Eiffel for .NET Binding
for db4o

User’s and Developer’s Manual

Ruihua Jin, Marco Piccioni

ETH Zurich, Chair of Software Engineering
ETH Zentrum, RZ Building
CH-8092 Zurich, Switzerland
rjin@student.ethz.ch, marco.piccioni @inf.ethz.ch

April 3, 2008

Table of Contents

N 1 11 oo 18 Tox o FO OO PP UPPPPRR 6
R U1 0 0T Y SR 6
1.2 Structure of ThiSDOCUMENLccuiviriiriirierieiei e 6

2 Mapping of Eiffel TYPESTO .NET TYPES...cicoeiicieceectiete sttt 7
2.1 Mapping of Eiffel Built-in Expanded Typesto .NET CTSTypeS.......cccceevvevennen. 7
2.2 Mapping of Eiffel Expanded Typesto .NET Value TYPeS.......ccccevvreerereriennenns 8
2.3 Mapping of Eiffel Reference Typesto .NET TYPES......ccccceveevevveieesieciesieeenn 10
24 Feature Adaptations in Inheritance

24.1 Renaming an Attribute

24.2 Renaming aRoutine.......
24.3 EXPOrtiNG FEALUMES........ceeirieiiriiieees ettt ettt s 15
244 UNDefiNiNG @ROULINEccoiviiiiirieesie ettt saebe e seenas 16
245 RedefiNiNg @ROULINE.......ccccceiirieese et s snens 16
2.4.6 Turning an Argumentless Function into an Attribute...........cccoceevviecenereeesecceieseenene, 16
247 SEECNG AFEEIUMEc.ceeeec sttt 18
2.5 Mapping of Eiffel Generic Typesto .NET TYPES.....cccveverereerrrereene e 18
2.6 TUPIES ..ot bbb bbbt b b et e e 21
3 Querying for Eiffel Objectsin db4o Databases...........cccceceriririninenincneeeeseeee 22
31 QUENY-BY-EXAMPIE ..o e s 22
3.2 SODA QUEIY AP ... r e ne e 23
321 USINgValid FEld NAMES.....ccoceereeieisiseesese st 23
3.22 Including Attribute Names Renamed in Descendant ClIasses..........coooeveeereiieeneneene 24
323 Querying for Generic ObjECtS OF TUPIES......ccceiririeererieirisie e e seenas 25
324 SODA Query APl for Eiffel SHNGS ..o 26
325 Using the Right DDA0 VEISION......cccceiiiiieireeeiseiesesie st sesaes e sse s sessens 26
3.3 NAVE QUENES......ocueeie ettt st te e tesre e e e sneeneeneenes 26

3.3.1 Native Queriesfor Eiffel ObJECES........cccvieriiieieiiiseese e 26

3.3.2 Native Queriesfor GENEriC ODJECES. ..ot 28

333 PEITOIMMENCE.eeieieeeteie ettt et 29

3.34 Using Agentsfor Native QUENIES........cccuvueeririeiiniseesese et se e ssenas 29

3.35 Running Finalized Eiffel Assembly for Native QUENES.........cccccvvveeenererenecierereneene 31

3.4 Query-By-Example vs. SODA Query API vs. Native QUESi€s.........ccooererennene 32
4 CONTIGUIALTON ...ttt sttt e e e et e e e et e st ebeebeeneeneereene e 33
4.1 ACHVELON DEPIN ... 34
411 Globa Activation DEPNccvviiieirecc et e 34

412 Class-Specific ACtivation DEPtN......ccciiiieircirese s 34

4.1.3 Feld-Specific ACHVELIONccviirieereeiec sttt s 35

414 Activating Fields DyNamiCallyccccoeiriveenisieie et 35

4.2 UPAAE DEPLN.....cceiieiiiieeeee e 35
421 Globa Update DEPLN........ceeveieiricieiseeec ettt 36

422 Class-Specific Update DEPLhc.ooeoiiieiiierieerieerereees et 36

423 Field-Specific Update DEPth.......ccvceeeeieiiciceessee sttt 36

424 Setting Update Depth DyNamiCallycoceveiinneeneinneeresee e 36

4.3 DEEEBENAVION.....ccicceecieeie sttt nne e 36
431 Class-Specific Delete BENAVION........ccovuiiriiiriicieree s 37

432 Field-Specific Delete BENAVION ..ottt 37

R 1 07 (1] o TSSOSO 37
441 INAEXiNG OF ClASSES......ccomererrirrieeerere et 37

442 INEXiNG Of FIEIUS........ooiiirerriieeer s 38

5 REFBCIONING 1.ttt b et nn e 39
5.1 ReNAMING ClaSSEScuiiuieiiiiieiiecieie st este e te s e ste e e ste e e sse e e tesseesesneenseeneenes 39
5.2 Refactoring of AttHDULES...........ccoeiiiieice e e e 40
521 Adding ALMDULES ... s 40

522 ReMOVING ARIBULES ..ot s 40

523 ReNaMIiNG AtITDULES........ccviiriiieerere et 41

524 Changing AtrDULES TYPES.....ciirriiririeeresieeres e e 41

525 Changing Visibility Of AttriDULES.........coeirireiinierre s 42

5.3 Refactoring of Class HIErarchyccooeieiiiiiiisiccceeessesese e 42

6 IMPIEMENTALION ..ot 43

6.1 HEIPEN ClBSSES.iiiiiieieeeee e bbbttt 43

6.1.1 ATTRIBUTE NAME HELPER .ot 44

6.1.2 GENERICITY HELPER ..ottt 47

L 1 - 01 = o SO 48

6.3 Wrapper Classes fOr QUENTES........ccuuiirieriereeseeie ettt 50

6.3.1 Wrapper Classesfor SODA QUENY APl ... 50

6.3.2 Wrapper Classfor NativVe QUENESccueerirerinineiesese s 56

6.4 Wrapper Classes for ConfigUrationS.........c..cceoveeerereernseeseeeeseesseesesseessesneenes 56

6.4.1 Global Configuration for Eiffel AppliCations.........cccoceeevieiirireieresieiesesere e 56

6.4.2 CONEF TGURAT TON ..uitttuuieetuuuseeernnssesrrnnsesrensssseresnsssrssssesesssetrssserssmeseemassenne 57

6.4.3 OBJECT_CLASS and OBJECT_FTIELD wioiiiiiiiiiin ittt 58

6.5 Wrapper Classes for Metadata of Stored Classes and Fields..........cccccvvvevieneene. 59

6.5.1 STORED CLASS ..cooieureierereeeereseesesssssssessessssessssssssessssssssssss s sssssssssss s e sssssssssssens 59

6.5.2 S L I Y N 60

7 USING .NET DEEJALESeouiiiiitiitiiieiienienie et sbe e sre e e e e 61
8 Cross Compatibility between C# and Eiffel for NETcoovieiinniinee e 64
8.1 Using Eiffel to Retrieve C# ODJECES........cccoceeieceeseceese e 64

8.2 Using C#to Retrieve Eiffel ObJECES........ccvcvevicieieceece e 65

9 PerSiSteNCEOf C SLIUCES....ccuiciiciecee st e neens 67
10 Conclusions and FULtUF@WOIK.....ccueeiie ittt ettt et e 71
= L= = Tor =R 72
Appendix Getting Started with Db4o for Eiffel ..o, 73
Stepl: Download DB40 ASSEMDIYccoiiiiiiiieceeee e 73
Step2: Download Reflector for .NET ASSembIyccccveiiiiiiininnceneeeniee 73

Step 3: Download Source Code of Db4o for Eiffel.......c.cooveveieceeieiece e 73

Step4: Download Eiffel StUIO..........coueieieieeeeeee e 74
Step 5: Create an EiffelStudio PrOJECL.........cooviieieieceee e 74
Step 6: Add Assembliesto YOUr ProjecCt..........ccvcceieeieiiecciesieeeseeee e 76
Step 7 Rename Classes to Avoid Name Clashes.........coeviieeneneenencnie e 76
Step 8: Configure Db4o Databases for Eiffel Applications..........c.ccoovverirenerennns 77
Step 9: Open and Close aDb40 Database..........ccovevvereerieniienieeeres e 78
Step 10: Store Eiffel ODJECES........ooiieeeeeeeeeeeeeee e 78
Step 11: Retrieve Eiffel ODJECLS......ooiiieieeeeeeeeee e 80

QUENY-BY-EXAMPIE.....oiiiieiet et bbb 80

SODA QUENY AP ...oeoeereeeaeeeseeeesseeesseeess st ess st ss s ss st ss st et sennes 81

INBLIVE QUENTES ...ttt ettt bttt b et bbb bt b et b b et b e b e et ebeseeneneas 81
SEEP 120 WA SINEXL ... 82

1 Introduction

1.1 Summary

Db4o is an already established OODBMS solution for Java and .NET, providing a powerful
and easy-to-use solution for object persistence.

It is therefore desirable to make it accessible to programmers that use Eiffel, a well-
known, pure object-oriented programming language offering features like Design by Contract,
multiple inheritance, genericity and agents. Though Eiffel participated to the birth of the .NET
Framework and was integrated in it from the very start, it is not trivial that db4o can
flawlessly persist Eiffel objects as well as, say, C# objects. The aim of this project is to
identify peculiarities of persisting Eiffel objects and to provide solutions so that Eiffel
developers can use db4o as seamlessly as possible.

The effort that this documentation describes is the implementation of the necessary db4o
framework classes to make it usable within Eiffel applications.

1.2 Structure of This Document

Chapter 2 gives an overview of how Eiffel types are mapped to .NET types without loosing
the multiple inheritance hierarchy information. Chapter 3 discusses the three db4o querying
mechanisms. Query-By-Example, SODA Query APl and Native Queries, showing how we
can adapt them for querying Eiffel objects. Then chapter 4 shows how to configure the
activation depth, update depth, delete behavior and indexing. Chapter 5 discusses refactoring
of Eiffel classes. Chapter 6 introduces the classes implemented for the current project.
Chapter 7 illustrates how to use .NET delegates in Eiffel for db4o callbacks. Chapter 8 shows
how to use C# to persist Eiffel objects and the other way around, and chapter 9 shows how to
use Eiffel to persist C structs. At the end we draw some conclusions.

2 Mapping of Eiffel Typesto .NET Types

Eiffel and the .NET Framework have two different type systems. It is therefore important to
first explore the mapping strategy of Eiffel types to .NET types before getting on with
persistence of Eiffel objectsin db4o databases.

2.1 Mapping of Eiffel Built-in Expanded Typesto .NET CTS Types

The Eiffel expanded types defined in EiffelBase library (such as BOOLEAN and INTEGER)
are directly mapped to the types of the .NET Common Type System (CTS). Table 1 shows the

mapping.

Tablel. Mapping of Eiffel built-in expanded typesto .NET CTStypes

Eiffel basic type Equivalent CTStype
BOOLEAN System.Boolean
CHARACTER_8 System.Char
CHARACTER_32 System.UInt32
INTEGER 8 System.SByte
INTEGER_16 System.Intlé
INTEGER_32 System.Int32
INTEGER_64 System.Inté64
NATURAL_ 8 System.Byte
NATURAL_ 16 System.UIntlé
NATURAL_32 System.UInt32
NATURAL_64 System.UInte4
REAL 32 System.Single
REAL 64 System.Double

The mapping is quite straightforward. However, notice that type CHARACTER 32
becomes of type System.UInt32 a run-time. So if the developer has a class which
contains a field of type CHARACTER 32, then the field would be stored as

System.UInt32 inadbdo database.

2.2 Mapping of Eiffel Expanded Typesto .NET Value Types

Besides the built-in expanded types described above, Eiffel developers can define their own
expanded types. One simple example is an expanded POINT class which has two attributes
for the x- and the y-coordinates.

expanded class
POINT

create
default create,
make with x y

feature
make with x y(a x: INTEGER; a y: INTEGER) is
do
set x(a x)
set yl(a y)
end

set_x(a_x: INTEGER) is

set y(a y: INTEGER) is
do

y = ay
end

x, y: INTEGER

end
The Eiffel for .NET compiler generates five .NET typesfor POINT, they are

Point

ReferencePoint
Impl.ReferencePoint
Create.Point
Create.ReferencePoint

The UML diagram in Fig. 1 shows their inter-type relationships along with the fields and
methods each type contains (for the sake of clarity, fields and methods in ValueType,
EIFFEL TYPE INFO, Any are omitted).

