querying for non-generic objects, SODA and Native queries return
objects according to the Eiffel’s conformance rule, in case of querying for generic objects,
developers must take over the task of filtering out non-conforming objects using the helper
class we implemented.

A wrapper for SODA Query API, taking care of all the aforementioned issues, has also
been developed.

Using agents for Native Queries makes db4o very appealing to Eiffel developers, though
the performance overhead may sometimes be significant. The db4o team is making a big
effort to optimize Native Queries so that they can be run against indexes. Eiffel applications,
however, cannot take advantage of the optimization algorithms yet. The open question is
therefore whether and how Native Queries in Eiffel applications can be optimized to be run
against indexes.

Wrapper classes are implemented for class- and field-related configurations. They ensure
a consistent database behavior when activating, updating, deleting and indexing objects in the
sense that configurations are done on all the descendant classes of a specified class.

Wrapper classes are also implemented for metadata information of stored classes and
fields. Using them the Eiffel developer can use the original Eiffel class names or feature
names to get the related information.

Db4o supports refactoring while some approaches may be inappropriate.

As for the cross compatibility between Eiffel and other .NET (e.g., C#) applications, we
can say that we can use Eiffel to retrieve C# objects and vice versa except for generic objects.

 Having a native implementation of an object-oriented database for the Eiffel
programming language would be nice so that some or all the issues encountered could be
avoided.

 72

References

1. Meyer, B.: Object-Oriented Software Construction, 2nd edition. Prentice Hall, 1997.

2. Smacchia, P.: Practical .NET2 and C#2. Paradoxal Press, 2005.

3. .NET Developer Center, http://msdn2.microsoft.com/en-us/library/aa139615.aspx

4. Simon, R., Stapf, E., Meyer, B.: Full Eiffel on the .NET Framework,
 http://msdn2.microsoft.com/en-us/library/ms973898.aspx

5. Db4o documentation, http://developer.db4o.com/Resources/view.aspx/Documentation

6. Project web site: http://developer.db4o.com/ProjectSpaces/view.aspx//Defcon

7. Reflector for .NET: http://www.aisto.com/roeder/dotnet/

 73

Appendix Getting Started with Db4o for Eiffel

In this appendix we show you how to use db4o databases within Eiffel applications.

Step 1: Download Db4o Assembly

Because of a critical bug in the db4o assemblies before version 7.1.26 (see section 3.2.5), it is
important that you download a db4o version later than 7.1.26.

Db4o download center:

http://developer.db4o.com/files/default.aspx

Step 2: Download Reflector for .NET Assembly

In the implementation we take advantage of the Reflector for .NET assembly to examine
Eiffel for .NET assemblies. You can download the assembly at

http://www.aisto.com/roeder/dotnet/

or

https://svn.origo.ethz.ch/defcon/source_code/references/Reflector.exe

Step 3: Download Source Code of Db4o for Eiffel

The project is implemented in Eiffel, and its source code is to be imported into your project.
The source code is available at

https://svn.origo.ethz.ch/defcon/source_code/db4o_for_eiffel.zip

After downloading the zip file, please extract the file and then move the
db4o_for_eiffel directory to the directory in which your project will reside, say
db4o_example.

 74

Step 4: Download EiffelStudio

It is common that Eiffel developers use EiffelStudio for developing Eiffel applications. You
can download it at

https://www2.eiffel.com/download/

or at

http://eiffelstudio.origo.ethz.ch/download

 The recommended version for Windows XP is EiffelStudio 6.1.6.9962, other versions of
6.1.x seem to have problems with debugging Eiffel for .NET applications.

Step 5: Create an EiffelStudio Project

Until now you should have a project directory called db4o_example with the
db4o_for_eiffel directory in it.

 Start EiffelStudio, and in the pop-up window select “Microsoft .NET application” and
then click “Create” (see screenshot).

Click “Next >” to continue.

 75

 In the next window specify the project name as “db4o_example” and the project location
as the location of your db4o_example directory. Click “Next >”.

Configure the .NET application as shown in the following screenshot:

 76

Click “Finish” to generate and compile the project.

Step 6: Add Assemblies to Your Project

In the “Clusters” panel right-click “Assemblies” and in the context-menu select “Add
Assembly ...”. Then in the “Add Assembly” window specify the location of the db4o
assembly Db4objects.Db4o.dll to import it into the project.

Perform the same steps for the Reflector for .NET assembly Reflector.exe.

We also need the EiffelSoftware.Runtime assembly which can be selected in the
“Add Assembly” window.

Step 7: Rename Classes to Avoid Name Clashes

In Eiffel for .NET every class must have a unique class name, so we have to rename some
classes in Db4objects.Db4o.dll and Reflector.exe to avoid name clashes.

 Click “Project” in the menu bar and select “Project settings ...”.

 77

 In the “Project Settings” window, navigate to the “db4objects.db4o” item in the left
panel, then in the right panel click inside the cell next to “Renaming”. A window for editing
renaming then pops up. Rename PREDICATE as DB4O_PREDICATE and rename
FIELD_INFO as DB4O_FIELD_INFO.

