
ABEL Technical Documentation

Roman Schmocker
Reviewed by: Marco Piccioni

July 23, 2012

Contents

1 Introduction 2

2 Architecture overview 3
2.1 Front-end . 3
2.2 Back-end . 4

2.2.1 The framework layers 4
2.2.2 Important data structures 5
2.2.3 Transactions . 5
2.2.4 Class diagram . 6

3 Object-relational Mapping 7
3.1 Collection handling . 8
3.2 Object graph settings . 10

4 Backend abstraction 12
4.1 REPOSITORY . 12
4.2 BACKEND . 12
4.3 Database wrapper . 13

5 Extensions 14

6 Database adaption 15
6.1 The generic layout backend 15
6.2 Adaption to a custom database layout 16

1

Chapter 1

Introduction

ABEL (A Better Eiffelstore Library) aims at providing a unified, easy to
use object-oriented interface to different kinds of persistence stores, trying
to be as back-end-agnostic as possible.

For the basic CRUD (Create, Read, Update, Delete) operations of the
API and transaction handling, see the ABEL tutorial.

This is an introduction to the general architecture of ABEL and some
selected topics like the object-relational mapping layer or the main inter-
faces for the backend abstraction.

At the moment the supported back-ends are an in-memory database,
MySQL, and SQLite.

2

Chapter 2

Architecture overview

The ABEL library can be split into a front-end and a back-end part. The
front-end provides the main API, which is completely agnostic of the ac-
tual storage engine, whereas the backend provides a framework and some
implementations to adapt ABEL to a specific storage engine. The bound-
ary between backend and front-end can be drawn straight through the
deferred class REPOSITORY.

2.1 Front-end

If you’ve read the previous part of the documentation, then you should be
quite familiar now with the front-end. The main classes are:

• CRUD_EXECUTOR: Provides features for CRUD operations, and does
some error handling for transaction conflicts.

• QUERY: Collects information like the Criteria, Projection and the type
of the object to be retrieved (through its generic parameter).

• TRANSACTION: Represents a transaction, and is responsible to inter-
nally propagate errors.

• CRITERION: Its descendants provide a filtering function for retrieved
objects, and it has features to generate a tree of criteria using the
overloaded logical operators.

You can see that the main objective of the front-end is to provide an
easy to use, backend-agnostic API and to collect information which the
backend needs.

The class diagram provides an overview over the front-end. Note that
this diagram only shows the most important classes and their relations.

3

Figure 2.1: The main front-end classes and their relations.

2.2 Back-end

The front-end needs a repository which is specific to a persistence library,
and the back-end part provides a framework to implement these reposito-
ries (in cluster framework).

There are also some predefined repositories inside the back-end (clus-
ter backends), like the IN_MEMORY_REPOSITORY.

2.2.1 The framework layers

The framework is built of several layers, with each layer being more spe-
cific to a persistence mechanism as it goes down.

The uppermost layer is the REPOSITORY class. It provides a very high
level of abstraction, as it deals with normal Eiffel objects that may refer-
ence a lot of other objects.

One level below you can find the object-relational mapping layer. It

4

is responsible to take an object graph apart into its pieces and generate a
plan for the write operations, and also to build an object graph from the
pieces during retrieval. This layer is described more precisely in section 3.

On the next level there is the BACKEND layer. Its task is to map the object
graph pieces to a specific storage engine, e.g. a database with some table
layout.

The lowest level of abstraction is only significant for databases that
understand SQL. It provides a set of wrapper classes that hide connection
details and error handling, and it has features to execute SQL and retrieve
the result in a standardized way.

2.2.2 Important data structures

The key data structure is the OBJECT_IDENTIFICATION_MANAGER. It main-
tains a weak reference to every object that has been retrieved or inserted
before, and it assigns a repository-wide unique number to such objects
(called the object_identifier). It is for example responsible for the fact
that the update fails in section ??, “Recognizing Objects.”

Another important data structure is the KEY_POID_TABLE, which maps
the objects object_identifier to the primary key of the corresponding
entry in the database.