<<interface>>
EIFFEL_TYPE_INFO

|

<<interface>>
Any

|

ValueType <<interface>>
ReferencePoint
+MakeWithXY(in x : int, iny : int)

+SetX(in x : int)
A +SetY(iny :int)
+X() :int

+Y() :int
+_set_X(in x : int)
+_set_Y(iny :int)

A

I____1

|
|
|
|
Point : Impl.ReferencePoint
+$$x @ int | +$$x @ int
+$$y : int I +$$y : int
#$$__ type : RT_GENERIC_TYPE : #$$__ type : RT_GENERIC_TYPE
|
/N I
| |
| I ____
| |
| |
| |
| |
Create.Point Create.ReferencePoint
+DefaultCreate() : Point +DefaultCreate() : ReferencePoint
+MakeWithXY(in x : int, in y : int) : Point +MakeWithXY(in x : int, in y : int) : ReferencePoint

Fig. 1. The .NET types generated for the Eiffel class POINT and the inter-type relationships between them.

Interface EIFFEL TYPE INFO, defined in eiffelsoftware.runtime.dll, is
the root interface implemented by al Eiffel for .NET types, and interface Any is the interface
counterpart for the Eiffel class ANY (the implementation class of interface Any is
EiffelSoftware.Library.Base.Kernel.Impl.Any Wwhich is defined in
EiffelSoftware.Library.Base.dll).

Interface ReferencePoint contains methods which are defined in class POINT.
MakeWithXY, SetX and SetY correspond tomake with x vy, set xand set_ y (note
that the routine names are adapted to the .NET naming conventions, and so are the attribute
names, see below). Methods X and set X are the getter and setter for the attribute x,
methodsY and _set Y are the getter and setter for the attribute y.

Classes Point and Impl.ReferencePoint both implement interface
ReferencePoint, and class Point inherits from valueType. Fields $$x and $$y are
the .NET counterparts of the attributes x and v, with their names adapted to the .NET naming
conventions. Fied s$$ type is used to store type information of actual generic
parameters in case of a generic type.

The two classes in namespace Create are, as the name suggests, for creation and
initialization of the related objects.

Note that in Eiffel for .NET, expanded types cannot inherit from any other expanded
types, which is one of the few restrictions brought about by mapping Eiffel to .NET.

2.3 Mapping of Eiffel Reference Typesto .NET Types

Since the Common Language Runtime of the .NET Framework only supports single
inheritance of classes, the primary concern with the Eiffel integration was how to preserve the
multiple inheritance structure of Eiffel types. This issue was solved using the “simulated”
multiple inheritance structure of .NET interfaces.

For example, we have four Eiffel classes PARALLELOGRAM, RHOMBUS, RECTANGLE
and SQUARE, with RHOMBUS and RECTANGLE inheriting from PARALLELOGRAM, and
SQUARE inheriting from both RHOMBUS and RECTANGLE (see Fig. 2). Furthermore,
RECTANGLE renames heightl aswidth, height2 as height, and SQUARE renames
width asside length. Aswe will seelater, feature renaming requires special attentions
in using SODA Query API.

10

PARALLELOGRAM
+heightl : int
+height2 : int
+make(in hl :int, in h2 :int)

% heightl ~> width

| | height2 ~> height

RHOMBUS RECTANGLE

% Z%Width ~> side_length

SQUARE

+make_with_side_length(in side_length : int)

Fig. 2. Four Eiffel classes with their inter-class rel ationships.

When an effective (fully implemented) Eiffel class, say SQUARE, is compiled for
the .NET Framework, three .NET types will be generated: the interface Square, the class
Impl.Square which inherits from System.Object and implements interface Square,
and the class Create.Square whose static method is generated according to the creation
procedure in SQUARE and is therefore used to create and initiaize instances of
Impl.Square. The inheritance of SQUARE from RHOMBUS and RECTANGLE is preserved
through the inheritance of the Square interface from the Rhombus and Rectangle
interfaces. Fig. 3 shows the whole picture of the .NET counterpart (for the sake of clarity,
Create.X classes are omitted in the figure).

11

Impl.Parallelogram

+$$heightl : int
+$Sheight2 : int
#$$___ type : RT_GENERIC_TYPE

Impl.Rhombus

<<interface>>
EIFFEL_TYPE_INFO

I

<<interface>>
Any

T

<<interface>>
Parallelogram

+Height1() : int
+Height2() : int
+_set_Height1(in h1 : int)
+_set_Height2(in h2 : int)
+Make(in h1 :int, in h2 :int)

T

Heightl ~> Width

Height2 ~> Height
_set_Heightl ~> _set_Width
_set_Height2 ~> _set_Height

+$$heightl : int
+$$height2 : int
#3$__ type : RT_GENERIC_TYPE

-

<<interface>>
Rhombus

<<interface>>
Rectangle

Impl.Square

+$$heightl : int

+$$height2 : int

+$$sideLength : int

+$$height : int

#$$__ type : RT_GENERIC_TYPE

Width ~> SideLength

Impl.Rectangle

+$$width : int
+$$height : int
#$$__ type : RT_GENERIC_TYPE

_set_Width ~> _set_SideLength

<<interface>>
Square

+MakeWithSideLength(in sl : int)

Fig. 3. The corresponding .NET types with their inter-type relationships.

For the sake of completeness, a deferred (abstract) Eiffel class, say x, is compiled to
two .NET types. the interface X and the abstract class Impl .X. Create.X is not generated

for obvious reasons.

As amatter of fact, in .NET al implementation classes Imp1 . X are direct subclasses of
System.Object. They are coupled with each other only through interfaces. As a result of
this special mapping strategy, when querying for Eiffel objects we should always use

interfaces as query extents to get correct results.

12

2.4 Feature Adaptationsin Inheritance

Eiffel brings to developers not only multiple inheritance, but also feature adaptation
techniques along with it. They are feature renaming, change of export status, undefinition,
redefinition and selection. Now we are going to look into the .NET types to see how feature

adaptations are realized in there.

2.4.1 Renaming an Attribute

In the example described in the previous section, RECTANGLE renames the inherited
attributes heightl as width and height2 as height. This change affects the

generation of Rectangle and Impl .Rectangle:

interface Parallelogram : Any

int Heightl () ;
int Height2() ;
void _set Heightl (int hl);
void _set Height2 (int h2);

}

interface Rectangle : Parallelogram

int Width();
int Height () ;
void set Width(int w);
void set Height (int h);

}

class Impl.Rectangle : Rectangle

{

public
public
public
public
public
public

int $Swidth;

int $sheight;

int width() { ... }

int Height() { ... }
void set Width(int w) {

void _set Height (int h) {

13

Basically in .NET every time you do a renaming, the interface for the class doing the
renaming adds a new method for that renamed feature, and in the implementation class the
new method is declared to implement the old method declaration. The declaration is done
through the attribute Met hodImplAttribute.

In our example with two attribute renaming, four new methods are added in interface
Rectangle. Since the four “old” methods declared in interface Parallelogram are not
part of the class interface of Impl .Rectangle anymore, the four new ones are declared to
implement the four old ones. The MSIL disassembler i1dasm. exe reveals the code in the
Impl.Rectangle.Width () method and we can seethat width implementsHeight1:

.method public hidebysig virtual instance int32
Width() cil managed
{

.override RootCluster.Parallelogram: :Heightl
// Code size 7 (0x7)
.maxstack 8
IL 0000: 1ldarg.o
IL 0001: 1dfld 1int32 RootCluster.Impl.Rectangle::$swidth
IL 0006: ret
} // end of method Rectangle::Width

Corresponding to attributes width and height in RECTANGLE, the two fields in
Impl.Rectangle arenamed $$width and $Sheight.

2.4.2 RenamingaRoutine

Suppose RECTANGLE renames the routine make as make with width height. We
then have the following changesin Rectangle and Impl.Rectangle:

interface Parallelogram : Any

{

void Make (int hl, int h2);

}

interface Rectangle : Parallelogram

{

void MakeWithWidthHeight (int w, int h);

14

class Impl.Rectangle : Rectangle

{

void MakeWithWidthHeight (int w, int h) { ... }

}

with MakeWithWidthHeight implementing Make in Impl.Rectangle

2.4.3 Exporting Features

In the example application, we defined the SQUARE class as follows:

class
SQUARE

inherit
RECTANGLE
rename
width as side length
export
{NONE} height
select
side length, height
end

RHOMBUS
export
{NONE} heightl, height2
end

create
make with side length

feature
make with side length(sl: INTEGER) 1is
require
sl positive: sl > 0
do
make (sl, s1)
heightl := sl
height2 := sl
end
end

15

Although features height, heightl and height2 are exported to {NONE}, their
corresponding fields

¢ S$Sheight,
¢ S$Sheightl,
¢ SSheight2

and their corresponding getter and setter methods
e Height, _set Height,
e Heightl, set Heightl
e Height2, set Height2

in class Impl.Square al have a visbility scope of public. However, this issue should
not be a concern of the project, since db4o stores all the fields of an object, regardless whether
they are public, protected or private.

2.4.4 Undefining a Routine

The corresponding method in the .NET implementation class is implemented according to the
routine which is not undefined.

2.4.5 Redefining a Routine

The corresponding method in the .NET implementation class is implemented according to the
new implementation of the routine in the Eiffel class.

2.4.6 Turning an Argumentless Function into an Attribute

Suppose we have two classes, SYMMETRY and PARALLELOGRAM:

16

deferred class
SYMMETRY

feature
center: POINT is

-- Returns the center of the geometry figure.
deferred
end
end

Let’s further suppose that in class PARALLELOGRAM, the routine center is redefined
as an attribute.

class
PARALLELOGRAM

inherit
SYMMETRY
redefine
center
end

feature
center: POINT

end
In the .NET counterpart we then have

interface Symmetry : Any

Point Center () ;

}

interface Parallelogram : Symmetry

{

Point Center () ;
void set Center (Point p);

17

class Impl.Parallelogram : Parallelogram

Point S$Scenter;
Point Center() ;
void _set Center (Point p);

As shown, two new methods are added in the interface Parallelogram, and one new
field $Scenter isaddedintheclass Impl.Parallelogram.

24.7 Selecting a Feature

Feature selection only plays a part in dynamic binding. Since in Eiffel for .NET, all the
implementation classes do not have any subclasses, the only concern about calling the right
method in an implementation class is reduced to the question of how to find out the new
method which implements the old method declared in an interface, which is solved easily
with the help of MethodImplAttribute.

2.5 Mapping of Eiffel Generic Typesto .NET Types

An Eiffel generic type, say GLIST [G]

class
GLISTI[G]
feature
item: G
end

is mapped to the following .NET typesif the actual parameter G is of areference type:

18

interface GlistReference : Any

{

RT TYPE db4o for eiffel type 9986() ;
RT TYPE db4o for eiffel type 9987();
RT TYPE GLIST Formal#l();

void _set Item(object) ;

object Item();

}

class Impl.GlistReference : GlistReference

RT GENERIC TYPE SS type;
object SSitem;

AS GLIST[STRING] and GLIST[RECTANGLE] would both become of type
GlistReference a run-time, the two would conform to each other from the point of view
of the .NET run-time system. The Eiffel for .NET run-time system, however, knows the type
information of actual generic parameters. Taking advantage of this, we implemented a hel per
class cdled GENERICITY HELPER Wwhich inherits from INTERNAL in assembly
eiffelsoftware.runtime.dll, and its routines can be used to decide the
conformance between two generic or non-generic objects according to the Eiffel’s
conformance rule.

Eiffel’s conformance rule. A type U conforms to a type T only if the base class of U is a
descendant of the base class of T; aso, for generically derived types, every actua parameter
of U must (recursively) conform to the corresponding formal parameter in T.

The developer should always make use of this helper class to filter out non-conforming
objects when querying for a generic class of reference types. See chapter 3 for details.

If we have a constrained generic type like
class GLIST[G -> PARALLELOGRAM]

thenininterfaceGlistReference we have

19

interface GlistReference : Any

{

RT TYPE db4o for eiffel type 9986() ;
RT TYPE dbdo for eiffel type 9987();
RT TYPE GLIST Formal#l()

void _set_Item(Parallelogram);
Parallelogram Item() ;

}
andinclass Impl.GlistReference wehave

class Impl.GlistReference : GlistReference

RT GENERIC TYPE $$ type;
Parallelogram Sitem;

With a constraint on the formal parameter G, we cannot create instances of GLIST [X] if
X is not a descendant class of PARALLELOGRAM. So aquery for GLIST [PARALLELOGRAM]
or GLIST[RECTANGLE] objects would only return those objects which conform to
GLIST [PARALLELOGRAM]. A constraint on formal parameters therefore helps to get a

more fine-grained query result even if the conformance of objects in a query result is not
always guaranteed.

