@ Chair of
Software Engineering

“Computer Science Event List” Quick-start Guide
A Tutorial to the Eiffel Web Framework

Semester Thesis

By: Peizhu Li
Supervised by: Marco Piccioni
Prof. Bertrand Meyer

Student Number: 02-925-899

ETH Informatik
Eidgendssische Technische Hochschule Ziirich Com puter SCience

Swiss Federal Institute of Technology Zurich

This tutorial is a step by step guide for “The Computer Science Event List”
application implementation, with focus on the usage of “Eiffel Web Framework”
developed along this semester thesis work.

It's recommended to read the thesis to get familiar with some basic concepts about
the Framework before using this tutorial.

“Computer Science Event List” Quick-Start Guide Chair of Software Engineering, ETH Zirich

The Task

The Computer Science Event List was produced by the Chair of Software Engineering at ETH
Zurich as a service to Informatics Europe[1], The Research and Education Organization of
Computer Science and IT Departments in Europe, as a repository of conferences and other
events in computer science, information technology and related fields.

Starting from the current implementation[2], we will re-implement the application here by
utilizing the Eiffel Web Framework, as presented in the semester thesis, to demonstrate
some typical scenarios in applying the Framework in a real-word Web application
development.

Step 1. Requirement Analysis

The current implementation[2], it's a simple but typical web application; it needs to take
care of session support, user authentication and form validation. In addition to this, it must
provide a set of operations concerning users and events, and generate the corresponding
web pages.

Let’s assume the following requests will be handled by our application:

Applied on As a (role) Requests
User Guest register
Normal User register, login, logout, update, display details
Admin add, login, logout, display details, edit,
suspend, activate, delete
Event Guest list, display details
Normal User list, display details, submit, list events

submitted by himself, edit his own yet not
approved event

Admin list, display details, add, edit, display details,
approve, reject, delete
(request a page) (all) display contact, about page

After taking advantage of the USER_MANAGER implementation included in the Web
Framework for user related operations, it seems that except some classes for event and
event storage related operations, there are not much business logic that needs to be
specially addressed on the server-side.

Source codes implemented in all steps are supposed to be found in
tutorial\informatics_events folder together with the Web Framework package.

Step 2. Application Design and Initial Implementation

We create an INFORMATICS_DISPATCHER that inherits from REQUEST_DISPATCHER
class for the dispatching. We can also use a USER_HANDLER, an EVENT_HANDLER, and a
GENERAL_HANDLER, focused respectively on processing user, event data and informative

http://se.inf.ethz.ch/
http://www.ethz.ch/
http://www.ethz.ch/

“Computer Science Event List” Quick-Start Guide Chair of Software Engineering, ETH Zirich

pages, and generating the resulting HTML pages for relevant requests. We can furthermore
create an INFORMATICS_USER class inheriting from the USER class in the Framework,
but using USER_MANAGER and supplied USER_MANAGER_FILE_IMPL for necessary
functionalities and storage. Besides, we need to implement several classes for event related
operations and event storage, and a class to wrap up some session related operations for
our application.

= INFORMATICS_USER

Based on the information presented in the current implementation[2], we inherit an
INFORMATICS_USER class from USER and simply add necessary attributes, respective
accessing functions, and a role and a status member, together with a supporting class
APPLICATION_CONSTANTS, for a centralized constant definition.

- == |nitialization=>
APPLICATION CONSTANTS - make

+§ =< gvent status=> - = Status sefting=>

Fig 2.1 INFORMATICS_USER Implementation

Check informatics_user.e, application_constants.e for implementation details.

= EVENT related classes

We implement an EVENT class for event data, wrap it as an ARRAYED_LIST into an
EVENT_LIST class, and then implement EVENT_DAO and EVENT_DAO_FILE_IMPL
using file serialization for storage as before. We then use a simple ID_GENERATOR class
for event id generating, storing and retrieving. We then add event status to
APPLICATION_CONSTANTS.

“Computer Science Event List” Quick-Start Guide Chair of Software Engineering, ETH Zirich

APPLICATION_CONSTANTS fefective] EVENT_LIST

< event statuses EVENT - -
" Fms;\éggdsna”uEs . - <<basic operations=> p .