2.2.3 Transactions

Although not directly visible, transactions play an important role in the
back-end. Every operation internally runs inside a transaction, and almost
every part in the back-end is aware of transactions. For example, the two
important data structures described above have to provide some kind of
rollback mechanism, and ideally all ACID properties as well.

Another important task of transactions is error propagation within the
back-end. If for example an SQL statement fails because of some integrity
constraint violation, then the database wrapper can set the error field in
the current transaction instance and raise an exception. As the exception
propagates upwards, every layer in the back-end can do the appropriate
steps to bring the library back in a consistent state, using the transaction
with the error inside to decide on its actions.

5

2.2.4 Class diagram

To visualize the whole structure, there is a class diagram that shows the
most important classes and concepts of the back-end.

Figure 2.2: The main back-end classes and their relations.

6

Chapter 3

Object-relational Mapping

The object-relational mapping layer (abbreviated as ORM layer) lies be-
tween the REPOSITORY and the BACKEND. It consists of four main classes
doing the actual work, and a set of helper classes to represent an object
graph.

All helper classes are in framework/object_graph_representation.
Besides representation of an object graph, they are also used to describe a
write operation in the BACKEND. The most important ones are:

• BASIC_ATTRIBUTE_PART represents an object of a basic type

• COLLECTION_PART represents a collection, for example an instance of
SPECIAL

• SINGLE_OBJECT_PART: represets an Eiffel object that is neither a ba-
sic type nor a collection

All helper classes inherit from OBJECT_GRAPH_PART. They have a built-
in iteration cursor, and they share the concept of a dependency: If an object
graph part X is dependent on another part Y , then it means for example
that Y has to be inserted first, because X needs Y ’s primary key as a for-
eign key in the database.

The four classes listed here are the ones that do the actual work:

• The OBJECT_GRAPH_BUILDER is responsible to create the explicit ob-
ject graph representation.

• The WRITE_PLANNER is responsible to generate a total order on all
write operations, taking care of the dependency issues.

7

• The RETRIEVAL_MANAGER builds objects from the parts that it gets
from the backend, and takes care that the complete object graph gets
loaded.

• The COLLECTION_HANDLER, or rather its descendants, add collection
handling support to the basic ORM layer. You need at least one han-
dler for SPECIAL, but you can add handlers for other collections as
well.

The graph visualizes the process and shows the intermediate represen-
tation of data in the object-relational mapping layer. You can see there that
the object writing part is a bit more complex than the reading part, because
of the dependency issue.

3.1 Collection handling

You can extend the ORM algorithm to include collections. A collection
is usually mapped differently from a normal object in the backend, e.g.
through an M:N-relation table. You need at least one handler for SPECIAL,
because of its peculiarity that it doesn’t have a fixed amount of fields, but
you can include any other collection, like a LIST or an ARRAY.

There are two types of collections you can create within a handler. The
RELATIONAL_COLLECTION is intended for a case when you have a typical
database layout, with tables for every specific class and relations stored
either within the table of the referenced object (1:N-Relations) or inside
their own table (M:N-Relations).

The OBJECT_COLLECTION is intended for a scenario where you store
collections in a separate table, having their own primary key, and with the
collection owner using this key as a foreign key.

The following diagrams shows an example entity-relationship model
for each type of collection:

Note that the choice of the collection part has an effect in the object-re-
lational mapping layer already:

• OBJECT_COLLECTIONs are handled like a SINGLE_OBJECT_PART: The
owner of the collection object depends on the collection, and the col-
lection depends on all items that it references.

• A RELATIONAL_COLLECTION in an M:N mapping mode depends on
both the collection owner and all items that it references, but the
owner does not depend on its collection. This comes from the fact

8

Figure 3.1: The different intermediate representations of data.

Professor gives LectureList has Lecture
1 1 1 N

Figure 3.2: An ER-model where an OBJECT COLLECTION can be used.

that you need both a foreign key of the owner and the collection item
to insert a single row in an M:N-relation table.