On the other hand, if the actual parameter G is of an expanded type, say POINT asina
previous example, then two more .NET types would be generated:

interface GlistPoint : Any, GlistReference

{
RT TYPE db4o for eiffel type 9986();
RT TYPE db4o for eiffel type 9987 ();
RT TYPE GLIST Formal#l();
void set Item(Point) ;

} Point Item() ;

class Impl.GlistPoint : Any, GlistPoint

{

RT GENERIC TYPE $$ type;
Point $$item;

20

As you see, for each generic class of expanded types, a new interface and a class which
implements this interface will be generated. This approach ensuresthat GLIST [RECTANGLE]
and GLIST[POINT] objects will become of different .NET types at run-time:
GLIST [RECTANGLE] objects are of type GlistReference, and GLIST [POINT]
objects are of type GlistPoint. This also means that the developer would get a correct
query result when querying for GLIST [POINT] or GlistPoint objects.

2.6 Tuples

The .NET interface for tuplesis

interface EiffelSoftware.Library.Base.Kernel.Dotnet.Tuple
Hashable

and the corresponding implementation classis

class EiffelSoftware.Library.Base.Kernel.Dotnet.Impl.Tuple
Hashable, Tuple

RT GENERIC TYPE S$s type;
object[] SnativeArray;

Both are defined in the assembly EiffelSoftware.Library.Base.dll.

All tuples are generic, and the actual generic parameters are stored in an array of type
object. The developer also needs to use the provided helper class GENERICITY HELPER
to get conforming objects when querying for a certain kind of tuple.

21

3 Querying for Eiffel Objectsin db4o Databases

Db4o supplies three querying systems:. Query-By-Example, SODA Query API and Native
Queries. We are now going to compare them from the point of view of Eiffel applications.

3.1 Query-By-Example

In Query-By-Example we provide the object container with a template object, and then the
object container returns all the objects whose fields match al the non-default fields of the
template object.

Since in .NET all instances of Eiffel types don’t directly inherit from each other but are
only related to each other through interfaces, Query-By-Example, which uses the .NET
reflection mechanism to determine subclasses of a class, is only able to retrieve direct
instances of the template type. For example, the query

retrieve rectangle is
local
object container: IOBJECT CONTAINER
template: RECTANGLE
query result: IOBJECT SET
closed: BOOLEAN
do
object container := {DB 40 FACTORY}.open file(“f.db4o")
create template.make (10, 0)
query result := object container.get (template)
closed := object container.close
rescue
if (object container /= Void) then
closed := object container.close
end
end

only returns direct instances of RECTANGLE with width=10, while SQUARE objects are not
returned. Thisis because template object becomes of type Impl.Rectangle a run-
time, and Impl . Square does not inherit from Impl . Rectangle.

22

Query-By-Example aready has severa limitations by its own, and only fits with very
simple queries. Although a wrapper class for Query-By-Example which returns not only the
direct instances but aso instances of subclasses could be implemented, we did not implement
it because it would not overcome the restricted functionalities that are part of the approach
itself.

3.2 SODA Query API

The SODA Query API provides Eiffel applications with an efficient, though type-unsafe way
of querying for objects. There are three issues we should be aware of when we are querying
for Eiffel objects with SODA Query API, and they originate from

« feature name translation for the sake of the .NET naming conventions,
« feature renaming in descendant classes, and
« mapping of Eiffel generic typesto .NET types.

3.21 UsingValid Field Names

When building a query graph, a SODA query “descends’ to a field by specifying the field
name. The following query specifies the interface {RHOMBUS} as the query extent and
descends to field $Sheightl to constrain it with the value 10. The query retrieves all
RHOMBUS (including SQUARE) objects whose heightl is equa to 10
(({RHOMBUS}) .to_cil istheEiffel notation for the .NET interface type of RHOMBUS):

retrieve rhombusl is
local
object container: IOBJECT_ CONTAINER
iqguery: IQUERY
iconstraint, isubconstr: ICONSTRAINT
query result: IOBJECT SET
closed: BOOLEAN

do
object container := {DB 40 FACTORY}.open file(“f.db4o")
iquery := object container.query
iconstraint := iquery.constrain(({RHOMBUS}).to cil)
isubconstr := iquery.descend(“$Sheightl”) .constrain(10)
query result := iquery.execute
closed := object container.close

23

rescue
if (object container /= Void) then
closed := object container.close
end
end

As mentioned above, Eiffel for .NET compiler adapts attribute names to the .NET
naming conventions and also prepends “$$” to each if the attribute is defined in an Eiffel
class. The developer could use our wrapper classes QUERY and CONSTRAINT for the db4o
IQUERY and ICONSTRAINT interfaces to have field name tranglation done by the wrapper.
For aquery like above, we could write

retrieve rhombus2 is

local
object container: IOBJECT CONTAINER
query: QUERY
constraint, sc: CONSTRAINT
query result: IOBJECT SET
closed: BOOLEAN

do
object container := {DB 40 FACTORY}.open file(“f.db4o")
create query.make from query(object container.query)
constraint := query.constrain ({RHOMBUS})
sc := query.descend("heightl", {RHOMBUS}).constrain(10)
query result := query.execute
closed := object container.close

rescue
if (object container /= Void) then

closed := object container.close

end

end

3.2.2 Including Attribute Names Renamed in Descendant Classes

The second issue with SODA Query API originates from renaming a feature in descendant
classes. In our example, if we rename the feature width to side length in the SQUARE
class, then a SODA query for RECTANGLE objects will not return SQUARE objects, because
the Impl.Square classonly has afield called $$sideLength instead of $$Swidth. To
retrieve a correct query result, we have to modify the query asfollows:

24

iquery := object container.query

iconstraint := iquery.constrain ({RECTANGLE})

wcon := iquery.descend(“$swidth”) .constrain(10)

slcon := iquery.descend(“$$sideLength”) .constrain(10)
isubconstr := wcon.or (slcon)

query result := iquery.execute

The two wrapper classes QUERY and CONSTRAINT also take this case into
consideration, and they get the field value constraints OR-joined if the field is renamed in
descendant classes. For the above query, we write

create query.make from query(object container.query)

constraint := query.constrain ({RECTANGLE})
sc := query.descend("width", {RECTANGLE}) .constrain(10)
query result := query.execute

The developer should be aware of the fact that having too many attribute renamings may
cause performance loss in querying because of alarger query graph.

3.2.3 Querying for Generic Objectsor Tuples

As described in chapter 2, when we are querying for generic objects of reference types, we
may get non-conforming objects in the query result returned. In this case, we should use
routine get _conforming objects inclass GENERICITY HELPER to filter out al the
non-conforming objects:

get conforming objects(a list: ILIST;
an _object: SYSTEM OBJECT) : LIST [SYSTEM OBJECT]
-- List of objects in “a list'
-- which conform to “an object'
require
list not void: a list /= Void
an_object not void: an object /= Void

For example, to get a correct query result for GLIST [PARALLELOGRAM] , we write

create query.make from query(object container.query)

constraint := query.constrain ({GLIST [PARALLELOGRAM] })
query result := query.execute
result list := get conforming objects(query result,

create {GLIST[PARALLELOGRAM] })

25

Similar for tuples, to query for TUPLE [GLIST [INTEGER]], we write

create query.make from query(object container.query)

constraint := query.constrain ({TUPLE [GLIST [INTEGER]]})
query result := query.execute
result list := get conforming objects(query result,

create {TUPLE[GLIST [INTEGER]]})

3.24 SODA Query API for Eiffel Strings

Currently Eiffel developers cannot add constraints on an Eiffel string attribute in a SODA
guery. In fact the following call

iquery.descend("eiffel str").constrain("a").starts with(False)

would fail.

3.25 UsingtheRight Db4o Version

Db4o was not able to return correct query results of SODA queries until version 7.1.26, so the
developer should always use a more recent version. See the related issue report on “SODA
gueries return wrong query resultsfor .NET interfaces’ at
http://tracker.db4o.com/browse/ COR-1086 for details.

As of thiswriting, there is another unsolved bug related to SODA Query API, see“AND,
NOT constraints return wrong query results’ at http://tracker.db4o.com/browse/COR-1131 for
details.

3.3 Native Queries

The most compelling plus of Native Queriesis that they enforce a type-safe approach.

3.3.1 NativeQueriesfor Eiffe Objects

The Eiffel developer creates a descendant class of PREDICATE class (since there is a name
clash with PREDICATE in EiffelBase Library, the developer has to first rename one of them,

26

in our example, we rename PREDICATE in assembly Db4objects.Db4o.dll as
DB40_PREDICATE) and defines a Boolean function match to run Native Queries. The
match method tells the query engine whether to include or exclude a candidate object in the
guery result. Here is an example of querying for all PARALLELOGRAM objects whose
height1 isgreater than 10:

class
PARALLELOGRAM_PREDICATE

inherit
DB40 PREDICATE

feature
match (p: PARALLELOGRAM) : BOOLEAN is
-- Is "p.heightl' greater than 107?
do
Result := p.heightl > 10
end

end

Then we pass an instance of PARALLELOGRAM PREDICATE as argument to the
query method of IOBJECT CONTAINER:

retrieve parallelogram is
local
object container: IOBJECT CONTAINER
query result: IOBJECT SET
closed: BOOLEAN
do
object container := {DB 40 FACTORY}.open file(“f.db4o”)
query result := object container.query (
create {PARALLELOGRAM PREDICATE})
closed := object container.close
rescue
if (object container /= Void) then
closed := object container.close
end
end

27

3.3.2 Native Queriesfor Generic Objects

If we want to query for generic objects of reference types, say GLIST [PARALLELOGRAM],
then we must make use of the conforms to object method in the helper class
GENERICITY HELPER:

conforms to object (objl: ANY; obj2: ANY): BOOLEAN
-- Does “objl' conform to “obj2'?
require
objl not void: objl /= Void
obj2 not void: obj2 /= Void

In the match method we first restrict the candidate objects to be of the same type as the
template object create {GLIST [PARALLELOGRAM] }, then we define our own matching
criteria

class
GLIST_PREDICATE

inherit
DB40 PREDICATE
GENERICITY HELPER

feature
match(gl: GLIST[PARALLELOGRAM]): BOOLEAN is
-- Does “gl' fulfill matching criteria?

do
Result := conforms to object (gl,
create {GLIST[PARALLELOGRAM] })
Result := Result and then gl.item.heightl > 10
end

end

For a query for generic objects of expanded types like GLIST [POINT], we don’'t need
to use the helper class.

28

3.3.3 Performance

The db4o team is making a big effort to optimize Native Queries so that they can be run
against indexes. Eiffel applications, however, cannot take advantage of the optimization
algorithms yet, which means, Native Queries in Eiffel applications cannot be optimized.

The reason is the following: the match method in subclasses of DB40 PREDICATE iS
declared like

match (candidate: SOME_TYPE) : BOOLEAN

candidate becomes of an interface type SomeType at run-time, and db4o cannot optimize
interface method calls in the mat ch method body.

The open question is therefore whether and how Native Queries in Eiffel applications
can be optimized to be run against indexes.

3.34 Using Agentsfor Native Queries

In the .NET version of db4o the developer can use delegates for Native Queries. As Eiffel has
its own powerful mechanism of modeling operations, called agents, we decided to integrate
agents into the concept of Native Queriesfor Eiffel applications.

An agent is an encapsulation of aroutine. A typical agent expression is of the form
agent c.my_ function(?, a, b)

where a and b are closed arguments (set at the time of the agent’ s definition), whereas ? isan
open argument, set at the time of any call to the agent. This agent is closed on the target c.

We can aso define agents with an open target like
agent {C}.my function(?, a, b)
where {C} denotesthe classto which featuremy function belongs.

We implemented a class called EIFFEL PREDICATE [OBJECT TYPE] that inherits
fromDB40_ PREDICATE and GENERICITY HELPER. Itisto beinitialized with an agent.

29

ClassEIFFEL PREDICATE [OBJECT TYPE] hasthefollowing contract view:

class interface
EIFFEL_PREDICATE[OBJECT_TYPE]

create
make open target agent,
make closed target agent

feature -- Match

match (obj: OBJECT TYPE): BOOLEAN
-- Does “obj' match requirements?
-- Uses either “open target predicate’ or
-- “closed target predicate’ to
-- decide for match result;
-- Also tests whether “obj' conforms to
-- “sample object’ if “sample object’ is generic.

invariant
one predicate: open target predicate /= Void xor
closed target predicate /= Void
sample not void: sample object /= Void

end -- class EIFFEL PREDICATE

The return value of the match method is equal to the value of the agent (also note that
match first tests whether candidate objects conform to sample object if
sample object is generic, which means, we don’t need to do the conformance test for
generic objectswhen we areusing EIFFEL_PREDICATE).

