@ Chair of
Software Engineering

A Comprehensive Eiffel Web Framework

Semester Thesis

By: Peizhu Li
Supervised by: Marco Piccioni
Prof. Bertrand Meyer

Student Number: 02-925-899

ETH Informatik
Eidgendssische Technische Hochschule Ziirich Com puter SCience

Swiss Federal Institute of Technology Zurich

Abstract

The EiffelWeb library provides an essential set of classes for CGl handling and HTML code
generation, but concerning general server-side processing and content generation in Web
application development domain, its functionalities can be extended greatly.

With this semester project, we developed a Web Framework as an extension to the
EiffelWeb library, which introduces a more flexible request handling and dispatching
mechanism, adds session management, user authentication support, and elaborates a
template based HTML content generation solution with enhanced form validation and
manipulation functionalities. As demonstrated with two sample applications, it effectively
reduces Web application development complexity and increases extendibility.

Acknowledgement

| would like to thank my supervisor Marco Piccioni for his competent support and very
helpful advices, especially for his initial advices and diverse references for the design, his
expertise with Eiffel language and the IDE, and his patience, which helped a lot and saved
me very much time along the development practice.

| also would like to thank the students from the SS2007 Software Engineering class,
especially Christian Regg, Bhardwaj Sandeep and Lucas Serpa Silvas: some of their ideas for
the CSARDAS project have given helpful input to this project and eventually led me to this
framework solution. In addition, | reused their neat and nice style sheet designed for
CSARDAS project in the “Computer Science Event List” sample application.

Contents

L. INEFOTUCTION Luttiiiiiiiiiiiiiiie it 1
2. SYSEEM DESIGN ... aaaaa 2
2.1 F ol 011 (=Tt (U] TR UPRTPT TP 2
2.2 (070 a1 iTo 0 Tr=1uTo] 4 I i1 RRRU 3
2.3 Request DISPatChiNgouuiiiiieiiiie e e e 5
24 HTML Result Page GENEIatiNgcocuuiieiiiiiieiiiie ettt 5
25 ReqQUEST HANAING ..ot e e e e e 7
2.6 Y= SIS (o] g 1Y, =T a = Vo 1= 1 1= | PRSI 7
2.7 (O LYo W 1 g =T o i To= 1 o o R 7
2.8 FOIM PrOCESSING .eeiieiiiiiiitteie ettt e e e e ettt e e e e e e e e e snbbebe e e e e e e e e annbnbees 7
2.9 L@ 1 =T SR PPPPPRPTRPRRN 8
G T 11 0] o1 =T 4 T=T 0 1 = 1§ o] o USRS 9
3.1 CONFIG_READER ClASSvvieiuiieiiie ettt ettt ettt ettt st e e etbe e naneeeane s 9
3.2 REQUEST_DISPATCHER CIaSS.....ccccuiiiiiieiiieeitieesieeesieeseessseeesaeeenseeesnneeesneeesneeas 10
3.3 REQUEST_HANDLER ClaSSccciuiieiiiieiiieciee et ste e st s et naae e svae et e snneeenneas 11
3.4 SESSION and SESSION_MANAGER ClaSSES.......ccceeruiiinieieiieieniieenieeesiieeeieee e 12
35 USER and USER_MANAGER ClaSSES........ccccceiiiriiiiieiieesieesstieesieeenieeesteeesnneesneeas 13
3.6 VIEW and HTML_TEMPLATE_VIEW CIaSSESccceceiuriiiriieiiieeiieesieeesiveeeeiee e 13
3.7 FORM_VALIDATOR ClASS ... uutieteeeiiieeiieeesieesieesstieesnteeesteeesnteeesneeesneessnsenesnsesansenens 14
3.8 ENCRYPTOR and ENIGMA ClaSSES......cccciiieiriireiiiieiieesiressieeesieeessneesseeessneessnens 15
4. Testing APPlICAtIONSuii i 16
4.1 “CSS Zen garden” reVISIEEAueiiia it e e e 16
4.2 “Computer Science Event List” applicationcccoveveeeeiiiiiiiiieecee e, 16
5. Summary and FUtUre WOrKoouueiiiii e e e e 18
51 S0 11 1= Y PSSP PPRPPPPPRTN 18
5.2 FULUIE WOTK. ...ttt e et e e e e e s e e e e e e e e s e s nnnreaeeeeeeeeannnnrees 18

B. RO CI BN C S . e 19

A comprehensive Eiffel Web Framework Chair of Software Engineering, ETH Zirich

1. Introduction

EiffelWeb is the current web library for Eiffel, which introduces three sets of classes to help
developing CGIl web applications. The first set of classes focuses on maintaining a web
context (CGI_ENVIRONMENT, CGl_FORMS), the second set takes care of input/output
(encapsulated in CGI__INTERFACE), and the third set focuses on structured HTML code
generation. The CGI application’s entry class, CGl _INTERFACE, is designed to inherit from
CGI1_ENVIRONMENT and CGI_FORMS, so the Web context is initialized and made accessible
inside CG1_INTERFACE in the first place; For simple CGI applications, we just need to
inherit from CGI__INTERFACE, perform the necessary processing based on actual request,
and return the result HTML_PAGE to the client: it is a rather straightforward solution, which
is good for simple web sites, but does not provide too much support for more complex ones.