G 1 " AL B4} EVEN

+ ?‘CCEF‘Sd”u[II_EE'EER;K 3 ;<dmf:cess» + search_by_id (id: NATURAL_64): EVENT
+ rejecte G 2 - <zRedefinitions>>
+ delefed. INTEGER 32 < e eaual other {ike Current] EVENT), S0OLEAN A VENT)
+2 << user status=> + delete_event (an_event: EVENT)

+1 <= default creation>>
+31 << Status setting>>

\i
+3 << user roles>> + update_event (an_event: EV lT

+6 << precreated admin account=>

D_GENERATOR feective)
—— << Access>> EVENT_DAO_FILE_IMPL
EVENT_DAC +id- NATURAL 64 EPPPTE——
- <2 AAccesss> + data_path: STRING 8
+ event_list: EVENT_LIST f;f;:&ss‘:t id + events_file_name: STRING_8
+ event_id_generator: ID_GENERATOR g N +id_file_name: STRING_8
- <<basic operations>> - <<Access>>
+ getie-;emfh}ild (id: NATURAL_64): EVENT IStCre‘ hzn?lerﬂQE"_E)A_“:TgEEEILE FACILITIES
events_data_file v
+ event_id_generator_dafa file: RAW FILE
+<a<‘j|;agl‘;|:').§?g°£i>E\ JENT) + events_serializer: SED_MEDIUM R’EADER WRITER
+ delefe_event (an_event- EVENT) + event_id_generator_sefalizer: SED MED\U’"I READER_WRITER
+ ;Fijmg e ;“an ; Ec‘l]tHE"I'EHI«L 64) << |nitialization>>
+ delete_event_by_Td (id: NA - nitialization
+ persist_data” I - make (path, event_fname, id_fname: STRING_8)
- << Basic operations=>
+ persist_data

Fig 2.2 EVENT related Implementation

= INFORMATICS_SESSION

To be able to track current user sending requests, a simple solution is to include user
information in the actual session object. Here we’d like to include both username and email
to be saved in the session, and wrap the relevant operations in an
INFORMATICS_SESSION class.

INFORMATICS_SESSION

- <<attributes>>
+ session: SESSION
- << Access>

+username: STRING_8
+email: STRING_8

- << creation>>

+ make (a_session: SESSION)

- << ACCEeSS>>

+set_username (name: STRING_8)
+ sef_email (mail: STRING_8)

Fig 2.3 INFORMATICS_SESSION

INFORMATICS_DISPATCHER

Simply inherit INFORMATICS DISPATCHER from REQUEST_ DISPATCHER, and
redefine the make creation procedure, including a local variable for each handler type we
are planning to use:

make 1is
-- simply call parent®s make procedure, but define a local variable for each
handler to ensure respective handler classes will be included in the application
local
event_handler: EVENT_HANDLER
user_handler: USER_HANDLER
general_handler: GENERAL_HANDLER
do
PRECURSOR {REQUEST_DISPATCHER}
End

UML diagram together with REQUEST_DISPATCHER as Fig 2.3.

“Computer Science Event List” Quick-Start Guide Chair of Software Engineering, ETH Zrich

REQUEST_DISFPATCHER

<< Attri butes==

QOLEAN
QOLEAN

3. STRING_8
:3mmam _string: STRING_®

- =< Attributes=> {root, effective}
|" QOLEAN INFORMATICS_DISPATCHER

- SESSION_MANAGER q_
SREOTE - << creation»>

tu'rn pa;’: HTHL PAGE +make

+1 =< creation>>
+1 << dispatching>>
+5 =« jnitialization>>
o prenpos{ execution>»
cu

+4 =< session/cookie>>

Fig 2.3 INFORMATICS_DISPATCHER

= Handlers

We would like to introduce an INFORMATICS_HANDLER class as the parent for
USER_HANDLER, EVENT_HANDLER and GENERAL_HANDLER, so some common tasks
on the HANDLER level can be injected there with pre_processing and post_processing
feature implementation.

An instance of USER_MANAGER is included in INFORMATICS_HANDLER, together with
an ENCRYPTOR to enable USER_MANAGER encrypting user data on serialization. Also
included are an INFORMATICS_USER instance, to identify the current user, an
INFORMATICS_SESSION, and an HTML_TEMPLATE_VIEW, because we are planning to
produce all result pages based on a set of templates.

As mentioned in the Framework documentation, the initialize feature must be redefined to
let include all necessary instantiation routines for a correct initialization after having
generated a HANDLER with Eiffel reflection.

We include an EVENT_DAO variable in EVENT_HANDLER and instantiate it with an
EVENT _DAO_FILE_IMPL instance in handling_request. Otherwise we could simply
implement an empty body of deferred feature handling_request for USER_HANDLER
and GENERAL_HANDLER (we will extend them later).