Suppose now that there isaBoolean function diagonal greater than (INTEGER)
in the PARALLELOGRAM class, and we want to query for all parallelograms with diagonal
greater than 10. Thanks to the agent mechanism, we don’'t need to define any new query
method, but simply create an EIFFEL _PREDICATE instance and initialize it with

agent {PARALLELOGRAM}.diagonal greater than(10)

which is open on the target and closed on the argument. At run-time the target of the agent
becomes the candidate object passed to the match method. To run the Native Query, we
write

30

query result := object container.gquery(create
{EIFFEL PREDICATE [PARALLELOGRAM] } .make open target agent (
agent {PARALLELOGRAM}.diagonal greater than(10),
create {PARALLELOGRAM}.make (1, 1)))

Agents also fit in the situations where the related class does not have a Boolean function
corresponding to the query. In this case, we define afunction in some classMY QUERY like

diagonal greater than (PARALLELOGRAM; INTEGER): BOOLEAN
andinitializean EIFFEL_PREDICATE object with
agent a_query.diagonal greater than(?, 10)

which is closed on the target, open on the first and closed on the second argument. At run-
time the first argument becomes the candidate object passed to the mat ch method. To run the
Native Query, we write

query result := object container.query(create
{EIFFEL_PREDICATE [PARALLELOGRAM] } .make closed target agent (
agent a query.diagonal greater than(?, 10),
create {PARALLELOGRAM}.make (1,1)))

Note that if the developer uses EIFFEL_PREDICATE for the convenience of agents, he
must endure some performance overhead caused by running agents. It was measured that
EIFFEL PREDICATE queries with open target agents run slower than DB40 PREDICATE
queries (that is queries that just inherit from DB40 PREDICATE without using agents) by a
factor of 1 -3, and EIFFEL PREDICATE queries with closed target agents run slower than
DB40 PREDICATE queries by a factor of 2 — 4. The more candidate objects, the more
significant is the performance penalty.

3.3.5 RunningFinalized Eiffel Assembly for Native Queries

Note that since the native query expression builder of db4o uses Mono.Cecil.dl1l to load
the assembly which contains the Predicate.Match method in order to build an
expression tree for the method, and Mono . Cecil seems to have some trouble with loading
multi-module assemblies, the developer should always use the finalized Eiffel assembly to
run Native Queries.

31

3.4 Query-By-Examplevs. SODA Query API vs. Native Queries

Besides the limitations of Query-By-Example as described in db4o documentations, we have
an additional limitation in Eiffel for .NET: Query-By-Example works only correctly if there
are no descendant classes of the template class.

Native Queries are easy-to-use and type-safe, but at the moment they cannot be
optimized to be run against indexes in Eiffel applications. So if performance is significant for
the application, you may prefer SODA queries. Furthermore, avoiding feature renaming in
descendant classes can prevent further performance loss when running a SODA query.

32

4 Configuration

Db4o provides a configuration interface to help developers fine-tune its behavior, such as
setting the activation depth, the update depth, the delete behavior and the indexing for a class
or for afield in a class. Because of the special mapping strategy of Eiffel typesto .NET types,
we must be careful when we are doing class-related and field-related configurations (recall
that except for implementation classes of expanded types, all the other Eiffel implementation
classes are direct subclasses of System.Object, and ther fields are not inherited from any
other classes). Three wrapper classes, CONFIGURATION, OBJECT CLASS and
OBJECT FIELD, were implemented to make sure that once some configuration is done on a
class C then the same configuration is aso done on its descendant classes, and once some
configuration is done on an attribute of a class C, then the same configuration is also done on
the corresponding attributes of the descendant classes of C.

CONFIGURATION isthe wrapper class for ICONFIGURATION, it isused for database-
wide configurations, and its object class function returns an OBJECT CLASS object
for configuration of the specified class.

object class(clazz: SYSTEM OBJECT) : OBJECT CLASS
-- TOBJECT CLASS' object to configure
-- specified class
-- “clazz' can be "TYPE[SYSTEM OBJECT]',
-- "SYSTEM TYPE' or
-- any other object used as a template.

require

clazz not void: clazz /= Void

OBJECT_ CLASS is used for class-specific configurations, and its object field
function returns an OBJECT_FIELD object for configuration of the specified field.

object field(fieldname: SYSTEM STRING): OBJECT_ FIELD
-- TOBJECT FIELD’ object to configure
-- specified field.
require
nonempty fieldname:
not {SYSTEM STRING}.is null or empty(fieldname)

OBJECT FIELD isused for field-specific configurations.

33

4.1 Activation Depth

When objects are retrieved from the database, their fields are loaded into memory only to a
certain depth, which is called “activation depth”. One must be careful when retrieving an
object with a deep reference graph, because the default activation depth for any object is 5.

Suppose we have a class BTREE which represents a binary tree:

class
BTREE

feature

left, right: BTREE

end

Then we can use the db4o configuration interface to set the activation depth for BTREE.
There are various way's to define the activation depth which applies during the whole database
transaction: global, class-specific or field-specific; or we can aso dynamically activate fields
of retrieved objects.

4.1.1 Global Activation Depth

The following procedure shows you how to set the global activation depth for any object to 7:

configure activation depth is
local
config: CONFIGURATION
do
create config.make global
config.activation depth integer (7)
end

4.1.2 Class-Specific Activation Depth

The following method calls show you how to set the minimum and maximum activation depth
for the specified class and its descendant classes:

config.object class ({BTREE}) .minimum activation depth integer (7)
config.object class ({BTREE}) .maximum activation depth(7)

With cascade activation of BTREE, the whole tree from the root to the leaves will be
activated on retrieving. This setting can lead to increased memory consumption.

config.object class ({BTREE}) .cascade on activate (True)

4.1.3 Fidd-Specific Activation

We can also automate activation for specific fields:

config.object class ({BTREE}) .object field(
“left”) .cascade on activate (True)

The above method call cascades activation of the 1eft attribute of BTREE objects.
However, as of this writing, the TOBJECT FIELD.cascade_on_activate method
does not work as specified, and the activation depth for 1eft is till the default one after the
method call.

4.1.4 Activating Fields Dynamically

The configurations described in section 4.1.1 — 4.1.3 are to be done before opening a database
file and they apply during the next database transaction. On the other hand, we can also
dynamically activate field references after retrieving objects from the database. The methods
are defined in the IOBJECT CONTAINER interface:

object container.activate(object, depth)
To free some memory space, we can also deactivate fields using

object container.deactivate(object, depth)

4.2 Update Depth

When we update an object, we must also pay attention to the update depth. The update depth
for a class defines the number of levels of member objects which are to be updated
automatically. The default update depth for al objects is 0, which means that
IOBJECT CONTAINER.set (object) method will only update the object passed as a
parameter and any changes to its member objects will be lost. Db4o aso provides different
methods for setting the update depth.

35

4.2.1 Global Update Depth

The following procedure shows you how to set the global update depth for any object to 3:

configure update depth is
local
config: CONFIGURATION
do
create config.make global
config.update depth(3)
end

4.2.2 Class-Specific Update Depth

We can also specify the update depth for a certain class and its descendant classes:
config.object class ({BTREE}) .update depth(3)

or we can cascade update for a certain class and its descendant classes:
config.object class ({BTREE}) .cascade on_update (True)

4.2.3 Fidd-Specific Update Depth
The following method call cascades update for the specified field:

config.object class ({BTREE}) .object field(
“left”) .cascade on update (True)

4.2.4 Setting Update Depth Dynamically

The following method allows to dynamically set the update depth for a certain object:

object container.ext.set (object, depth)

4.3 Delete Behavior

As db4o deletes only the object passed to object container.delete (obj) with the
referenced objects remaining in the database, we must define the del ete behavior for a specific
classor field to also delete the referenced objects.

36

4.3.1 Class-Specific Delete Behavior

The following method call cascades delete for class BTREE:

configure delete_ behavior is
local
config: CONFIGURATION
do
create config.make global
config.object class ({BTREE}) .cascade on delete (True)
end

4.3.2 Field-Specific Delete Behavior

The following method call cascades delete for attribute 1eft of class BTREE:

config.object class ({BTREE}) .object field(
“left”) .cascade on delete(True)

We should keep in mind that there is no referential integrity check on delete.

4.4 Indexing

Indexing hel ps achieve maximum querying performance. Because of Eiffel’s specific strategy
of preserving multiple inheritance on the .NET platform, we have to pay attention when we

are setting indexes for classes or fields.

4.4.1 Indexing of Classes

Let’s continue with the example illustrated in section 2.3, indexing class PARALLELOGRAM
means indexing PARALLELOGRAM, RHOMBUS, RECTANGLE and SQUARE. Using the

wrapper class OBJECT CLASS we can write:

configure class_index is
local
config: CONFIGURATION
do
create config.make global

config.object class ({PARALLELOGRAM}) .indexed (True)
end

37

4.4.2 Indexing of Fields

Indexing attribute heightl of class PARALLELOGRAM means indexing
PARALLELOGRAM.heightl, RHOMBUS.heightl, RECTANGLE.width and

SQUARE.side_ length. Using the wrapper classes we only need to define field index once
to get al the related fields indexed:

configure field index is
local

config: CONFIGURATION
do

create config.make global
config.object class ({ PARALLELOGRAM}) .object field(

“heightl”) .indexed (True)
end

38

5 Refactoring

As application design changes in time, one of the challenges of object persistence is therefore
keeping object databases up-to-date with the latest class schema without loss of old data. In
the following sections we are going to examine db4o support for schema evolution.

5.1 Renaming Classes

Here is the procedure of how to configure the related db4o object container when a classis to

be renamed:

1. Backup the database and application;

2. Closeall open object containersif any;

3. Make a copy of the class to be renamed, and rename the class (do not remove old class
yel);

4. Cdl OBJECT CLASS.rename_ (new name) Without having an object container
open;

5. Open database file and close it again without actually working with it;

6. Removetheold class.

There is one issue related to renaming generic classes. Suppose we rename GLIST [G]
8SGENERIC LIST [G], then we should take two use cases into consideration:

« If the formal generic parameter G in the generic class GLIST [G] isonly of reference
type at run-time, then no additional work isto be done;

o If G becomes of expanded type, say POINT, at run-time, then we must also rename
GlistPoint aSsGenericListPoint.

The conclusion for renaming generic classes is that we should call
OBJECT CLASS.rename (new_name)

once for al GLIST [G] instances with G being of areference type, and once for each G of an
expanded type.

39

5.2 Refactoring of Attributes

Attributes can be added or removed to or from a class, and they can also be assigned new
types to. In the latter two cases, we need an additional API to be able to access values of the
old attribute definition. Db4o provides this functionality through the interfaces
ISTORED CLASS and ISTORED FIELD. We implemented two wrapper classes
STORED CLASS and STORED FIELD to alow Eiffel developers to use class and
attribute entities as defined in the code without the need of going into the .NET assembly to
find out the corresponding .NET entity names.

There is one important point to be aware of: The functions in STORED CLASS and
STORED FIELD only return information on the specified class and the specified attribute
respectively. Descendant classes or attributes in descendant classes are not taken into
consideration. The main justification is that as STORED CLASS and STORED FIELD
represent metadata of classes and fields stored in the db4o database, they are static
information. It may be better to have fine-grained information on class level.

On the other hand, the routines in the wrapper classes OBJECT CLASS and
OBJECT FIELD configure the dynamic behavior of db4o databases, they are used to inform
db4o databases about the whole class inheritance hierarchy in the way that configurations of
descendant classes are also involved in there (see chapter 4 for details).

5.21 AddingAttributes

If you add a new attribute, db4o automatically starts storing the new data. Older instances of
the stored class (from before the attribute was added) are still loaded, but the new attribute is
set to its default value, or null. This is a dangerous choice, because the new class invariant
may be invalidated by silently letting the object get into the system. A more correct choice
would be to throw an exception, to force the developer to deal with the potential hassle using,
for example, the appropriate callbacks to correctly initialize the newly added attributes.

5.2.2 Removing Attributes

If you remove an attribute, db4o ignores the stored value when activating instances of the
class. The stored value is not removed from the database until the next defragment, and is till
accessible viathe STORED CLASS / STORED FIELD API.