Often there are a lot of dynamic content and business logics that need to be processed on
the server-side, together with a tight binding to a persistence layer. To give more support on
Web application development and a better separation to different developer concerns, a
restructuring and extension of the current EiffelWeb library becomes very helpful.

This semester thesis work implements a Framework based on the EiffelWeb library, which
provides the necessary generalization, encapsulates a request string based dispatching
mechanism and brings session management functionalities inside the framework, with
extended user authentication and form validation/manipulation support. As demonstrated
with the “Computer Science Event List” application, coupling between different aspects
involved in web application development is greatly reduced, so that user can focus more on
the web application business logic and content generation rather than request dispatching,
state management and several other "plumbing” tasks.

By doing so we hope to have effectively improved the web application development library
support of the Eiffel language.

A comprehensive Eiffel Web Framework Chair of Software Engineering, ETH Zirich

2. System Design

The design of the Framework is mainly based on the following four concepts:

- Leaving static content and HTML presentation layer out of Eiffel code as much as
possible, while letting Eiffel focus on server-side processing and dynamic content
generation;

- Realizing a more flexible request dispatching mechanism by introducing an
application configuration file, encapsulating request handling objects into a separate
layer, and extracting application level variables from the Eiffel code;

- Implementing session support into the Framework, making session handling
transparent to developers;

- Implementing a basic yet extendable user management module into the Framework,
enhancing form validation and manipulation support

An overview of the system design is illustrated as fig 2.1, necessary details are described in
the following sections.

2.1 Architecture

The request URL is formalized to include a string handler part, which identifies a specific
Handler type, and a string request part, which identifies a specific request need to be
processed by the identified handler.

A string handler to type handler mapping should be defined in the application configuration
file, together with a default HTML template file if necessary. Based on this mapping relation,
when a request is received at the entry point, the REQUEST DISPATCHER class, which
inherits from CGI_INTERFACE, will read application configuration through a
CONFI1G_READER, initialize a corresponding session object through a SESSION_MANAGER,
and finally instantiate a corresponding REQUEST_HANDLER object and dispatch the request
to it for further processing. A reference to the current dispatcher object will be passed to
the handler as the web context — so all environment variables and form data can be
accessed by it.

A comprehensive Eiffel Web Framework Chair of Software Engineering, ETH Zirich

Web Browser

' N
Response Request

v
(Inherits)
Applicaton Dispatcher — | c—t

A

Request Handler
Y

A
Result Config. | Config Reader I
Page File | jmmm et 1

|
|
. |
Request Instantiates _l |
Handler :
|
|
|

Request Dispatcher

HTML-Template
based View

Business Logic
Persistence

Web Application Domain Eiffel Web Framework

‘ User Manager

‘ User ‘

‘ Form Validator Encryptor

Fig 2.1 System Architecture

In the Web application domain, developers need to make their
APPLICATION_DISPATCHER class inherit from REQUEST_DISPATCHER, implement
common processing routines in it or in a deferred REQUEST_HANDLER class, and then
implement specific request handlers for particular requests. These handlers can make use of
USER_MANAGER, FORM_VAL IDATOR, ENCRYPTOR and different VIEW implementations from
the Framework and interact with the application Business Logic and Persistence Layer,
applying server-side processing to produce the result HTML content as response to the
request from Web client.

2.2 Configuration File
With this implementation, a typical URL request appears in a form like:

http://[host]/[app_path]?[request_string]&cmd=[command_string][&---]

the request_string will be used to identify the corresponding handler, and the
command_string to distinguish actual requests for the handler. The configuration file is
mainly designed to handle such a request_string, command_string to handler class name,
html template mapping and necessary session parameters; some often used web
application variables are introduced also, and a traditional Linux/Windows application
configuration file is adopted. All defined variables will be retrieved by a CONF1G_READER
and can be used by the request handlers later; however, you can simply omit most of them
in case they are not necessary for your application.

A comprehensive Eiffel Web Framework Chair of Software Engineering, ETH Zirich

The configuration file is supposed to be in the same directory as the Eiffel Web application,
with the same name but “.conf’ as the extension. Follows an example configuration file
used by the ‘Computer Science Event List’ application. The application path is

/cgi-bin/Zinformatics_events.exe
So the configuration file should be informatics_events.conf and saved under /cgi-bin/
directory.

Here is the [general] section of the configuration file explained:

[general] ; general parameters for the web application
App_path=/cgi-bin/informatics_events.exe ; path to the web application
default_request=event ; request_string in case not specified in url
default_command=list ; command_string in case not specified in url
notfound_request=other ; request_string when specified map not found
notfound_command=notfound ; command_string when map not found
stylesheet=/info_events/css/style0l.css ; default style-sheet to include
Javascript=/info_events/sorttable.js ; default java-script to include
image_path=/info_events/images/ ; path to image files

error_template_page=. .\info_events\errorpage.html ;errortemplate page

default_request, default_command, notfound_request and notfound _command are
supposed to be defined, so that the request dispatcher can still forward the request to an
expected handler in case request string is not specified or a corresponding handler is not
defined in the configuration file. Otherwise, as a default action, a ““404 — page not found”
page will be returned to the browser.