• A RELATIONAL_COLLECTION in a 1:N mapping mode actually isn’t
forwarded to the backend at all. Instead, each item in the collection
gets a new dependency to the collection owner. Again, this comes

9

Student attend Lecture
M N

Figure 3.3: An ER-model where a RELATIONAL COLLECTION with M:N mapping can
be used.

Professor gives Lecture
1 N

Figure 3.4: An ER-model where a RELATIONAL COLLECTION with 1:N mapping can
be used.

from the normal practice in database layouts for 1:N relations.

If you use one of the predefined backends, you usually don’t have to
care about collection handlers. They get important however if you want
to adapt ABEL to a custom database layout, as you can see in section 6.2.

Please note that the framework itself does not provide any collection
handler, and inserting a SPECIAL object without setting an appropriate
handler will result in a runtime crash. However, there is a handler for
SPECIAL shipped with the predefined backends, which is used for exam-
ple by the IN_MEMORY_REPOSITORY.

3.2 Object graph settings

First, let’s define the object graph more exactly, using graph theory. An
object corresponds to a vertex in the graph, and a reference is a directed
edge.

The (global) object graph is the web of objects and references as it is
currently in main memory.

An object Y can be reached from another object X if there is a path
between X and Y , i.e. Y is in the transitive closure of X .

The object graph of an object X is the induced subgraph of the global
object graph that contains all vertices that can be reached from X .

The level of an object Y in the object graph of X is the length of the
shortest path from X to Y .

Using these definitions we can now describe how ABEL handles object
graphs, and how you can tweak the default settings to increase perfor-
mance.

10

Every operation in ABEL has its own depth parameter, which is de-
fined in OBJECT_GRAPH_SETTINGS. An operation will only handle an ob-
ject when the following condition holds:

level(object) < depth

Now let’s put this in a context: You already know that the insert and
retrieve features handle the complete object graph of an object. In fact, the
depth for both functions is Infinity by default.

On the other hand, the update or delete operations only handle the
first object they get, and don’t care about the object graph. Their depth
is defined as exactly 1, which means that only an object with a level of 0
satisfies the condition above. The only object with level 0 is in fact the root
object of an object graph.

To fully understand the behaviour of ABEL, we also have to look at
what happens when the algorithm reaches the “last” object, i.e. when the
condition level + 1 = depth holds. In that case the object with all basic
attributes gets inserted/updated, but references only get written if the ref-
erenced object is already persistent. If it isn’t persistent, then in a later
retrieval operation the reference will be Void.

You can change the depth parameter of the individual operations in
REPOSITORY.default_object_graph. Please keep in mind that this is a
dangerous operation, because a partially loaded object will contain Void
references even in a void-safe environment and may also violate its invari-
ant.

Apart from the depth, there are some other settings as well, i.e. what
ABEL should do if it finds an already persistent object along the object
graph of a new object to insert, or vice versa.

11

Chapter 4

Backend abstraction

The framework provides some very flexible interfaces to be able to support
many different storage engines. The three main levels of abstraction are
the REPOSITORY, the BACKEND and the database wrapper classes.

4.1 REPOSITORY

The deferred class REPOSITORY provides the highest level of abstraction,
as it deals with raw Eiffel objects including their complete object graph. It
provides a good interface to wrap a persistence mechanism that provides
a similarly high level of abstraction, like for example db4o [?].

The RELATIONAL_REPOSITORY is the main implementation of this in-
terface. It uses the ORM layer and a BACKEND and is therefore the default
repository for persistence libraries which are wrapped through BACKEND.

4.2 BACKEND

Another important interface is the deferred class BACKEND. This layer only
deals with one object graph part at once, either a single object or a collec-
tion. It is responsible to map them to the actual persistence mechanism
which is usually a specific layout in a database.

Its use however is not restricted to relational databases. The predefined
IN MEMORY DATABASE backend for example implements this interface
to provide a fake storage engine useful for testing, and it is planned to
wrap the serialization libraries using this abstraction.