40

5.2.3 Renaming Attributes

The following is the procedure of how to configure the related db4o object container when an
attribute, say att inclassc, isto berenamed asnew_att:

1. Backup the database and application;

Close al open object containersif any;

Make a copy of class C, and name it differently, eg. C_OLD;

Rename attribute att in C asnew_att;

Call the following methods without having an object container open:

config.object class({C}).object field(“att”).rename (
{c_ oLD}, “new att”)
Open the database file and close it again without actually working with it;

7. RemoveclassC OLD.

o DN

This approach is dightly different from the one described in the db4o documentation.
Here we need two class definitions to do attribute renaming: one is the class definition with
the old attribute name, this helps us find out the corresponding .NET field name of the old
attribute name; the other one is the class definition with the new attribute name, and with its
help we can find out the corresponding .NET field name of the new attribute name. That's
why we need to pass two arguments to the routine rename , the first one being
SYSTEM_TYPE of the old class, the second one being the new attribute name.

5.24 Changing Attributes Types

If you modify an attribute’s type, db4o internally creates a new attribute of the same name,
but with the new type. The values of the old typed attribute are still present, but hidden. If you
change the type back to the old type, the old values will still be there.

Y ou can access the values of the previous attribute data using the STORED FIELD API.
In class STORED CLASS theroutine

stored field(fieldname: SYSTEM STRING;
fieldtype: SYSTEM OBJECT): STORED FIELD
-- Existing stored field of this stored class.
require
nonempty fieldname:
not {SYSTEM STRING}.is null or empty(fieldname)
fieldtype not void: fieldtype /= Void

4

gives you access to the attribute whose type was changed.

In class STORED FIELD, the routine

get (on_object: SYSTEM OBJECT) : SYSTEM OBJECT
-- Field value on “on_object'
require
on object not void: on object /= Void

returns the old attribute value for the specified object.

5.25 Changing Visbility of Attributes

In Eiffel for .NET, all the attributes and routines are compiled to public fields and public
methods, even if the corresponding Eiffel features are exported to { NONE }. This leads to the
fact that the change in visibility in an attribute does not have an impact on schema evolution.

5.3 Refactoring of Class Hierarchy

From the db4o documentation we learned that db4o does not directly support the following
two refactorings:

« Inserting classes into an inheritance hierarchy;
« Removing classes from an inheritance hierarchy.

However, the above statement only holds for native .NET applications, it is not true for
Eiffel for .NET applications.

As we know, in Eiffel for .NET the multiple inheritance of Eiffel types is realized
through the multiple inheritance of .NET interfaces. With respect to refactoring this means:

« Inserting classes into an inheritance hierarchy is reduced to the refactoring issue of
adding fields defined in the new classes to the classes implementing the subinterfaces;

« Removing classes from an inheritance hierarchy is reduced to the refactoring issue of
removing fields defined in the removed classes from the classes implementing the
subinterfaces.

42

6 Implementation

The classes implemented fall into five categories:
« Helper classes
» ATTRIBUTE NAME HELPER
» GENERICITY HELPER
« Trandator
» POINTER TRANSLATOR
« Wrapper classes for queries
» QUERY
» CONSTRAINT
» EIFFEL PREDICATE
« Worapper classes for configurations
» CONFIGURATION
» OBJECT CLASS
= OBJECT FIELD
» EIFFEL CONFIGURATION
« Wrapper classes for metadata of stored classes and fields
» STORED CLASS
» STORED FIELD

In the following sections we are going to give an introduction to each of these classes.

6.1 Helper Classes

Class ATTRIBUTE NAME HELPER provides routines for translation of Eiffel attribute
names to the corresponding .NET field names, and class GENERICITY HELPER provides
routines for conformance test.

43

6.1.1 ATTRIBUTE NAME HELPER

ClassATTRIBUTE NAME HELPER isaframework class and it is not intended for direct use.
It inherits from INTERNAL which is located in the assembly
EiffelSoftware.Runtime.dll. INTERNAL gives access to the run-time type
information of Eiffel objects and it also provides routines for mapping of Eiffel typesto .NET

types.

get net field name (attrname: SYSTEM STRING;
extent: SYSTEM TYPE): SYSTEM STRING
-- The corresponding .NET field name for “attrname'
-- in “extenttype'
require
attrname not void or empty:
not {SYSTEM STRING}.is null or empty (attrname)
extent not void: extent /= Void
ensure
result not void or empty:
not {SYSTEM STRING}.is null or empty (Result)

get net field name returns the corresponding .NET field name of an Eiffel
attribute in a certain class. To do so, it traverses through the fields in the implementation class
to find the field marked with the custom attribute EIFFEL_NAME ATTRIBUTE whose vaue
isequal to the name of the original Eiffel attribute; on the other hand, if thereis already afield
with the name equal to the first argument attrname, then the name of this field will be
returned.

get_all field names (netfieldname: SYSTEM_ STRING;
extenttype: SYSTEM TYPE): LINKED LIST [SYSTEM STRING]
-- All related field names of "netfieldname’',
-- including "netfieldname' and its new names
-- in implementation classes of “extenttype'
require
netfieldname not void or empty:
not {SYSTEM STRING}.is null or empty (netfieldname)
extenttype not void: extenttype /= Void
ensure
result not void: Result /= Void
no_empty result: Result.count > 0

Given a field name in a certain implementation class and the interface the class
implements, get _all field names returnsalist of all therelated field names which can
be found in all the implementation classes of the interface. Continuing with the example
introduced in section 2.3, the call

get _all field names(“$Sheightl”, {PARALLELOGRAM})

would return alist containing “$$height1”, “$$width” and “$$sideLength”.

get descendant field name (netfieldname: SYSTEM STRING;
interface: SYSTEM TYPE; destype: SYSTEM TYPE): SYSTEM STRING
-- Field name corresponding to "netfieldname'
-- in “destype'
require
eiffel field: netfieldname.starts with string("$s")
interface: interface.is interface
implementation: not destype.is interface
ensure
result not void or empty:
not {SYSTEM STRING}.is null or empty (Result)

get descendant field name finds out the corresponding field name for
“netfieldname’ in the implementation class “destype’ which implements
“interface’. Foracal

get descendant field name (“$$heightl”, {PARALLELOGRAM},
impl rectangle)

where impl rectangle is the System.Type object for the implementation class
Impl.Rectangle, it would proceed asfollows:
1. Find out the name of the getter method for thefield $Sheightl,itisHeight1,;

2. Use INTERFACE_ MAPPING to find out the name of the method in Impl.Rectangle
which implements the Height1 method in interface Parallelogram, it is Width
(see section 2.4.1 for details);

3. Convert widthto $swidth, and $swidth istheresult of the function.
However, things become trickier when we have attributes of anchor types which are

renamed in descendant classes. Suppose we have class GLIST [G] and class GSUBLIST [G]
declared asfollows:

class
GLISTI[G]

feature
item: G

next: like Current

end

45

class
GSUBLIST [G]

inherit
GLISTI[G]
rename
item as subitem,
next as subnext
end

end
Then for acall

get descendant field name (“$$next”, {GLIST[SYSTEM OBJECT] },
impl gsublistreference)

where impl gsublistreference isthe System. Type object for the implementation
class Impl .GsublistReference, it would proceed asfollows:

1. Find out the name of the getter method for thefield $Snext, it iSNext;

2. Use INTERFACE MAPPING to find out the name of the method in
Impl.GsublistReference which implements the Next method in interface
GlistReference,itis_Next38 whichisimplemented as follows:

.method public hidebysig newslot virtual
instance class GlistReference
_Next38() cil managed

.override GlistReference: :Next
// Code size 12 (0xc)
.maxstack 8
IL 0000: 1ldarg.o0
IL 0001: callvirt instance class GsublistReference
Impl.GsublistReference: : Subnext ()
IL 0006: castclass GlistReference
IL 000b: ret
} // end of method GsublistReference:: Next38

In the method body we see that Next38 simply cals the method Subnext in class
Impl.GsublistReference. To extract the string Subnext from the method body,
we use the Reflector for .NET assembly which allows to easily view, navigate, search,
decompile and analyze .NET assembliesin C#, Visua Basicand IL.

3. Convert Subnext to $Ssubnext, and $$subnext isthe result of the function.

46

is eiffel type(t: SYSTEM TYPE): BOOLEAN
-- Is "t' an Eiffel type?
require
t not void: t /= Void
An Eiffel class can only rename attributes inherited from an Eiffel class, and aso thereis
no mapping done for an attribute name if the attribute is inherited from a non-Eiffel class. The
routine is_eiffel type can be used to check whether atype is an Eiffel type or not. It
makes use of the fact that all the Eiffel types implement theinterface EIFFEL_TYPE INFO.

get_descendant_ types(t: SYSTEM TYPE): LINKED LIST[SYSTEM TYPE]
-- A list of all implementation classes of “t!
require
t not void: t /= Void
ensure
result not void: Result /= Void

get descendant types returnsalist of al the implementation classes of the given
interface in the current application domain.

get descendant eiffel types(t: SYSTEM TYPE)
LINKED LIST[SYSTEM TYPE]

-- A list of all implementation classes of “t!
-- which are defined in Eiffel assemblies

require
t not void: t /= Void

ensure
result not void: Result /= Void

get descendant eiffel types returns alist of all the implementation classes
of the given interface which are defined in the Eiffel assemblies loaded in the current
application domain (Eiffdl assemblies ae marked with the attribute
EIFFEL CONSUMABLE ATTRIBUTE).

6.1.2 GENERICITY HELPER

Class GENERICITY HELPER is used in SODA queries and Native Queries when generic
objects or tuples are queries for, see section 3.2.3 and 3.3.2 for details. It inherits from class
INTERNAL which provides detailed run-time type information of Eiffel objects. The public
routinesin GENERICITY HELPER have the following contract view:

47

conforms to object (objl: ANY; obj2: ANY): BOOLEAN
-- Does “objl' conform to “obj2'?
-- The result takes conformance of generically derived
-- types into account.
require
objl not void: objl /= Void
obj2 not void: obj2 /= Void

get conforming objects(a_list: ILIST;
an _object: SYSTEM OBJECT): LIST[SYSTEM OBJECT]
-- List of objects in “a list' which conform to
-- Tan_object!'
require
list not void: a_list /= Void
an_object not void: an object /= Void

6.2 Trandator

Db4o provides a way to specify a custom way of storing and retrieving objects through the
IOBJECT_ TRANSLATOR and IOBJECT CONSTRUCTOR interfaces.

In Eiffel for .NET, thereis afield named $$ type in every implementation class,
it is used to store the run-time type information of actual generic parameters in case of a
generic type. $3 type contains aRunt imeTypeHandle which hasafield value of
type System.IntPtr which encapsulates a pointer to an interna data structure that
represents the type. With the original db4o setting, System. IntPtr cannot be stored, it
means a_glist.s$$ type.type.Value = 0 dfter retrieving and activating the
Impl.GlistReference object. If wethen accessa glist.item, an exception would
be thrown with the following exception message:

Tag: Object reference not set to an instance of an object.
System.NullReferenceException: Object reference not set to an
instance of an object.

at
EiffelSoftware.Runtime.Types.RT CLASS TYPE.conform to(RT TYPE
other)

The solution is a trandator for POINTER which is the Eiffel counterpart for
System.IntPtr. Since RuntimeTypeHandle.Value remains unchanged only within
one application run, it makes no sense to store the pointer vaue. Class
POINTER TRANSLATOR, oOn storing an instance of POINTER, searches for the

48

corresponding TypeHandle and then stores the type name and its containing assembly’s
location (i.e., the absolute path of the assembly) in the format of

full name of type, location of assembly

On retrieving and activating of a certain POINTER object, the trandator reads the type
name and the assembly’s location from the database, and initializes avalid POINTER object.
With this approach, no exception is thrown when accessing a generic attribute of an object.

Class POINTER TRANSLATOR inherits from interface IOBJECT CONSTRUCTOR and
implements the following four methods of the interface:

on_activate(container: IOBJECT CONTAINER;
application object: SYSTEM OBJECT;
stored object: SYSTEM OBJECT)
-- db4o calls this method during activation.

on instantiate (container: IOBJECT CONTAINER;
stored object: SYSTEM OBJECT): SYSTEM OBJECT
-- Convert “stored object' to a POINTER.
-- db4o calls this method when “stored object' needs
-- to be instantiated.
require else

container not void: container /= Void
stored object not void: stored object /= Void

on store (container: IOBJECT CONTAINER;
application object: SYSTEM OBJECT): SYSTEM OBJECT
-- Convert the POINTER “application object' to its
-- corresponding type name and assembly’s location
-- in the format of
-- “full name of type, location of assembly’
-- db4o calls this method during storage and query
-- evaluation.
require else
container not void: container /= Void
application obj not void: application object /= Void
ensure then
result not void: Result /= Void

stored class: SYSTEM TYPE
-- {SYSTEM STRING} converted to

49

Class POINTER TRANSLATOR uses two hash tables for an efficient lookup: one has
POINTER instances as key and type, assembly strings as value, and it is used on
storing POINTER instances; the other one has type, assembly strings as key and
POINTER instances as value, and it is used on instantiating POINTER objects. On
initialization of a POINTER TRANSLATOR instance, both hash tables are created and then
filled with key-value pairs found in al the assemblies in the current application domain, and
after that they are updated each time a new assembly is loaded into the current application
domain.