A [database] section is also included:

[database]

host=localhost ; database server host name

port=3360 ; port

socketfile=/tmp/mysql .sock ; socket file in case there is a socket connection
database=informatics ; database name
username=informatics ; username

password=_informatics ; password

Then comes the [session] section for the directory in which session files will be stored,
session expiration time (in seconds) and the length of new generated session ids:

[session]

session_Tfiles_folder=. .\info_events\sessions\ ; folder to save session files
expiration=600 ; in seconds, 15 minutes in case not specified
session_id_length=12 ; length of generated session ids

Follows a [constant] section, where you can define constants and access them in your
request handler later:

[constants]

app_data_folder=_ _.\info_events\data\ ; path to save user/event files
users_Tile_name=users ; filename to save user accounts
event_list _data file_name=events ; filename to save events

event_id_generator_data_file_name=event_id ; filename to save latest event id

A comprehensive Eiffel Web Framework Chair of Software Engineering, ETH Zirich

Finally the important [Request_Handler] sections, each of which should specify a request
string and the corresponding handler class name; additionally a default HTML template file
and HTML templates corresponding to different commands if necessary:

[Request_Handler]

request=user ; request_string

handler=USER_HANDLER ; corresponding Handler class name

default_template=. .\info_events\user.html ; default template for USER_HANDLER
userform_template=. .\info_events\adduser._html ; template for ‘userform’ command
saveuser_template=. .\info_events\adduser.html ; template for ‘saveuser’ command
details_template=. .\info_events\userdetails_html ;template for ‘details’ command
loginform_template=. .\info_events\login._.html ; template for ‘loginform’ command
login_template=_ .\info_events\login_html ,; template for ‘login’ command
list_template=. _.\info_events\userlist_html ,; template for ‘list’ command
activate_template=. .\info_events\userlist_html , template for ‘activate’ command
suspend_template=. .\info_events\userlist.html , template for ‘suspend’ command
delete_template=. _.\info_events\userlist_html , template for ‘delete’ command
[Request_Handler]

request=event ; request_string

handler=EVENT_HANDLER ; corresponding Handler class name

default_template=. .\info_events\event_html ; default template for EVENT_HANDLER

However, only request entry and handler entry must be defined for a successful handler
instantiation and control transfer. The template for a specific request is defined by a
[command_string] _template string (for example: “activate_template”). This section is
supposed to be repeated until all request, handler mappings and necessary command,
template mapping relations are defined.

2.3 Request Dispatching

Based on the actual request_string specified in the URL, the corresponding request
handler’s class name will be looked up from the configuration file by a CONFI1G_READER
object, and then such a handler object will be instantiated using Eiffel reflection, initialized
and passed over the control for further processing of the received request. Besides, a
session object will be initialized either with a previously saved state if current session can be
identified or with a new state if current session is unrecognized.

By introducing such a request dispatcher layer into the framework, the extendibility for both
the Web Framework and the Application is greatly improved. More specific behaviour can
be easily introduced by inheriting from the REQUEST_DISPATCHER class if necessary.
Handlers are on a separated layer from the framework, and application developers can
focus on their specific request handlers implementation while letting the framework do the
dispatching transparently, which relies only on a configuration file which can be updated
easily.

2.4 HTML Result Page Generating

With the HTML technologies going more and more towards a standardization, especially
XHTML, CSS and JavaScript, and with the most used browsers being able to correctly use
them, a lot of work including certain client side interactions and many content presentations
can be well placed inside the HTML domain itself. This should help providing a better

A comprehensive Eiffel Web Framework Chair of Software Engineering, ETH Zirich

separation of tasks between web designers and web developers. With this in mind, we have
focused on the HTML view and suggested a HTML template based solution for the resulting
web page generation.

To address the extendibility to other possible presentation implementations (like rss, csv,
pdf), a HTML_PAGE derived VIEW class is introduced in the framework as a mid-layer, then a
HTML_TEMPLATE_VIEW class is implemented focusing on the HTML presentation. After
experienced Web designers designed the web site as they used to, as Eiffel Web application
developers we can inject different markers into those designed HTML pages corresponding
to different dynamic contents, organize dynamic contents into different sections, or extract
them into separate files, and then with HTML_TEMPLATE_VIEW provided functionalities we
can effectively update them, and finally reassembly them into a valid HTML page for the
client as expected.

Three types of markers are introduced in current implementation:

- Content Marker: {#NAVE_OF_THE_MARKER#}
The marker itself can be replaced by a given string or content from a text file;

- Normal Section Marker: we can mark a part of the HTML code as a section by

inserting
<1——##A_ SECTION_MARKER_NAME##-->

at the beginning of the segment and insert
<V--##/A SECTION_MARKER_NAME##-->

at the end, or mark it as in a commented-out state by inserting
<I-—##A_SECTION_MARKER_NAME##

at the start and
##/A_SECTION_MARKER_NAME##-->

at the end, similar to the HTML syntax for comments. Marked sections can be
switched on of off when required (commented out or not);

- Alternative Section Marker: in case several sections are mutually exclusive with each
other, at the same time only one section stays active, others should be commented
out, you can name those sections the same but with an indexed integer suffix starting

with 0, and let the first section be active and others commented out in the template:
<V——##A_SECTION_MARKER_NAME_O##-->
--- (-.-HTML code...)
<V-—##/A_SECTION_MARKER_NAME_O##-->
<I-—##A SECTION_MARKER_NAME_1##
--- (..-HTML code...)
##/A_SECTION_MARKER NAME_1##-->

By giving the marker name and an index number you can activate a specific section
while deactivating all other alternative sections.