REQUEST_HANDLER {effactive)
- USER_HANDLER
- << attributes>>
+ context: REQUEST_DISPATCHER
+session: SESSION INFORMATICS_HANDLER - << process request>>
+ return_page: VIEW + handling_request
,rccseelrg finished: BOOLEAN - << Attribute>>
- << main entry>> + Uger marag"—r USER_MAMNAGER
+ process_request HTML_PAGE +encryptor: ENC RI If'_CE"l"* PLATE VIV, fffective}
: : + return_ ATE_V SMECIVE,
+1<<implementation>> + actual_user. NFORMATICS_USER EVENT_HANDLER
+ e < CEGSS
- c<creations> j my_sezzion: INFORMATICS_SESSION Pr——
+ make R : + event dao: EVENT DA
+ inttialize (dizpatcher: REQUEST_DISPATCHER -ﬁfﬂfreatloﬂ» = event_dao: EVENT_DAO
+ make

“‘ﬁfﬁggﬁ;‘,g” + intialize (snv: REQUEST_DISPATCHER: -<< process request>>
-.—:c*tp,.rcc:_eelr'g - << processing request>> + handling_request
handling_reguest # pre_proceszing m
handler_redirection (type: 5 RII C_E- # post_processing
url_redirection (url: STRING_8; is_secure: BOOLEAN feffective}
-<=form helper=> GENERAL_HANDLER

+ fill_form_with_submitted_wvalues
- << implementation>>
- url_rewriting

- << process request>>
+ handling_request

Fig 2.4 HANDLERs

“Computer Science Event List” Quick-Start Guide Chair of Software Engineering, ETH Zirich

So far we already prepared the framework of our application. You can download step2.zip
and get it compiled together with the webex Web Frame cluster, for a more clear view over
this initial implementation we achieved. We will focus on the user related part to continue
our implementation.

ST K
i slinformatics_events |

-
S o= RN

*
INFORMATICS
HANDLER

i

3 +

' (INFORMATICS_

3 USER

3 my_session|

INFORMATICS.
{_ID_GENERATOR S

| event_id_generator

get_svent_by_id _@ EVENT_DAOD_FILE_
IMPL |
= event_list !

+ i
USER_HANDLER 3
: |
GENERAL_HANDLER :
+ 3
EVENT_HANDLER ;

event_dao

Fig 2.5 BON diagram for the Initial Implementation

Step 3. Request Elaborating

Based on the requests we listed before, we can simply take “user” as the handler-string to
identify all requests that need to be processed by USER_HANDLER, and design request-
strings and corresponding template usages for user related requests as following:

Request Request-str. Templates Notes

Display registration form, userform userform.html| Using an additional ‘mode’

Display update-details form, variable to distinguish the

Display add-user form, requests and same HTML

Display edit-user form template file

Register user, submit userform.html| Same ‘mode’ variable/field as

Update user’s own profile, above, using same template

Add a user, (different sections)

Save a user

Display Login form loginform loginform.htm|/

login login loginform.html ~ Same template as ‘loginform’,
alternative sections

Logout logout eventlist.htm/ Let to be handled by
EVENT_HANDLER, display
event list

Display user details details userdetails.html

List all user accounts list userlist.html|

Suspend an account suspend userlist.html

Activate an account activate userlist.html|

Delete a user delete userlist.html

“Computer Science Event List” Quick-Start Guide Chair of Software Engineering, ETH Zirich

Some requests can have very similar web pages. It’s nice to be able to combine them to let
share the same HTML template with the marker based rewriting solution with
HTML_TEMPLATE_VIEW. And we also like to reuse the same command-string by adding a
variable/field to distinguish the two variations of it, instead of adding more command-
strings.

Step 4. Layout and Configuration File Design

We will put the application under cgi-bin directory, save template and user, event data in
a directory one level above, and put image, style sheet, java-scripts in a directory
under web server’s document directory, so for a typical Apache server, it looks like:

+cgi-bin
-informatics_events.cgi
-informatics_events.conf
+informatics_events
-<html template files>
+data
+sessions
+htdocs
+informatics_events
-<javascript and other files>
+Ccss
+images

Together with just designed command-string, template mapping information and other
application variables we’d like to leave outside of the Eiffel application, we can setup our
application configuration file including requests for USER_HANDLER as follows (display
login form in default):