12

4.3 Database wrapper

The last layer of abstraction is a set of wrappers to a database. It consists
of three deferred classes:

• The SQL_DATABASE represents a database. Its main task is to acquire
or release a SQL_CONNECTION.

• The SQL_CONNECTION represents a single connection. It has to for-
ward SQL statements to the database and represent the result in
an iteration cursor of SQL_ROWs. Another important task is to map
database specific error messages to ABEL ERROR instances.

• The SQL_ROW represents a single row in the result of an SQL query.

The wrapper is very useful if you want to easily swap e.g. from a
MySQL database to SQLite. However, keep in mind that the abstraction
is not perfect. For example, the wrapper doesn’t care about the different
SQL variations as it just forwards the statements to the database.

To overcome this problem, you can put all SQL statements in your im-
plementation of BACKEND into a separate class, and generally stick to stan-
dard SQL as much as possible.

13

Chapter 5

Extensions

Due to its flexible abstraction mechanism, you can easily extend ABEL
with features like client-side transaction management or ESCHER [?] inte-
gration.

The general pattern on how to do this is quite simple: You can imple-
ment the extension in a class that inherits from BACKEND and forwards all
calls to another BACKEND that does the actual storage. Then the extension
can do some processing on the intermediate result. That way you can add:

• Filter support for some non-persistent attributes by removing them
from the OBJECT_GRAPH_PART during a write, and adding a default
value during retrieval.

• ESCHER support by checking on the version attribute during a re-
trieval and calling the conversion function if necessary.

• Client-side transaction management by using a multiversion concur-
rency control mechanism and delaying write operations until you
can definitely commit.

• Caching of objects by using an IN_MEMORY_DATABASE alongside the
actual backend.

• An instance that does correctness checks, e.g. by routing the calls to
two different backends and comparing if the results are the same.

• Anything else you can imagine...

The nice thing is that you can add such extensions without adding
much complexity to the core of ABEL, and it works for all possible im-
plementations of BACKEND at once.

14

Chapter 6

Database adaption

The BACKEND interface allows to adapt the framework to many database
layouts. Shipped with the library is a backend that uses a generic database
layout which can handle every type of object. It is explained in the next
section.

But you can also adapt ABEL to your very own private database layout.
An example on how to do this is shown in section 6.2.

6.1 The generic layout backend

The database layout is based upon metadata of the class. It is very flexible
and allows for any type of objects to be inserted. The layout is a modified
version from the suggestion in Scott W. Ambler’s article “Mapping Objects
to Relational Databases” [?].

The ER-model in the diagram is in fact a simplified view. The real
model uses another relationship between value and class to determine the
runtime type of a value, which is required in some special cases.

The backend located in backends/generic_database_layout maps
Eiffel objects to this database layout.

It is split into three classes:

• The METADATA_TABLES_MANAGER is responsible to read and write ta-
bles ps_class and ps_attribute.

• The GENERIC_LAYOUT_SQL_BACKEND is responsible to write and read
the ps_value table. It is an implementation of BACKEND.

• The GENERIC_LAYOUT_SQL_STRINGS collects all SQL statements. Its
descendants adapt the statements to a specific database if there is an
incompatibility.

15

ps value attributeid ps attribute

classid

ps class

objectidvalue

attributeid name

classid

name

1 N

1

N

Figure 6.1: The ER-Model of the generic database layout.

The functionality of the metadata table manager is quite easy: It just
caches table ps_class and ps_attribute in memory and provides fea-
tures to get the primary key of an attribute or a class. If the class is not
present in the database, then it will insert it and return the new primary
key.

Using the table manager, the GENERIC_LAYOUT_SQL_BACKEND has all
information to perform a write operation: The attribute value inside the
SINGLE_OBJECT_PART, the attribute foreign key which is provided by the
METADATA_TABLES_MANAGER, and the object primary key which is either
stored in the KEY_POID_TABLE or generated during an insert.