Routines like marker cleanup and replace marker with corresponding form data are also
supplied for convenience. By introducing such a marker based HTML solution we tried to be
as less invasive as possible of the HTML presentation layer, but still maintaining full control
over the dynamic content, and reducing the HTML content to be embedded into the Eiffel
code to the minimum.

A comprehensive Eiffel Web Framework Chair of Software Engineering, ETH Zirich

2.5 Request Handling

A reference to the actual dispatcher object is included in the handler for necessary access to
the web context (environment, form data, application configuration, session data etc.). After
necessary interaction with business logic and persistence layers, a result HTML page is
supposed to be prepared and returned to the dispatcher, as response to the web Client.

Some utility classes from the web framework, like FORM_VALIDATOR, USER_MANAGER, and
diverse implementation of the VIEW class are supposed to give a better support for request
processing and result page generation.

2.6 Session Management

An extendable session object, which can be identified with a unique id, is supposed to be
serialized to a file in a user-defined folder on the server, using its unique id as the filename.
Based on such a concept, a hash table is used as the container for session variables, which
enables developers to conveniently set objects into a session object, check, and retrieve
them from a restored session. Then with the SESSION_MANAGER class, the Session object
for the current request will be transparently initialized by the request dispatcher, either
read from the serialized file, or initialized as new, and will be saved to the corresponding file
before sending the response back to the client.

To track client session status more effectively even without cookie enabled, a URL-rewriting
based mechanism is implemented in this framework. As a default, in case cookies are
enabled on the client browser, the session id will be saved in a cookie on the client;
otherwise a session id will be assigned, and all URL links in the result HTML page will be
rewritten automatically to include a session id, so that client state can be maintained
effectively on the server side.

2.7 User Authentication

As user profiles are widely used in Web applications, a module with extendable user
management functionalities is implemented in the Web Framework, to simplify the user
profile related development.

Similar to the session management design, a USER class with only username and password
properties is defined in the Framework, together with a USER_MANAGER class and a file
serialization based implementation (USER_MANAGER_FILE_IMPL). Developers can
specialize the User class and can either make use of the current implementation for simple
user management functionalities, or supply their own implementations for the persistence
layer, still taking advantage of the user management functionalities supplied by the
framework.

2.8 Form Processing

A FORM_VALIDATOR class is introduced in the Framework by wrapping necessary
functionalities supplied by CGI_FORM class and providing more form validation related
functionalities. A reference to the actual request dispatcher object is used to access current

A comprehensive Eiffel Web Framework Chair of Software Engineering, ETH Zirich

web context. For each specific HTML form, developers can implement corresponding form
validation routines more easily inside the handler objects.

Besides, together with the HTML page generating mechanism introduced before, we can
easily manipulate forms inside Eiffel, no matter to update form elements or to restore form
values to a specific state.

2.9 Others

Additionally, an ENCRYPTOR class and an ENIGMA algorithm implementation are included in
the Framework for some basic encrypt/decrypt functionalities. It's used in the user
management module and leaves it to the user to replace it with a custom implementation
for a better encryption if necessary.

A comprehensive Eiffel Web Framework Chair of Software Engineering, ETH Zirich

Implementation

The implementation of the Framework is illustrated as fig 3.1.

é

ERROR PAGE_VIEW
ENCRYF’TOR @

k. encryptor
encryptor e

get_use H
—.__ USER_MANAGER

o
USER_MANAGER_
FILE_IMPL

+
SESSION_
MANAGER_FILE_
IMPL

Fig 3.1 BON diagram for the Web Framework Implementation

Some implementation details of main classes are described in following sections. For more
information please refer to the source code and generated APl documentation.

3.1 CONFIG_READER Class

A simple CONFIG_READER that tightly binds to the proposed configuration file design is
implemented. Because Eifel Web application runs on process level for each URL request,
using read_configuration CONFIG_READER reads predefined parameters, constant
variables, and only the corresponding handler class name and template file path for the
given request string and command string. get_template_file and get_handler_type are
supplied for lookup other handler/template entries based on given request-string and
command-string.

Configuration entries are defined as public attributes for direct access.

COMFIG_READER

+22 == attribute==

- == ACCESS>>

+ has_constant (name: STRING_8): BOOLEAN

+ get_constant (name: STRING “B): STRING_8

+ get_handler t~1pe (request STRING_8): STRIN

+ get_template_file (request, command STF!IIJU E' STRING_8

+2 << implementation=>

- =< creation==
- make (file_name: STRING_8)

- << ACCess®>
+ read_configuration (request, command: STRING_8)

+5 << implementation=>

Fig 3.2 Implementation of CONFIG_READER

A comprehensive Eiffel Web Framework

Chair of Software Engineering, ETH Zirich

3.2 REQUEST_DISPATCHER Class

CGLINTERFACE

+1 << Access=>
- <= Access=>

hexa_value (c: CHARACTER_8): INTEGE

1 1 St PR
- p =

- pair_separator: CHARACTER_8
- value_separator: CHARACTER_8

form_data: HASH_TABLE [LINKED_LIST hSEIgIHG_B] STRING_8]