[general]

app_path=/cgi-bin/informatics_events.exe
default_request=user

default_command=loginform

notfound_request=other

notfound_command=notfound
stylesheet=/informatics_events/css/style0l.css
Javascript=/informatics_events/sorttable.js
image_path=/informatics_events/images/
error_template_page=. .\informatics_events\errorpage.html

[database]
host=

port=
socketfile=
database=
username=
password=

[session]
session_files_folder=..\informatics_events\sessions\
expiration=600

session_id_length=12

[constants]
app_data_folder=. .\informatics_events\data\

“Computer Science Event List” Quick-Start Guide Chair of Software Engineering, ETH Zirich

users_Tile_name=users
event_list_data_file_name=events
event_id_generator_data_file_name=event_id

[Request_Handler]

handler=USER_HANDLER

default_template=. .\informatics_events\userform.html
loginform_template=._ .\informatics_events\loginform_html
login_template=. .\informatics_events\loginform_html
details_template=. .\informatics_events\userdetails_html
list_template=. .\informatics_events\userlist_html
suspend_template=. .\informatics_events\userlist.html
activate_template=. .\informatics_events\userlist_html
delete_template=_ .\informatics_events\userlist_html

Step 5. Web Site Design

You can let web design professionals produce the whole website design first, and then doing
the necessary reverse engineering by starting to design the Web application; here we have
taken the approach that starts with the application, as the requirements are all well known
and quite clear in all aspects.

By reusing the neat and nice site design from the CSARDAS[3] project, we can get a set of
static web pages for user related requests ready. Find them in step05.zip.

Welcome, Guest | Begister | Logn

Telephane

_Register |

about us Contact

Home Submit Event Submitted Events

My Profile

Peizhu Li

ivp
p@etudant atha.ch

about us Contact

“Computer Science Event List” Quick-Start Guide Chair of Software Engineering, ETH Zirich

Fig 5.2 User details

Step 6. Create Template Pages

As described in the Framework Documentation, here we will restructure designed Web
pages into some templates for our application, by either replace dynamic content with
markers, or organize them into sections.

= General Content

We'd like to replace the path to this Web application, to image folder, style sheet and
JavaScript files with markers, so they can be updated with configuration file instead of
changing these entries in every template file.

= Dynamic Menu

{#MAIN_MENU#} and {#USER_MENU#} will be used to replace those two dynamic menus
displayed on top of all pages.

= [Form Content

In the user registration form we will replace form title and button text with markers, so that
they can be updated according to the actual context. Most importantly, we will insert
markers to enable form data updating; the simplest way is to use exactly the field’s name as
marker name, and insert the marker in the corresponding place; for example, insert marker
as ‘value’ for text input box,

<td><input type="text" name="Ffirst_name" value="{#Ffirst_name#}" /></td>

Insert marker to put selection as the first option for list boxes,
<select name="'user_role" title="Role">
{#user_role#}
<option value="""></option>
<option value="administrator'>Administrator</option>
<option value="user'>User</option>

</select>

Insert marker for ‘checked="checked’”’ to check a checkbox:

<input type="'checkbox" name="suspend" value="1 {#suspend#} />

And for text input boxes, a function is supplied to replace all markers when a corresponding
field with valid value can be found in the request message. However, to be on the safe side,
to validate form data it is recommended to implement the corresponding routines for each
form, or to restore data to the form.

= Individual Sections

As mentioned before, we’d like to use one template page for several different requests, or
display form validation messages only when invalid inputs are submitted. In such cases we
can simply mark these content as sections, then enable or disable them when necessary.

“Computer Science Event List” Quick-Start Guide Chair of Software Engineering, ETH Zirich

= Alternative Sections

If several sections are mutually exclusive, we can define them as alternative sections in
sequence, and switch them conveniently when necessary.

As for the template userform_html, we can construct it easily based on the static web page
user_register_failed.html created before, by replacing the relevant path, the menu
with markers, and by inserting markers for form title, button text, form data and a hidden
‘mode” input field. Then we can wrap the HTML code that displays error messages as a
VALIDATION_ERROR _MESSAGES section, and add a default disabled section
ADMINISTRATOR_INFORMATION for form content that will only be displayed for
administrators. Finally we can organize the form, the “registration success” message and the
“user updated” message as an alternative section named USER FORM; we have got
userform.html ready for those several cases which will share this template page, although
more content can be still introduced into this template.

These templates are friendly to be checked / updated as normal HTML files. All remaining
markers, including disabled sections, can be cleaned by a handler before sending back the
result page to the Dispatcher.

Check step06.zip for all 4 updated templates as well as for the user related requests.