The retrieval operation is similar. First, the backend gets all attribute
primary keys of a specific class from the table manager, and then it ex-
ecutes an SQL query to retrieve all values whose attribute foreign keys
match the ones retrieved before. The backend does also sort the result by
the object primary key, such that attributes of the same object are grouped
together.

6.2 Adaption to a custom database layout

Adapting ABEL to a custom database layout needs two steps:

• Implement a BACKEND for your layout

16

• Implement COLLECTION_HANDLERS for all collections that need to be
mapped

Let’s consider a very simple example with only two classes:

class
PERSON

3

feature
name:STRING

6 -- Name of ’Current’
items_owned: LINKED_LIST [ITEM]
-- Items owned by ’Current’

9 end

12 class
ITEM

15 feature
value:INTEGER
-- The value of ’Current’

18 end

Listing 6.1: Example classes

In the database, there is table Person with columns primary_key and
name, and table Item with columns primary_key, item, and a foreign key
owner to table Person.

Person owner Item

primary key

name

primary key

value

1 N

Figure 6.2: The example ER-Model.

In this setup, you only need a collection handler for LINKED_LIST. All
LINKED_LIST instances are relationally mapped in 1:M mode, therefore,
the implementation of the (only) collection handler is very simple:

class

17

LINKED_LIST_HANDLER
3 inherit

PS_COLLECTION_HANDLER [LINKED_LIST [detachable ANY]]
feature

6

is_relationally_mapped (collection, owner_type:
PS_TYPE_METADATA):BOOLEAN

-- Is ‘collection’ mapped as a 1:N or M:N - Relation?
9 do

Result:= True
end

12

is_mapped_as_1_to_N (collection, owner_type:
PS_TYPE_METADATA):BOOLEAN

-- Is ‘collection’ mapped as a 1:N - Relation?
15 do

Result:= True
end

18

build_relational_collection (collection_type:
PS_TYPE_METADATA; objects: LIST[detachable ANY]):
LINKED_LIST[detachable ANY]

-- Build a new LINKED_LIST
21 do

create Result.make
Result.append (objects)

24 end

end

Listing 6.2: The collection handler for LINKED LIST

The implementation of BACKEND is quite straightforward as well. You
just have to distinguish between PERSON and ITEM objects and insert them
in the corresponding table.

Please remember that the object-rlational mapping layer adds an at-
tribute with name items_owned to the ITEM object, which is the default
behaviour for 1:N relations. This especially means that you don’t need to
implement the write operations for relational collections.

The following code listing shows the insert feature in pseudocode:
class
MY_SIMPLE_BACKEND

3 inherit
PS_BACKEND

18

feature
6

insert (object:PS_SINGLE_OBJECT_PART; tx:PS_TRANSACTION)
-- Inserts the object into the database

9 do
if object is a PERSON object then
database.execute_sql ("INSERT INTO person (name)

VALUES " + object.attribute_value ("name"))
12 key_mapper.add_entry (object, database.execute_sql ("

Get autoincremented primary key of Person")
else
-- The ORM layer added ‘items_owned’ to ITEM

15 foreign_key:= key_mapper.primary_key_of (object.
get_value ("items_owned"))

database.execute_sql ("INSERT INTO item (value, owner
) VALUES " + object.attribute_value ("value") +
foreign_key)

key_mapper.add_entry (object, database.execute_sql("
Get autoincremented primary key of Item")

18 end
end

21 key_mapper: PS_KEY_POID_TABLE
-- Maps object identifiers to primary keys

end

Listing 6.3: The collection handler for LINKED LIST

During a retrieval operation, you similarly have to select your val-
ues from the correct table. Please note that you have to implement the
retrieve_relational_collection feature here.

19

	Introduction
	Architecture overview
	Front-end
	Back-end
	The framework layers
	Important data structures
	Transactions
	Class diagram

	Object-relational Mapping
	Collection handling
	Object graph settings

	Backend abstraction
	REPOSITORY
	BACKEND
	Database wrapper

	Extensions
	Database adaption
	The generic layout backend
	Adaption to a custom database layout