<| - <= dispatching==

+1 =< Initialization=>

- << Miscellanous>>
+ execute
+ set_environment

REQUEST_DISPATCHER

- << Attributes>>

+ cookie_enabled: BOOLEAN
+ session_enabled: BOOLEAN
+ session: SESSION

+ config: CONFIG_READER
+ handler_id_string: STRING_8
+ command_string: STRING_8

- << Attributes>>

debug_mode: BOOLEAN

session_manager: SESSION_MANAGER
actual_handler: REQUEST HANDLER

processing_finished: BOOLEAN

return_page: HTML_PAGE

- << creation=»
+ make

+ execute

- << initialization>>

zet_session_enabled (a_enabled: BOOLEAN)
process_undefined_request

parse_handler_command_string

Init_configuration

instantiate_handler

+4 << Access>> - << pref/post execution>>
pre_execute
post_execute

- << session/cookie>>
init_session_manager
init_session

save_session

setup_sid_cookie

Fig 3.3 Implementation of REQUEST_DISPATCHER

The deferred REQUEST _DISPATCHER class inherits from CGI_INTERFACE and is the
application’s entry point. In order to get Eiffel include handlers implemented in the
application domain into compilation and get the reflection based handler instantiation work
properly, it is necessary to write a creation procedure ({REQUEST _DISPATCHER}.make) and
define a local wvariable for each used request handler «class. In the
INFORMATICS_DISPATCHER class for “Computer Science Event List” application 3 handlers
are used:

class

INFORMATICS_DISPATCHER
inherit

REQUEST_DISPATCHER

redefine make end
create make

feature -- creation
make is
-- simply call parent®s make procedure, but define a local variable with
each implemented handlers here to get all handlers compiled into the
application, so that polymorphism works properly

local
event_handler: EVENT_HANDLER
user_handler: USER_HANDLER
general_handler: GENERAL_HANDLER
do
PRECURSOR {REQUEST_DISPATCHER}
end

end

10

A comprehensive Eiffel Web Framework Chair of Software Engineering, ETH Zirich

By instantiate_handler REQUEST_ DISPATCHER will instantiate and initialize a handler
object corresponding to current request string, then inside execute, call the handler’s
process_request feature, get the prepared result HTML page, setup response header, save
session and send response back to the client.

Dispatcher level common routines can be injected into the processing flow by redefining
pre_execute and post_execute features, which will be executed respectively before/after
process_request call of the instantiated handler object in execute. The
processing_finished tag can be used to indicate whether further processing is still
necessary or current return_page is already well set as the response to actual request. Or,
the dispatcher’s behaviour can be customized by redefining relevant routines from
REQUEST_DISPATCHER.

If session support is enabled (it is by default), to tell whether cookies are enabled by the
browser but avoid using additional testing requests/responses, the session id cookie is
included in every response header, and checked upon every incoming request. If a valid, not
expired session id is found in cookie, cookie support is assumed to be enabled.

3.3 REQUEST_HANDLER Class

In a user derived class the initialize feature must be redefined, include all instantiation
routines in make creation feature, because with reflection in Eiffel the creation feature is not
called and here in the Framework the initialize routine is supposed to do all necessary
initialization includes the context.

The process_request routine is separated again into pre_processing, handling_request,
post_processing, and with variable processing_finished to tell whether further
processing is necessary, to make injection of common processing routines easier.

REQUEST_HAMNDLER

- << attributes>>

+ context: REQUEST_DISPATCHER
+ session: SESSION

+ return_page: VIEW

+ processing_finished: BOOLEAN

- << main entry>>

+ process_request: HTML_PAGE

- == implementation=>
- instantiate_handler (handler_type: STRING_8): REQUEST_HAMDLER

- <=creation>>
+ make
+ initialize (dispatcher: REQUEST_DISPATCHER)
- =< processing=>
pre_processing
ECSt rocessing
andling_request
handler_redirection (type: STRING_8)
url_redirection (url ST ING_8; is_secure: BOOLEAM)
- << form helper=>
+ fill_form_with_submitted_values

- << implementation=>
- url_rewriting

e

Fig 3.4 Implementation of REQUEST_HANDLER

11

A comprehensive Eiffel Web Framework Chair of Software Engineering, ETH Zirich

Before the prepared return_page is returned, session_enabled and cookie_enabled
conditions from current web context object will be inspected and if necessary,
url_rewriting will be called for session support under cookie disabled circumstances.

Besides, routine url_redirection and handler_redirection are implemented to realize
URL redirections inside REQUEST HANDLER, and a help function for forms,
fill_form_with_submitted values is implemented to check and replace all markers in a
HTML_TEMPLATE_VIEW based result page with corresponding values in case a variable with
the same name is defined in the request.

3.4 SESSION and SESSION_MANAGER Classes

An object_list hash table container is used inside SESSION implementation to let user be
able to add session variables conveniently. The deferred SESSION_MANAGER class is
implemented for general session lookup, session id generating, session retrieving, saving
and clean up operations.

SESSION SESSION_MANAGER
- <<attributess>> - << attributes>>
+ session_id: STRING 8 + session_id_length: INTEGER_32

+ creation_time: DATE_ TIHE - << attributes>>

+ expiration_time: DATE_TIM "
T Sbject ISE HAGH,TABLE [ANY, STRING.] & it rarom. INTESER B3 1 NPOM

- << access>>
- << operations>>
+ expired: BOOLEAN + generate_session_id: STRING_8

+ get_atiribute (name: STRING, 8) ANY
as attribute (name: STRING 8): BOOLEAN + get_session (sid. STRING_8) SESSION

- << operatlons>>

+1 <<creation>> + save_session (sid: STRING_8 sessmn SESSION)
- << access>> + delefe_session (sid: STRING 8
+ sef_session_id (sid: STRING_8) + cleanup

+ sel_expiration_time (expiration: DATE_TIME) - << Implementation>>

+ sel_expiration_after_seconds (seconds INTEGER_32) e P vryirati } ' 3
+ set_atiribute (iame STRING. & obj: ANY) - Init_manager (expiration, sid_length: INTEGER_32)
+ delete_aftribute (name: STRING_8) - -

Fig 3.5 Implementation of SESSION and SESSION_MANAGER

In the current web framework implementation, a file serialization based solution for session
storage is implemented with SESSION_MANAGER_FILE_IMPL class.