Also note that since several database sessions may exist at the same time, and the
tranglator including its hash tables is shared among the sessions (the database configuration is
global), we need a thread-safe way to update the hash tables. Monitors are used for this
purpose.

There is one disadvantage of storing type, assembly strings for a certain
POINTER: once you move the assembly to another location, then POINTER TRANSLATOR
is not able to map the type, assembly string to the POINTER any more and an
exception will be thrown (from within the routine
POINTER TRANSLATOR.on instantiate), which means, retrieving generic objects
would then fail. If you have to move an assembly to another location, you could implement
your own trandator similar to POINTER TRANSLATOR to update the type, assembly
strings.

6.3 Wrapper Classesfor Queries

6.3.1 Wrapper Classesfor SODA Query API

Two wrapper classes QUERY and CONSTRAINT are implemented to ensure correct query
results of SODA queries for Eiffel objects (see section 3.2 for details).

Class QUERY exposes the following features:

query: IQUERY
-- The actual db4o query object

executed: BOOLEAN
-- Is query already executed?

50

constrain(constraint: SYSTEM OBJECT) : CONSTRAINT
-- Add “constraint' to “Current' node and
-- return a new ~CONSTRAINT' for this gquery node or
-- "Void' for objects implementing the “IEVALUATION'
-- interface.

require

constraint not void: constraint /= Void
not executed: not executed

constraints: ICONSTRAINTS
-- An "ICONSTRAINTS' object that holds an array of all
-- constraints on this node.
require
not executed: not executed

descend(eiffel fieldname: SYSTEM STRING;
extenttype: SYSTEM TYPE): QUERY
-- A reference to a descendant node of
-- “eiffel fieldname' in the query graph
require
not executed: not executed
fieldname not void or empty:
not {SYSTEM STRING}.is null or empty(eiffel fieldname)
extenttype not void: extenttype /= Void

execute: IOBJECT SET
-- Execute query and return the result of query.
require
not executed: not executed

order ascending: QUERY
-- Add an ascending order criteria to this node of the
-- guery graph and return ~Current' to allow the
-- chaining of method calls.
require
not executed: not executed

order descending: QUERY
-- Add a descending order criteria to this node of the
-- query graph and return ~Current' to allow the
-- chaining of method calls.
require
not executed: not executed

51

sort by (comparator: IQUERY COMPARATOR): QUERY
-- Sort the resulting "IOBJECT SET' by ~comparator'
-- and return “Current' to allow the chaining of
-- method calls.
require
not executed: not executed
comparator not void: comparator /= Void

optimize (config: ICONFIGURATION)
-- Optimize ~“Current' and its child query nodes
-- by setting index for fields involved.

Class CONSTRAINT exposes the following features:

constraint: ICONSTRAINT
-- The actual ICONSTRAINT object for SODA query

and (with: CONSTRAINT): CONSTRAINT
-- Link “Current' with “with' for AND evaluation,
-- return a new constraint, that can be used for
-- further calls to “and ’ or “or '/
require
with not void: with /= Void

by example: CONSTRAINT
-- Set the evaluation mode to object comparison (query
-- by example), return "“Current' to allow the chaining
-- of method calls.

contains: CONSTRAINT
-- Set the evaluation mode to containment comparison,
-- return “Current' to allow the chaining of method
-- calls.

ends_with(case sensitive: BOOLEAN) : CONSTRAINT
-- Set the evaluation mode to string ends_with
-- comparison, comparison will be case sensitive if
-- “case sensitive' is true,
-- case insensitive otherwise,
-- return ~“Current' to allow the chaining of method
-- calls.

52

equal : CONSTRAINT
-- Used in conjunction with “CONSTRAINT.smaller' or
-- TCONSTRAINT.greater' to create constraints like

-- "smaller or equal", "greater or equal".
-- Return “Current' to allow the chaining of method
-- calls.

get object: SYSTEM OBJECT
-- The "“SYSTEM OBJECT' the query graph was constrained
-- with to create “Current'.

greater: CONSTRAINT
-- Set the evaluation mode to ">",
-- return “Current' to allow the chaining of method
-- calls.

identity: CONSTRAINT
-- Set the evaluation mode to identity comparison,
-- return “Current' to allow the chaining of method
-- calls.

like : CONSTRAINT
-- Set the evaluation mode to "like" comparison,
-- return “Current' to allow the chaining of method
-- calls.

not : CONSTRAINT
-- Turn on not comparison,
-- return “Current' to allow the chaining of method
-- calls.

Or_(with: CONSTRAINT) : CONSTRAINT
-- Link “Current' with “with' for OR evaluation,
-- return a new constraint, that can be used for
-- further calls to “and '’ or “or '
require
with not void: with /= Void

smaller: CONSTRAINT
-- Set the evaluation mode to "<"
-- return “Current' to allow the chaining of method
-- calls.

53

starts_with(case sensitive: BOOLEAN) : CONSTRAINT
-- Set the evaluation mode to string starts_with
-- comparison, comparison will be case sensitive 1if
-- “case_sensitive' 1is true,
-- case insensitive otherwise,
-- return ~“Current' to allow the chaining of method
-- calls.

The usage of SODA queries for Eiffel objects is amost the same as the usage of SODA
gueries for native .NET objects, except for the routine descend. If there is only one
descend ("a_field name") inaquery, then we can rely on the type information of the
extent specified for the query to find out the NET name of a_field name. Problems arise
when we have more than one descend in sequence, in these cases field name mapping
cannot be done if run-time type information for the class containing the field lacks in the
guery wrapper. Here are some use cases illustrating the issue:

« Using non-Eiffel .NET classes

Suppose there is a .NET class Stack with a field top of type System.Object,
then an Eiffel for .NET application uses it to stack CAR objects and then stores severa
Stacksin the database. In a query, the client wants to get all Stacks whose top car

isaFerrari.
constraint := query.constrain ({STACK})
subquery := query.descend("top") .descend("model")

Since the .NET reflection mechanism returns System.Object as the type of
Stack.top, how do we know top is a CAR object at runtime? And how to get
the .NET name of model in CAR?

o Genericity

Suppose there is a generic class GLIST [G] with item: G, and its client usesit as
GLIST[CAR]. In the .NET assembly, GLIST[G] becomes GlistReference
and item becomes of type System.Object. The question is still how to map
model of CAR toits.NET name?

constraint := query.constrain ({GLIST[CAR]})
subsubquery := query.descend("item") .descend ("model")

Since tuples are al generic (every tuple has an attribute $$nativeArray whichis
of type object []), thisquestion is also relevant when querying for tuples.

« Typeredeclaration in descendant classes

Suppose we have PARALLELOGRAM With center: POINT 2D and its descendant
class PARALLELOGRAM 3D which redeclares center as center: POINT 3D
(POINT_ 3D inherits from POINT 2D). we want to query for PARALLELOGRAM
objects whose z is smaller than 5:

constraint := query.constrain ({PARALLELOGRAM})
subsubquery := query.descend("center") .descend("z")

How to find the .NET name for z?

To make the above queries possible, we implemented the descend routine with the
following signature where the first argument is the attribute name, and the second argument is
the SYSTEM TYPE object of the class which contains the specified attribute.

descend(eiffel fieldname: SYSTEM STRING;
extenttype: SYSTEM TYPE): QUERY
-- A reference to a descendant node of
-- “eiffel fieldname' in the query graph
require
not executed: not executed
fieldname not void or empty:
not {SYSTEM STRING}.is null or empty(eiffel fieldname)
extenttype not void: extenttype /= Void

Using the wrapper classes QUERY and CONSTRAINT, the queries would be

« Using non-Eiffel .NET classes

constraint := query.constrain ({STACK})
subquery := query.descend("top", {STACK})
subsubquery := subquery.descend ("model", {CAR})
subsubconstraint := subsubquery.constrain("Ferrari")
queryresult := query.execute

o Genericity
constraint := query.constrain ({GLIST[CAR]})
subquery := query.descend("item", {GLIST[CAR]})
subsubguery := subquery.descend("model", {CAR})
subsubconstraint := subsubquery.constrain("Ferrari")
queryresult := query.execute

55

« Typeredeclaration in descendant classes

constraint := query.constrain ({PARALLELOGRAM})
subquery := query.descend("center", {PARALLELOGRAM})
subsubquery := subqguery.descend("z", {POINT 3D})
subsubconstraint := subsubquery.constrain(5).smaller
queryresult := query.execute

This approach seems allittle redundant, but it manages to solve the problem.

6.3.2 Wrapper Classfor Native Queries

Class EIFFEL PREDICATE [OBJECT TYPE] is the wrapper class for
DB40 PREDICATE, meant to allow Eiffel developers using agents for Native Queries. See
section 3.3.4 for adetailed explanation of the class.

6.4 Wrapper Classesfor Configurations

6.4.1 Global Configuration for Eiffel Applications

InclassEIFFEL CONFIGURATION, database settings for Eiffel applications are configured
globally for al the db4o transactions. It has the following contract view:

class interface
EIFFEL CONFIGURATION

create
configure
feature -- Configuration

configuration: CONFIGURATION
-- Global configuration for db4o transactions

configure
-- Do global configuration for db4o transactions.

install translators
-- Install translator for POINTER.

end -- class EIFFEL CONFIGURATION

56

Before opening any db4o transaction, make sure that you have called the following
method in your client application

configure global is

local

c: EIFFEL CONFIGURATION
do

create c.configure
end

In the current version of EIFFEL CONFIGURATION, only POINTER TRANSLATOR
is installed. We also wanted to install TypeHandlers for Eiffel strings, i.e. classes STRING
and STRING 32, however, as of this writing, TypeHandlers do not work correctly yet, so
Eiffel developers are encouraged to implement TypeHandlers for Eiffel strings and install
themin EIFFEL_CONFIGURATION once TypeHandlers work correctly.

Custom TypeHandlers let you control the way objects are stored to the database and
retrieved in aquery. See
http://devel oper.db4o.com/Resources/view.aspx/Reference/l mplementation Strategies/TypeH
andlersfor details.

6.4.2 CONFIGURATION

Class CONFIGURATION is the wrapper class for ICONFIGURATION, and it exposes the
same methods as ICONFIGURATION, except for object class which has the following
signature:

object class(clazz: SYSTEM OBJECT): OBJECT CLASS
-- TOBJECT CLASS’ object to configure the specified
-- class. “clazz' can be "TYPE[SYSTEM OBJECT]',
-- "SYSTEM TYPE' or an object used as a template.
require
clazz not void: clazz /= Void

IOBJECT CLASS is used to configure dynamic behavior of how db4o deals with
objects stored in the database, such as activation depth, update depth, delete behavior,
indexing, etc. Configurations of the descendant classes must therefore also be involved.
That's why we implemented a wrapper class for TOBJECT CLASS, which is called
OBJECT CLASS, so that the Eiffel developers only need to “call configurations on an
interface, say {PARALLELOGRAM}, to have al the implementation classes of
Parallelogram configured accordingly, that is, Impl.Parallelogram,
Impl.Rhombus, Impl.Rectangle and Impl . Square (Seethe example in section 2.3).

57

6.4.3 OBJECT CLASS and OBJECT FIELD

Class OBJECT CLASS exposes the same methods as IOBJECT CLASS, except for
object field which hasthe following signature:

object field(fieldname: SYSTEM STRING): OBJECT_ FIELD
-- TOBJECT FIELD’ object to configure the specified
-- field.
require
nonempty fieldname: not
{SYSTEM STRING}.is null or empty (fieldname)

Class OBJECT FIELD exposes the same methods as TIOBJECT FIELD except for
rename Which has the following signature (see section 5.2.3 for an explanation of the
routine):

rename (old eiffel type: SYSTEM TYPE;
new name: SYSTEM STRING)
-- Rename this field as “new name’.
require
nonempty new name: not
{SYSTEM STRING}.is null or empty (new name)

For configurations of implementation classes of a certain interface, we create and
initialize an OBJECT_CLASS instance with a SYSTEM TYPE object of the interface, and
then call the corresponding configuration method to configure the implementation classes
accordingly. For example,

local

config: CONFIGURATION
do

create config.make global

config.object class ({ PARALLELOGRAM}) .update depth(2)
end

sets the update depth of Impl.Parallelogram, Impl.Rhombus, Impl.Rectangle
and Impl.Square to 2.