Step 7. USER_HANDLER Implementation

It's time to do some actual work to get some requests processed. Let’s start with the
INFORMAT ICS_HANDLER class.

= INFORMATICS DISPATCHER
We can put some common processing routines in INFORMATICS_HANDLER class:

- initialize user_manager, include the system defined administrator account if not yet
exists;

- identify current user with information saved in session if possible;

- we can do a preliminary checking on user requests, whether user has enough
permission for actual request, otherwise redirect to a ‘Permission Denied’ page;

- update dynamic menus based on actual context;

- rewrite some globally used markers, clean up unused markers;

- implement here several common routines which will be used by other handlers.

“Computer Science Event List” Quick-Start Guide

Chair of Software Engineering, ETH Zrich

INFORMATICS _HANDLER

- << Attribute>>

+ user_manager: USER_MANAGER

+ encryptor: ENCRYPTOR

+ return_view: HTML_TEMPLATE_VIEW
+ actual_user: INFORMATICS USER

+ my_séssion: INFORMATICS_SESSION

- =< processing request=>>
#is_request_authorized: BOOLEAN

- == form validation=>

expand_error_string (string_table: HASH_TABLE [STRING_8, STRING_8])

STRING_8

- == Creation==

+ make
+ initialize (env: REQUEST_DISPATCHER)

- == add admin user=>
- add_admin_user

- == processing request=>
pre_processing

post_processing

update_menu

- << error pages==
redirect_to_permission_denied_page
redirect_to_invalid_request_page

Fig 5.3 INFORMATICS_HANDLER revised

USER_HANDLER

Nothing special but to implement corresponding routines for all predefined requests,

include form validation and data restoring routines.

implementation details.

Please refer to step07.zip for

{effective}
USER_HAMDLER

- =< implementation==

- =< form processing>>
+ validate_login_form: HASH_TABLE [STRING 8§, STRING

- format_user_for_adminlist (a_user: INFORMATICS_USER; odd_row

8]
+ validate_user form (a_user: INFORMATICS_TUSER) HASH_TABLE [STRING_8, STRING_8]

BOOLEAMN): STRING_8

- < process requests»
+ handling_request
+ post_processing

- =< implementation==

- admin_user_list

- authenticate_user

- create_update_user_account

- display_user_farm

- display_user_details

- delete_user_account (user_id: STRING 8)

- suspend_user_account (user_id: STRING_8)
- activate_user_account (user_jd: STRING_8)

- =< form processing==
+ restore_user_data (a_user: INFORMATICS_USER)

Fig 5.4 USER_HANDLER revised

If you have access to a web server, you can copy the compiled application executable and
configuration file to the cgi-bin folder, and deploy the other files as HTML template pages,
image files, and style sheets to the server. Hopefully all user related requests are working!

10

“Computer Science Event List” Quick-Start Guide Chair of Software Engineering, ETH Zirich

Step 8. Rest of the Work

As we did for user related requests, we can implement the same for EVENT_HANDLER.
First get HTML template pages ready, then it’s purely Eiffel programming, doing necessary
processing and create result HTML pages with marker based rewriting. As for
GENERAL_HANDLER, create the template pages and that’s all.

Check the step08.zip or informatics_events sample application for the final
implementation. You can find other dependent files under html folder in the same package.

References

[1] Informatics Europe, http://www.informatics-europe.org/

[2] The existing Computer Science Event List implementation, http://events.informatics-europe.org/

[3] Software Engineering Course Project CSARDAS, http://se.inf.ethz.ch/teaching/ss2007/252-0204-
00/project.html

11

http://www.informatics-europe.org/
http://events.informatics-europe.org/
http://se.inf.ethz.ch/teaching/ss2007/252-0204-00/project.html
http://se.inf.ethz.ch/teaching/ss2007/252-0204-00/project.html

	The Task
	Step 1. Requirement Analysis
	Step 2. Application Design and Initial Implementation
	Step 3. Request Elaborating
	Step 4. Layout and Configuration File Design
	Step 5. Web Site Design
	Step 6. Create Template Pages
	Step 7. USER_HANDLER Implementation
	Step 8. Rest of the Work
	References
	Computer Science Event List.pdf
	The Task
	Step 1. Requirement Analysis
	Step 2. Application Design and Initial Implementation
	Step 3. Request Elaborating
	Step 4. Layout and Configuration File Design
	Step 5. Web Site Design
	Step 6. Create Template Pages
	Step 7. USER_HANDLER Implementation
	Step 8. Rest of the Work
	References