{effective}
SESSION_ l‘v'IANAGER FILE_IMPL

- << attributes>>
+ session_path: STRING_8

- << pperations=>
+ get_session (sid: STRING_8): SESSION

- == persist file storage==>
- initialize_from_file (session_file: RAW_FILE): SESSION

- << make=>
+ make (path: STRING_8; expiration, sid_length: INTEGER_32)

+J << operations>>

- << persist file storage>>
- save_to_file (session: SESSION; session_file: RAW _FILE)

Fig 3.6 Implementation of SESSION_MANAGER_FILE_IMPL

12

A comprehensive Eiffel Web Framework Chair of Software Engineering, ETH Zirich

3.5 USER and USER_MANAGER Classes

As illustrated in Fig 3.7, a simple USER class including only username and password attributes
is implemented and also a file serialization based USER_MANAGER implementation as class
USER_MANAGER_FILE_IMPL. However user can extend the USER class according to his own
needs but still take advantage of this USER_MANAGER implementation if no special request
is concerned.

USER_MANAGER

- << Attributes=>
+ user_list: HASH TABLE [USER. STRING_8]

USER + encryptor: ENCRYPTOR
_= =5 - <<Basic Operations>>
+ userﬁ:ﬁfes STRING 8 + get_user_by_name (username: STRING_8): USER
+ password: STRING 8 + username_defined (usermame: STRING_B): BOOLEAN

- +is_user_althentication_valid (username, pass: STRING_8) BOOLEAN

+1 =< Initialization== + user_count: INTEGER 32
- << Status setting=>
+ set_username (a_usemame: STRING_8) +<af|ﬁa3'scero.'§eﬂ§2f'bs§|§,q
+ set_password (a_password: STRING_B) + update_user (a_user: USER)

+ delete_user_by_name (username: STRING_8)
+ set_encry ptcrucrjptcr ENCRYPTOR)

+ persist_ data

USER_M ER_FILE_IMPL

- << aftributes>>
+ data_path: STRING_8
+ file_name: STRING_B

+3 =< implementation=>

- << |nitialization>>
- make (folder, filename: STRING_8; cryptor: ENCRYPTOR)
- << Basic operations=>

+ persist_data

Fig 3.7 Implementation of USER and USER_MANAGER

An encryptor object is included in USER MANAGER and as wused in
USER_MANAGER_FILE_IMPL, the password is encrypted before user profile is saved and
decrypted after retrieved from saved file.

3.6 VIEW and HTML_TEMPLATE_VIEW Classes

In current Framework, HTML_TEMPLATE_VIEW has been focused on the marker based
HTML rewriting concept as described before. cleanup_tags and
cleanup_unused_sections can be wused in post processing in vyour derived
REQUEST_HANDLER class to cleanup the HTML page before sending it back to the
DISPATCHER if necessary.

13

A comprehensive Eiffel Web Framework

Chair of Software Engineering, ETH Zirich

VIEW

- << set content>>
+ set_content (a_content: STRING_8)

HTML_TEMPLATE_VIEW

-<<Set>
+ replace_marker_with_string (mark_string, content: STRING_8)
+ replace_marker_with_file (mark_sfring, filename: STRING_§}

- << Commands>3>

+ enable_alternative_section (marker_string: STRING_8; a_number: INTEGER_32)

+ enable_section (marker_string: STRING 8)

+ comment_out_section (marker_string: STRING_8)
+ cleanup_unused_sections

+ cleanup_tags

+ remove_section (marker_string: STRING_8)

- << Creation>>
+ make (template: STRING_8)

AN

ERROR_PAGE_VIEW

- =< AAccess>>

+ make_default_error_page (title, content: STRING_8)
+ build_default_not_found_page

+ build_default_not_enough_permission_page

+ build_default_database_not_connected

+ build”default_database_problem

+ set_error_title_and_content (title, content: STRING_8)

- <= Implementation=>
- make_default

Fig 3.8 Implementation of VIEW and HTML_TEMPLATE_VIEW

Beside, a template based simple ERROR_PAGE_VIEW is implemented for creating HTML
pages displaying some typical error messages.

3.7 FORM_VALIDATOR Class

As Fig 3.9, necessary attributes and features from CGlI_FORM class and a reference to the
actual REQUEST_DISPATCHER object is wrapped into a FORM_VALIDATOR class, together
with some extended features especially for form validation.

Most features have combined a field-defined check and a value-valid check together
for a better failure tolerance by form validation. A last_value STRING attribute is used to
buffer the last value of a checked field. User can easily write a routine to validate a form
input, collect values and generate customized error messages as demonstrated in the
“Computer Science Event List” sample application.