For configurations of some field in the implementation classes of a certain interface, we
create and initialize an OBJECT FIELD instance with an OBJECT CLASS instance and a
field name, and then call the corresponding configuration method to configure the fields
(including those renamed in the descendant classes) in al the implementation classes of the
interface. For example,

58

local
config: CONFIGURATION
oc: OBJECT CLASS

do
create config.make global
oc := config.object class ({PARALLELOGRAM})
oc.object field("heightl") .indexed (True)
end

sets field indexes for the fields Impl.Parallelogram.S$$heightl
Impl.Rhombus.3Sheightl, Impl.Rectangle.$3Swidth and
Impl.Square.$$sidelLength.

6.5 Wrapper Classesfor Metadata of Stored Classes and Fields

6.5.1 STORED CLASS

Class STORED CLASS is the wrapper class for ISTORED CLASS. It provides metadata
information of the stored classes.

STORED CLASS exposes the same methods as ISTORED CLASS except for
stored field which hasthe following signature:

stored field(fieldname: SYSTEM STRING;
fieldtype: SYSTEM OBJECT) : STORED FIELD
-- Existing stored field of this stored class.
require
nonempty fieldname: not
{SYSTEM STRING}.is null or empty(fieldname)
fieldtype not void: fieldtype /= Void
A STORED_ CLASS instance is initialized with an interface type or a template object,
and it only provides metadata information of the direct implementation class of the interface,
in case of {PARALLELOGRAM}, we only get information about the class

Impl.Parallelogram, no information is given about Impl.Rhombus oOr
Impl.Rectangle, €tC.

59

6.5.2 STORED FIELD

Class STORED_ FIELD is the wrapper class for ISTORED FIELD. It provides metadata
information of the stored fields in a stored class.

STORED FIELD exposes the same methods as ISTORED FIELD except for
rename _ Which hasthe following signature:

rename_(old eiffel type: SYSTEM TYPE; new name: SYSTEM STRING)
-- Rename this field as "new name'.
require
nonempty new name: not
{SYSTEM STRING}.is null or empty(new_name)

Class STORED FIELD only gives information about the field in the direct
implementation class of a specified interface. Fields in other implementation classes of the
interface are not involved. For example,

local
sc: STORED CLASS
sf: STORED_FIELD

do
create sc.make (object container.ext, {PARALLELOGRAM})
sf := sc.stored field(“heightl”, {INTEGER})
sf.create_index

end

only creates an index for the field Impl.Parallelogram. $Sheightl, but not for the
fields Impl.Rhombus.$Sheightl, Impl.Rectangle.$Swidth or
Impl.Square.SsidelLength.

60

7 Using .NET Delegates

Db4o enables the client to add listeners to an IOBJECT CONTAINER for the following
events

o QueryStarted

o QueryFinished

« Creating (first time an object is about to be saved)
o Created (after the object is saved)

« Activating

o Activated

« Deactivating

o Deactivated

« Updating

« Updated

« Deleting

o Déeeted

« Committing

o Committed

These callbacks can be used to gather statistics information, to perform validity or

constraints check and stop the execution if necessary, or to initiate some special behavior after
the action has been taken.

For QueryStarted and QueryFinished events the client registers
QueryEventHandler delegate

public delegate void QueryEventHandler (
Object sender, QueryEventArgs args)

For Creating, Activating, Deactivating, Updating and Deleting events
the client registers CancellableObjectEventHandler delegate:

public delegate void CancellableObjectEventHandler (
Object sender, CancellableObjectEventArgs args)

61

For Created, Activated, Deactivated, Updated and Deleted events the
client registers ObjectEventHandler delegate:

public delegate void ObjectEventHandler (
Object sender, ObjectEventArgs args)

For Committing and Committed events the client registers
CommitEventHandler delegate

public delegate void CommitEventHandler (
Object sender, CommitEventArgs args)

Delegates are supported in Eiffel for .NET. For example, in a C# program we write the
following code to register an OnCreated event handler to container:

IObjectContainer OpenObjectContainer ()

try {
IObjectContainer db = Db4oFactory.OpenFile("f.db4do") ;
IEventRegistry registry =
EventRegistryFactory.ForObjectContainer (db) ;
registry.Created += new ObjectEventHandler (OnCreated) ;
return db;
{ catch (Exception ex) {

return null;

static void OnCreated(object sender, ObjectEventArgs args)

// handling code

The Eiffel for .NET counterpart is

open object container: IOBJECT CONTAINER 1is
local
registry: IEVENT REGISTRY
handler: OBJECT EVENT HANDLER
do
Result := {DB 40 FACTORY}.open file("f.db4o")
registry :=
{EVENT REGISTRY FACTORY}.for object container (Result)
create handler.make (Current, S$on created)
registry.add created (handler)
rescue
Result := Void
end

62

on created(sender: SYSTEM OBJECT; args: OBJECT_ EVENT ARGS) 1is
do
-- handling code
end

The Eiffel’ s specific mechanism for objects which represent operations, called agents, is
more powerful than .NET delegates because of its support for open and closed arguments and
for open and closed target. However, agents are not compatible with .NET delegates (all
agents are of type FUNCTION or PROCEDURE, while all delegates are descendants of the
DELEGATE class), which means for the above example,

create handler.make (Current, $Son created)
registry.add created (handler)

cannot be replaced with
// compile-time error: non-conforming actual argument in

// feature call
registry.add created(agent on created(?, ?))

Conclusion: we can only use delegates, not agents, to register db4o callbacks.

63

8 Cross Compatibility between C# and Eiffel for .NET

Since Eiffel for .NET and C# are both languages supported on the .NET Framework, it might
be interesting to see whether objects stored with an Eiffel application can be retrieved by a C#
application and vice versa. The answer isyes, except for code involving genericity and tuples.

8.1 Using Eiffel to Retrieve C# Objects

An Eiffel application needs two things to be able to retrieve C# objects: the assembly which
contains the class definitions of the objects and the database file.

There is nothing special with regard to querying for classes, structs and interfaces. We
just write queries as we would do in a C# program. For example, to retrieve all
PARALLELOGRAM instanceswhose height1 isgreater than 10, we write:

retrieve is
local

db: IOBJECT_ CONTAINER
closed: BOOLEAN
query: IQUERY

c: ICONSTRAINT
resultos: IOBJECT_ SET

do
db := {DB 40 FACTORY}.open file("NetObjects.db4o")
query := db.query
c := query.constrain (({PARALLELOGRAM}).to cil)
¢ := query.descend (" heightl") .constrain (10).greater
resultos := query.execute
closed := db.close
rescue
if (not closed and then db /= Void) then
closed := db.close
end
end

({PARALLELOGRAM}) .to_cil is the Eiffd notation to get the type of
PARALLELOGRAM. Queriesfor structs or interfaces are done in asimilar way.

Eiffel for .NET does not consume .NET generics, so if there are .NET generic objects
stored in a database file, then you cannot retrieve them in an Eiffel for .NET application.

8.2 Using C#to Retrieve Eiffel Objects

To get correct query results of Eiffel objects, it isimportant to

1. Install PointTranslator before opening the database, see section 6.2 and 6.4 for
details,

2. Always query for interfaces both in SODA and Native Queries because the multiple
inheritance hierarchy structure of Eiffel types is preserved through the multiple inheritance
hierarchy structure of .NET interfaces;

3. Use the helper classes, especially QUERY and CONSTRAINT for SODA queries (see
section 3.2 for reasons described in detail).

The following is an example which shows how to retrieve al instances of
Parallelogramwhose height1 isgreater than 10 (Parallelogram isan interface):

¥oid Retrieve ()
IObjectContainer db =
Db4oFactory.OpenFile ("eiffel objects.db4o");
try
{ |
Query eiffelQuery =
Db4oForEiffel.Create.Query.MakeFromQuery (db.Query()) ;
Constraint eiffelConstraint =
eiffelQuery.Constrain(typeof (Parallelogram)) ;
Query eiffelSubquery =
eiffelQuery.Descend("heightl", typeof (Parallelogram)) ;
Constraint eiffelSubconstraint =
eiffelSubquery.Constrain(10) .Greater () ;
IObjectSet resultos = eiffelQuery.Execute() ;

finally

db.Close () ;

}

It is difficult to get a correct query result for an Eiffel generic type or tuple in C#. In
Eiffel we have the helper class GENERICITY HELPER which takes advantage of the Eiffel
for .NET run-time system to get the type information of actual generic parameters of an Eiffel
generic object. To tell whether a candidate object is of the right (generic) type, the routines in

65

GENERICITY HELPER need asample object which provides the necessary type information
of actual generic parameters. For example, the object

create {GLIST[PARALLELOGRAM] }

has PARALLELOGRAM as its first actual generic parameter. However, on the C# side, we
don’'t have a straightforward way to create an Eiffel generic object with the necessary type
information of the actual generic parameters. That means, GENERICITY HELPER cannot be
used for conformance tests in C# applications, and we may get non-conforming objects in a
query result for Eiffel generic objects.

66

9 Persistenceof C Structs

Eiffel for NET can be used to persist C structsin db4o databases.

First, we define astruct in, say, point . h:

typedef struct {
int x;
int y;

} Point;

Second, we implement an Eiffel wrapper class POINT for struct Point:

class
POINT

create
make,
make with x y

feature {NONE} -- Initialization
make is
-- Creation method
do
create internal item.make(structure size)
end

make with x y(a x, a y: INTEGER) is

-- Initialize Current with "a x' and

Ta y'.
do

make

set x(a x)

set y(a vy)
end

feature -- Command
set _x(a_x: INTEGER) is
-- Set "x' with Ta_x'.

do
c_set x(item, a_ x)
X 1= a x

ensure
set: x = a_x

end

67

set _y(a_y: INTEGER) is
-- Set “y' with "a y'.

do
c_set y(item, a_vy)
Yy = ay
ensure
set: y = a y
end
feature -- Query

structure size: INTEGER is
-- Size of Current structure.
do
Result := c_size of point
end

x: INTEGER
-- x position

y: INTEGER
-- y position

item: POINTER is
-- Pointer to C struct

do
Result := internal item.item
ensure
not void: Result /= default pointer
end
feature {NONE} -- Implementation

internal item: MANAGED_ POINTER
-- Managed pointer to the struct.

feature {NONE} -- C externals
c_size of point: INTEGER 1is
-- Point struct size.
external
"C [macro %$"point.h%"]"
alias
"sizeof (Point)"
end

68

c_set x(a_item: POINTER; a x: INTEGER) is
-- Set "a_item''s x with “a x'

external

"C inline use %"point.h%""
alias

u[

}
]Il

end

((Point *)sa item)->x =

(EIF_INTEGER) $a_x;

c_set y(a_item: POINTER; a y: INTEGER) is
-- Set "a_item''s y with “a y!

external

"C inline use %"point.h%""
alias

u[

}
]n

end

((Point *)sa item)->y =

¢ x(a_item: POINTER): INTEGER is
-- Ta item''s x
external
"C inline use %"point.h%""
alias

u[
]n

end

((Point *)sa item)->x

c_y(a_item: POINTER) : INTEGER is
-- Ta_item''s y
external
"C inline use %"point.h%""
alias
|||:
((Point *)Sa item) ->y
]Il

end

end

69

(EIF INTEGER) Sa_ y;

Note that in POINT we have two attributes x: INTEGER and y: INTEGER which
correspond to int x and int y in struct Point. We need this duplication to make
sure that besides the memory location of a Point, its X- and y-coordinates are also stored in
the database.

Third, store POINT instances as usudl:

store is
-- Store TPOINT' instances.
local
p: POINT
do

create p.make with x y (1, 2)
object container.store (p)
end

Toretrieve al the POINT instances whose x is greater than 1, we write

retrieve is
-- Retrieve “POINT' instances.
local
query: IQUERY
constr: ICONSTRAINT
resultos: IOBJECT_ SET

p: POINT
do
query := object container.query
constr := query.constrain(({POINT}).to cil)
constr := query.descend("$$x") .constrain (1) .greater
resultos := query.execute
end

({POINT}) .to cil istheEiffel notation for the run-time type of POINT.

70

10 Conclusionsand Future Work

Eiffel iswell integrated in the NET Framework. The multiple inheritance hierarchy structure
of Eiffel classes is preserved, and feature adaptation techniques also work well in the .NET
run-time system. However, there are some issues around Eiffel genericity.