 Similar for the Reflector.exe assembly, rename ASSEMBLY as
REFLECTOR_ASSEMBLY and rename ICONFIGURATION as
REFLECTOR_ICONFIGURATION.

Step 8: Configure Db4o Databases for Eiffel Applications

Before storing and querying for Eiffel objects in db4o databases, we have to install
POINTER_TRANSLATOR, which is done in the class EIFFEL_CONFIGURATION (see
section 6.2 for details). Add the following method in the APPLICATION class and call it in
the root procedure make.

 78

init is
 -- Set global database configuration.
 local
 eiffel_configuration: EIFFEL_CONFIGURATION
 do
 create eiffel_configuration.configure
 end

make is
 -- Run application.
 do
 init
 ...
 end

Step 9: Open and Close a Db4o Database

To open and close a db4o database, add the following features to class APPLICATION:
feature -- Database control

 db: IOBJECT_CONTAINER

 database_file: STRING is "eiffel.db4o"

 open_database is
 -- Open `db' of `database_file'.
 do
 db := {DB_4O_FACTORY}.open_file(database_file)
 end

 close_database is
 -- Close `db'.
 local
 closed: BOOLEAN
 do
 closed := db.close
 end

Step 10: Store Eiffel Objects

Suppose we have a class PARALLELOGRAM with two attributes height1 and height2:

 79

class
 PARALLELOGRAM

create
 make

feature {NONE} -- Initialization

 make(h1: INTEGER; h2: INTEGER) is
 -- Initialize `height1' with `h1',
 -- `height2' with `h2'.
 require
 h1_positive: h1 > 0
 h2_positive: h2 > 0
 do
 height1 := h1
 height2 := h2
 end

feature -- Access

 height1: INTEGER
 height2: INTEGER

end

To store some PARALLELOGRAM objects we can write
store is
 local
 closed: BOOLEAN
 do
 open_database
 db.store(create {PARALLELOGRAM}.make(10, 30))
 db.store(create {PARALLELOGRAM}.make(20, 40))
 close_database
 rescue
 if (db /= Void) then
 closed := db.close
 end
 end

 80

Step 11: Retrieve Eiffel Objects

Db4o supplies three querying mechanisms: Query-By-Example, SODA Query API and
Native Queries.

Query-By-Example

The following query uses Query-By-Example to retrieve all the PARALLELOGRAM objects
whose height1 is equal to 10 and height2 is equal to 30:
retrieve_qbe is
 local
 template: PARALLELOGRAM
 resultos: IOBJECT_SET
 closed: BOOLEAN
 do
 open_database
 create template.make(10, 30)
 resultos := db.query_by_example(template)
 printos(resultos)
 close_database
 rescue
 if (db /= Void) then
 closed := db.close
 end
 end

where printos outputs the PARALLELOGRAM objects in the query result to the console:
printos(os: IOBJECT_SET) is
 local
 p: PARALLELOGRAM
 do
 from
 until not os.has_next
 loop
 p ?= os.next
 if (p /= Void) then
 io.put_string("Parallelogram (" + p.height1.out
+ ", " + p.height2.out + ")")
 io.put_new_line
 end
 end

end

 81

SODA Query API

To retrieve all PARALLELOGRAM objects whose height1 is greater than 10, you can write
the following SODA query:
retrieve_soda is
 local
 query: QUERY
 constraint, subconstraint: CONSTRAINT
 resultos: IOBJECT_SET
 closed: BOOLEAN
 do
 open_database
 create query.make_from_query(db.query)
 constraint := query.constrain({PARALLELOGRAM})
 subconstraint := query.descend("height1",
{PARALLELOGRAM}).constrain(10).greater
 resultos := query.execute
 printos(resultos)
 close_database
 rescue
 if (db /= Void) then
 closed := db.close
 end
 end

Native Queries

You should first define a class, say PARALLELOGRAM_PREDICATE, which inherits from
DB4O_PREDICATE and implements the match method. The match method defines
whether a candidate object is to be included in the query result or not.
class
 PARALLELOGRAM_PREDICATE

inherit
 DB4O_PREDICATE

feature
 match(p: PARALLELOGRAM): BOOLEAN is
 do
 Result := p.height1 > 10
 end

end

 82

 Then you can pass a PARALLELOGRAM_PREDICATE instance to the
IOBJECT_CONTAINER.query method to get the query result:
retrieve_nq is
 local
 resultos: IOBJECT_SET
 closed: BOOLEAN
 do
 open_database
 resultos := db.query(create {PARALLELOGRAM_PREDICATE})
 printos(resultos)
 close_database
 rescue
 if (db /= Void) then
 closed := db.close
 end
 end

 Note that you have to run the finalized system to have Native Queries run without
exceptions.

Step 12: What’s Next

To ensure a correct way of working with db4o databases within Eiffel applications, you may
need to consult the previous chapters of this document. Furthermore, we suggest you to
download and try out the following advanced example project when you are reading this
documentation:

https://svn.origo.ethz.ch/defcon/source_code/db4o_for_eiffel_example.zip

For further advanced features of db4o, such as transaction and concurrency control,
maintenance, client-server mode, etc. please visit the db4o documentation page:

http://developer.db4o.com/Resources/