14

A comprehensive Eiffel Web Framework Chair of Software Engineering, ETH Zirich

FORM_VALIDATOR

- <= Attributes>>
+ context: REQUEST_DISPATCHER
+ last_value: STRING_8

- << CGI_FORMS>>

+ text_field_value (field_name: STRING_8): STRING_8

+ button_value (field_name, overriding value: STRING _8): BOOLEAN
+ menu_values (field_name STRIIIU_B LINKED_LIST [STRIIIU 8]
+ fields TARRAY [STRING BS]T

+ value_count (field_name RING_8): INTEGER._3

+ valueTlist (field_name: STRING 8} LINKED LIST [STR‘IHLJ 8]

+ field_defined (field_name STRIHU 8): BOOLEA

-2« fccess=>

+ get_field_string (a_field_name: STRING_8): STRING_8

+ get_field_integer (a_field_name: STRING 8) INTEGER_32
+ get_field_double (a_field_name: STRING_8): REAL_B4

- =< validation==

+ is_string_not_empty (value: STRING 8): BOOLEAN
+i5_field_value_not_empty (field STRING §): BOOLEAN

+ is_email_valid (email SfRIIIu 8). BOOLEAN

+is_date_valid (day, month. year STRIIIU §): BOOLEAMN
+is_non_required date_valid |da\f month, year: STRING_8): BOOLEAN
+is_must_field_fied (a_field_name STRING _8) BOOLEAN
+is_field_in_range (field_name: STRING 8: min, max: REAL 64): BOOLEAN
+ are_fields egual (name1, name2: STRING_§): BOOLEAN
+is_must_fields_valid (names: ARRAY [STR][]LJ 8]): ARRAY [STRING_B]

- =< creation==>
+ make (a_context: REQUEST_DISPATCHER)

Fig 3.9 Implementation of FORM_VALIDATOR

3.8 ENCRYPTOR and ENIGMA Classes

A very simple ENCRYPTOR class and an ENIGMA implementation is included in this version of
the Framework implementation. User can extend his own ENCRYPTORs for a securer
encryption.

{effective}
ENCRYPTOR ENIGMA
- << operation>> +J << attributes=>
+ encrypt (input: STRING_8): STRING_8 - << pperation=>>
+ decr\Ipt (input: STRING_8): STRING_8 + encrypt (str: STRING_8): STRING_8
+ dacry) ypt (str STRING_8) STRING_8

- << creation>>
+ make (k: INTEGER_32)

Fig 3.10 Implementation of ENCRYPTOR

15

A comprehensive Eiffel Web Framework Chair of Software Engineering, ETH Zirich

4. Testing Applications

Because the expected interaction between a Web server and the Eiffel Web application is
not straightforward to get emulated, instead of conventional test cases for each class, two
example applications are programmed and used along the developing process for both
functionality and Framework applicability testing.

4.1 “CSS Zen garden” revisited

At the beginning of the web framework development work, a simple application based on a
revised XHTML page as from CSS Zen Garden (www.csszengarden.com) is written to test the
basic functionality of the Framework and also demonstrate the power of Cascade Style
Sheet in HTML domain.

With this simple application, most important functionalities, including multiple requests
dispatching and handling based on configuration file, session support with and without
cookie enabled, form validation and manipulation, user authentication and basic encryption,
are demonstrated and tested along the development.

Lt The Road to Enlightenment
what can be
IS L ittaring 3 dark and dreary road Lay the past relics of browser-specific tags,

e LA incompatible DOMSs, and broken CSS support. [P y——"

Today, we must clear the mind of past practices. Web enlightenment has been | next dasign by Dave
achieved thanks to the tireless efforts of folk fike the WiC, W2SP and the major e
o iEREA S prev. design by Dave

8 browser creators. e

The Zen Garden invites you to relax and meditate on the important lessens ::Iv‘l: FEEe

of the masters. Begin 1o see with clarity. Leam to use the (yet to be) time- | siyle w002 by Dave

honored techniques in new and invigorating fashian. Become one with the web. Shes

Style #4003 by Dave

. T Shea

So What is This About?

There is clearly a need for CSS to be taken seriously by graphic artists. The Zen Garden aims to

axcite, inspire, and encourage participation. To begin, view some of the existing designs in the HSt. | siyte #005 by Dave.

Clicking on any one will laad the style sheet into this very page. The code remains the same, the only | *"**

thing that has changed Is the external .css file. Yes, really. it

€55 allows complete and total control aver the style of a hypertext document. The only way this can

be flustrated ina way that gets people excited i by demonstrating what it can truly be, once the
next designs =
 pravisiis dasrgis

Style #004 by Dave
shea

reins are placed in the hands of those able to create beauty from structure. To date, most examples
of neat tricks and hacks have been demonstrated by structurists and coders. Designers have yet to
make their mark. This needs to change. i Al resgre

Create an Account
s View This Design’s S8

. 555 Resources.
Username: * e
Your preferred username; punctuation is not allowed except far periods, hyphens, and i
underscores,

Submit & Dasign

E-mail address: * Translstions
4 valid e-mail address. All e-mails from the system will be sent to this address. The e-mail

Fig 4.1 “CSS Zen Garden” revisited

4.2 “Computer Science Event List” application

In the later phase of the development, the “Computer Science Event List” application has
been refactored by using the proposed web framework. It helped also very much for the
later stage restructuring and code optimization of the Framework. To focus on the usage of
the framework, a tutorial following the implementation of this application provides a quick-
start guide. Please refer to the tutorial and included source code for more information.