Eiffel applications can use al db4o features, but we must be careful when querying for
Eiffel objects and when doing class- or field-related configurations.

While in case of querying for non-generic objects, SODA and Native queries return
objects according to the Eiffel’s conformance rule, in case of querying for generic objects,
developers must take over the task of filtering out non-conforming objects using the helper
class we implemented.

A wrapper for SODA Query API, taking care of al the aforementioned issues, has also
been devel oped.

Using agents for Native Queries makes db4o very appealing to Eiffel developers, though
the performance overhead may sometimes be significant. The db4o team is making a big
effort to optimize Native Queries so that they can be run against indexes. Eiffel applications,
however, cannot take advantage of the optimization algorithms yet. The open question is
therefore whether and how Native Queries in Eiffel applications can be optimized to be run
against indexes.

Wrapper classes are implemented for class- and field-related configurations. They ensure
a consistent database behavior when activating, updating, deleting and indexing objects in the
sense that configurations are done on all the descendant classes of a specified class.

Wrapper classes are also implemented for metadata information of stored classes and
fields. Using them the Eiffel developer can use the origina Eiffel class names or feature
names to get the related information.

Db4o supports refactoring while some approaches may be inappropriate.

As for the cross compatibility between Eiffel and other .NET (e.g., C#) applications, we
can say that we can use Eiffel to retrieve C# objects and vice versa except for generic objects.

Having a native implementation of an object-oriented database for the Eiffel

programming language would be nice so that some or all the issues encountered could be
avoided.

71

References

Meyer, B.: Object-Oriented Software Construction, 2nd edition. Prentice Hall, 1997.
Smacchia, P.: Practical .NET2 and C#2. Paradoxal Press, 2005.
.NET Developer Center, http://msdn2.microsoft.com/en-us/library/aal39615.aspx

Simon, R., Stapf, E., Meyer, B.: Full Eiffel on the .NET Framework,
http://msdn2.microsoft.com/en-us/library/ms973898.aspx

5. Db4do documentation, http://devel oper.db4o.com/Resources/view.aspx/Documentation
6. Project web site: http://devel oper.db4o.com/Proj ectSpaces/view.aspx//Defcon
7. Reflector for .NET: http://www.aisto.com/roeder/dotnet/

IS -

72

Appendix Getting Started with Db4o for Eiffel

In this appendix we show you how to use db4o databases within Eiffel applications.

Step 1: Download Db4o Assembly

Because of acritical bug in the db4o assemblies before version 7.1.26 (see section 3.2.5), it is
important that you download a db4o version later than 7.1.26.

Db4o download center:
http://devel oper.dbd4o.com/files/defaul t.aspx

Step 2. Download Reflector for .NET Assembly

In the implementation we take advantage of the Reflector for .NET assembly to examine
Eiffel for .NET assemblies. Y ou can download the assembly at

http://www.ai sto.com/roeder/dotnet/

or

https://svn.origo.ethz.ch/defcon/source code/references/Reflector.exe

Step 3: Download Sour ce Code of Db4o for Eiffel

The project is implemented in Eiffel, and its source code is to be imported into your project.
The source code is available at

https://svn.origo.ethz.ch/defcon/source code/db4o for eiffel.zip

After downloading the zip file, please extract the file and then move the
db4o for eiffel directory to the directory in which your project will reside, say
db4o example.

73

Step 4: Download EiffelStudio

It is common that Eiffel developers use EiffelStudio for developing Eiffel applications. You
can download it at

https.//www?2.eiffel.com/downl oad/

or at

http://eiffel studio.origo.ethz.ch/download

The recommended version for Windows XP is Eiffel Studio 6.1.6.9962, other versions of
6.1.x seem to have problems with debugging Eiffel for NET applications.

Step 5: Create an EiffelStudio Project

Until now you should have a project directory called db4o example with the
db4o for eiffel directoryinit.

Start EiffelStudio, and in the pop-up window select “Microsoft .NET application” and
then click “ Create” (see screenshot).

Wi EiffeiStudio X
e
< oraryincluded)
. with Eifelisian 2
. vith WEL
Open project
Nam Target Fah
< >
& Add Project
(5]
] Don't show this dislog at startup
o

Click “Next >" to continue.

74

New .NET Application Wizard FEX

Welcome to the
new .NET Application Wizard

Using this wizard you can create & project [execulable
or dynamic libran] taigeting the Microsoft NET platform,

The generated application will un on any system
wherethe NET runtime is installed

To continue, click Nest.

| Met> | cancdl |

In the next window specify the project name as “db4o_example”’ and the project location

asthe location of your db4o example directory. Click “Next >”.

lew .NET Application Wizard

Project Name and Project location

“ou can choose the name of the praject and .ngt
the directory where the prajsct wil bs generated.

Please fil i
e name of the project (without spaces)
The directory where you want the Effel classes to be generated.
Project name:
\dhan_examp\e

Project location:
[+4D ocumsits snd Settingstrinthy Documentsimsster Hesis\dbdn_ssamld Browse.

¥ Compile the generated projsct

<Baok | Mets | Cancdl |

Configure the .NET application as shown in the following screenshot:

ew .NET Application Wizard Q@El

NET Application type and Project settings
You can chaose ko create a.exe or a di file net
and select the names of the root class and its creation routine,

“You can create an executable file (.exs) o dynamic-ink fbrary [.di)
+ Exscutable v Lonsole applicatiors

 Dynamic-Link Libiary

Root class name:
[APPLICATION

Creation rautine name
[make

v Usze mast recent CLR Version

<Back | Nets | Concel |

75

Click “Finish” to generate and compile the project.

New .NET, Application Wizard (=13

Completing the New .NET
Application Wizard

't'ou have specified the following settings: A

Project name:
o_sxample
Project location

C:\Documents and Settings'iin\My Documentsimaster
hesishdbéo_swample

Step 6: Add Assembliesto Your Project

In the “Clusters’ panel right-click “Assemblies” and in the context-menu select “Add
Assembly ..”. Then in the “Add Assembly” window specify the location of the db4o
assembly Db4objects.Db4o.d11 toimport it into the project.

Perform the same steps for the Reflector for .NET assembly Reflector. exe.

WeasoneedtheEiffelSoftware.Runtime assembly which can be selected in the
“Add Assembly” window.

Step 7: Rename Classesto Avoid Name Clashes

In Eiffel for .NET every class must have a unique class name, so we have to rename some
classesin Db4objects.Db4o.dll andReflector.exe to avoid name clashes.

Click “Project” in the menu bar and select “Project settings ...”.

76

I Project Settings {dh4a_for_eiffel) Q@IE‘

x £
[System = General
={13] Targst: dbto_for_eiffel
i Assertions Name dbdobiects.db4a
=7 Groups Description
{8 Clusters Fead Only False
= Assemblies Lecation ‘referencesiDbdobiects. Dbdo di
°3] - Advanced
w2 eiffelsaftware runtime Condition
=5 mscorlib Prefix
2 reflector Renaming PREDICATE=>DB40_PREDICATE FIELD_INFO=>DB40_FIELD_INFO
{oei] Libraries Assembly Name
{6 Precompile Assembly Culture
= (% Advanced Assembly Version
Ay, Warrings Assembly Public Key Token
[T Debug
{=] Externals
[SA Tasks
A Varisbles
€2 Type Mapping
Renaming: Renaming of dlasses in this group.

In the “Project Settings” window, navigate to the “db4objects.db4o” item in the left
panel, then in the right panel click inside the cell next to “Renaming”. A window for editing
renaming then pops up. Rename PREDICATE as DB40 PREDICATE and rename
FIELD INFOas DB40 FIELD INFO.

[2] Edit Renaming g|

0ld name Mew name
PREDICATE DB40_PREDICATE
FIELD_INFO DE40_FIELD_INFO

[|j Add] [lﬁ Hemove]
[0K] [Cancel]

Similar for the Reflector.exe assembly, rename ASSEMBLY &S
REFLECTOR ASSEMBLY and rename ICONFIGURATION as
REFLECTOR ICONFIGURATION.

Step 8. Configure Db4o Databases for Eiffel Applications

Before storing and querying for Eiffel objects in db4o databases, we have to install
POINTER_TRANSLATOR, which is done in the class EIFFEL CONFIGURATION (see
section 6.2 for details). Add the following method in the APPLICATION class and cal it in
the root procedure make.

77

init is
-- Set global database configuration.
local

eiffel configuration: EIFFEL CONFIGURATION
do

create eiffel configuration.configure
end

make is
-- Run application.
do
init

end

Step 90 Open and Close a Db4o Database
To open and close a db4o database, add the following features to class APPLICATION:
feature -- Database control
db: IOBJECT CONTAINER
database file: STRING is "eiffel.db4o"
open database is
-- Open “db' of “database file'.
do
db := {DB 40 FACTORY}.open file(database file)

end

close database is

-- Close ~db'.
local

closed: BOOLEAN
do

closed := db.close
end

Step 10: Store Eiffel Objects

Suppose we have a class PARALLELOGRAM with two attributesheight 1 and height2:

78

class
PARALLELOGRAM

create
make

feature {NONE} -- Initialization

make (hl: INTEGER; h2: INTEGER) is
-- Initialize “heightl' with “hl',
-- “height2' with “h2'.
require
hl positive: hl > 0
h2 positive: h2 > 0

do
heightl := hil
height2 := h2
end
feature -- Access

heightl: INTEGER
height2: INTEGER

end

To store some PARALLELOGRAM objects we can write

store is
local
closed: BOOLEAN
do
open_database

db.store (create {PARALLELOGRAM} .make (10,
.make (20,

db.store (create {PARALLELOGRAM
close_database
rescue
if (db /= Void) then
closed := db.close
end
end

79

Step 11: Retrieve Eiffel Objects

Db4o supplies three querying mechanisms: Query-By-Example, SODA Query APl and
Native Queries.

Query-By-Example

The following query uses Query-By-Example to retrieve al the PARALLELOGRAM oObjects
whose height1 isequal to 10 and height2 isequal to 30:

retrieve gbe is

local
template: PARALLELOGRAM
resultos: IOBJECT SET
closed: BOOLEAN

do
open_database
create template.make (10, 30)
resultos := db.query by example (template)
printos (resultos)
close_database

rescue
if (db /= Void) then
closed := db.close
end
end

where printos outputs the PARALLELOGRAM objects in the query result to the console:

printos (os: IOBJECT SET) 1is
local
p: PARALLELOGRAM
do
from
until not os.has_ next
loop
p ?= oOs.next
if (p /= Void) then
io.put string("Parallelogram (" + p.heightl.out
+ ", " + p.height2.out + ")")
io.put_new line
end
end
end

80

SODA Query API

To retrieve all PARALLELOGRAM objects whose height1 is greater than 10, you can write
the following SODA query:

retrieve soda is
local
query: QUERY
constraint, subconstraint: CONSTRAINT
resultos: IOBJECT SET
closed: BOOLEAN

do
open_database
create query.make from query (db.query)
constraint := query.constrain ({PARALLELOGRAM})
subconstraint := query.descend("heightl",
{PARALLELOGRAM}) .constrain (10) .greater
resultos := query.execute
printos (resultos)
close database
rescue
if (db /= Void) then
closed := db.close
end
end

Native Queries

You should first define a class, say PARALLELOGRAM PREDICATE, which inherits from
DB40_PREDICATE and implements the match method. The match method defines
whether a candidate object is to be included in the query result or not.

class
PARALLELOGRAM PREDICATE

inherit
DB40 PREDICATE

feature
match(p: PARALLELOGRAM) : BOOLEAN is
do
Result := p.heightl > 10
end
end

81

Then you can pass a PARALLELOGRAM PREDICATE instance to the
IOBJECT CONTAINER.query method to get the query result:

retrieve ng is

local
resultos: IOBJECT SET
closed: BOOLEAN

do
open_database
resultos := db.query(create {PARALLELOGRAM PREDICATE})
printos (resultos)
close database

rescue
if (db /= Void) then
closed := db.close
end
end

Note that you have to run the finalized system to have Native Queries run without
exceptions.

Step 12: What’s Next

To ensure a correct way of working with db4o databases within Eiffel applications, you may
need to consult the previous chapters of this document. Furthermore, we suggest you to
download and try out the following advanced example project when you are reading this
documentation:

https://svn.origo.ethz.ch/defcon/source code/db4o for eiffel example.zip

For further advanced features of db4o, such as transaction and concurrency control,
maintenance, client-server mode, etc. please visit the db4o documentation page:

http://devel oper.db4o.com/Resources/

82