16

A comprehensive Eiffel Web Framework Chair of Software Engineering, ETH Zirich

(o TTTTTTTSSm s s e a
L[Einfn rmatics_events ;

+
INFORMATICS _
DISPATCHER

5

: s
USER_HANDLER ./

+ ;
GENERAL_HANDLER |

+ #
INFORMATICS _ INFORMATICS_
USER HANDLER

my_session

+
EVENT_HANDLER

EVENT DAO FILE
IMPL

Fig 4.2 Computer Science Event List Implementation

e Comp vent List
A service of Informatics Europe Peizhu Li | Edit Profile | Logout

Home Submit Event Submitted Events

Event List

Conference Namet Datet CityT Countryt Paper deadlinef Main sponsort Publishert

International Workshop on 10/23/2008 - Genava Italy 03/14/2008 Institute of Electrical
Computational Intelligence in 10/24/2008 and Electronics
Security for Information Systems Engineers, Inc.
(C1515'08)

RE'08 : 16th IEEE International 09/08/2008 - Barcelona Spain 02/11/2008 IEEE
Reguirements Engineering 09/12/2008
Conference

2, Informatics surops aboutus Contact

Fig 4.3 The Computer Science Event List

A service of Informatics Europe admin | Edit Profile | Logout

Home Submit Event View Users Add User

Edit Event

“ The city must be specified.
Ending date must be specified.

Event name ‘International p on Ci i igence il (as in the roster)

Starting date (dd/mm/yyyy)
Ending date (dd/mm/yyyy)
Country [haly =1
Paper's submission deadline (dd/mm/yyyy, for other deadlines see below)

Main sponsor ‘Insﬁtme of Electrical and Electronics Engineers, Inc. |

Corference url | ttp:/ /www.cisis2008.0rg/ home/home.shtml |

Fig 4.4 Event Submission Form Validation

17

A comprehensive Eiffel Web Framework Chair of Software Engineering, ETH Zirich

5. Summary and Future Work

5.1 Summary

As shown in the sample applications, the proposed web framework provides a clear
separation of concerns and a better level of support for web application development when
compared with the previous EiffelWeb library. Supplied functionalities may also be further
extended and optimized.

5.2 Future work

Due to the limited time-frame, some ideas are not implemented in the current Framework
but might be worth some further consideration:

- XML format fits better to the configuration file. Either with an own XML parser
extension or a third party library, migrate current application configuration file and
CONFIG_READER class into a XML format version should still improve the
extendibility.

- HTML_TEMPLATE_VIEW can be further optimized by utilizing a small parser and
including a marker index in the class if performance issues arise.

- Another extension that can be implemented into the Web library is an AJAX interface,
to further delegate the dynamic content in the result page.

18

A comprehensive Eiffel Web Framework Chair of Software Engineering, ETH Zirich

6. References

(1]

(2]
(3]
(4]

(5]

(6]
(7]
(8]
(9]

(10]

Software Engineering Course Project CSARDAS, http://se.inf.ethz.ch/teaching/ss2007/252-
0204-00/project.html

Bertrand Meyer: Object-Oriented Software Construction, 2nd edition, Prentice Hall, 1997

Eiffel language online documentation: http://docs.eiffel.com/

Seth Ladd with Darren Davison, Steven Devijver and Colin Yates: Expert Spring MVC and Web
Flow, Apress, 2006

Spring Framework Online Documentation, the
Web, http://static.springframework.org/spring/docs/2.0.x/reference/spring-web.html

MEWS — “More Eiffel Web Support” Project, http://mews.origo.ethz.ch/

Gobo Eiffel Test Project, http://www.gobosoft.com/eiffel/gobo/getest/index.html

AutoTest Tool, http://se.inf.ethz.ch/people/leitner/auto_test/

Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides: Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley, 1995

Struts framework: http://struts.apache.org/

19

http://se.inf.ethz.ch/teaching/ss2007/252-0204-00/project.html
http://se.inf.ethz.ch/teaching/ss2007/252-0204-00/project.html
http://docs.eiffel.com/
http://static.springframework.org/spring/docs/2.0.x/reference/spring-web.html
http://static.springframework.org/spring/docs/2.0.x/reference/spring-web.html
http://mews.origo.ethz.ch/
http://www.gobosoft.com/eiffel/gobo/getest/index.html
http://se.inf.ethz.ch/people/leitner/auto_test/
http://struts.apache.org/

	1. Introduction
	2. System Design
	2.1 Architecture
	2.2 Configuration File
	2.3 Request Dispatching
	2.4 HTML Result Page Generating
	2.5 Request Handling
	2.6 Session Management
	2.7 User Authentication
	2.8 Form Processing
	2.9 Others

	3. Implementation
	3.1 CONFIG_READER Class
	3.2 REQUEST_DISPATCHER Class
	3.3 REQUEST_HANDLER Class
	3.4 SESSION and SESSION_MANAGER Classes
	3.5 USER and USER_MANAGER Classes
	3.6 VIEW and HTML_TEMPLATE_VIEW Classes
	3.7 FORM_VALIDATOR Class
	3.8 ENCRYPTOR and ENIGMA Classes

	4. Testing Applications
	4.1 “CSS Zen garden” revisited
	4.2 “Computer Science Event List” application

	5. Summary and Future Work
	5.1 Summary
	5.2 Future work

	6. References

