
The ABEL Persistence Library Tutorial

Roman Schmocker, Pascal Roos, Marco Piccioni

Last updated:

July 24, 2013

Contents

1 Introducing ABEL 2
1.1 Setting things up . 2
1.2 Getting started . 3

2 Basic operations 6
2.1 Inserting . 6
2.2 Querying . 7
2.3 Updating . 8
2.4 Deleting . 8
2.5 Dealing with Known Objects 9

3 Advanced Queries 11
3.1 The query mechanism . 11
3.2 Criteria . 11

3.2.1 Predefined Criteria . 11
3.2.2 Agent Criteria . 12
3.2.3 Creating criteria objects 12
3.2.4 Combining criteria . 14

3.3 Deletion queries . 16

4 Dealing with references 18
4.1 Inserting objects with dependencies 18
4.2 Updating objects with dependencies 21
4.3 Going deeper in the Object Graph 22

5 Transaction handling 23
5.1 Transaction isolation levels . 24

6 Error handling 26

1

7 CouchDB Support 29
7.1 What is CouchDB . 29
7.2 Setting up CouchDB . 29
7.3 Getting started with CouchDB 30
7.4 Beneath the surface . 30
7.5 Limitations . 31

1

Chapter 1

Introducing ABEL

ABEL (A Better EiffelStore Library) is an object-oriented persistence li-
brary written in Eiffel and aiming at seamlessly integrating various kinds
of data stores.

1.1 Setting things up

We are assuming you have checked out the ABEL code from the EiffelStu-
dio SVN repository1, and have EiffelStudio installed. Launch EiffelStudio
and in the initial window choose ”tutorial project”. If it is not there just
choose ”Add project” and navigate to the location where you downloaded
ABEL, and look for the tutorial project.ecf project file in abel/apps/sample/-
tutorial/. As the abel project file referenced by the tutorial project file 2

includes references to drivers that you might not have installed yet (e.g.
MySQL-related drivers), you can comment out these references from the
abel project file until your compilation succeeds 3. You can then load and
compile the project. To be able to compile the ABEL tutorial you don’t
need particular dependencies, because it is using an in-memory database
simulating a relational database. If you want to experiment with ABEL’s
support for full-fledged relational back-ends (like MySQL or SQLite), you
need to install the databases and the appropriate drivers first (also check
the readme files when they are there).

1https://svn.eiffel.com/eiffelstudio/branches/eth/eve/Src/
library/abel

2You can find the ABEL project file in abel/libraries/ethz/src/abel/eiffelstore2.ecf
3For example if some missing mysql references prevent your compilation from

completing without errors you can try commenting out line <library name=”mysql”
location=”../mysqli/mysqli.ecf”/> in eiffelstore2.ecf

2

https://svn.eiffel.com/eiffelstudio/branches/eth/eve/Src/library/abel
https://svn.eiffel.com/eiffelstudio/branches/eth/eve/Src/library/abel

1.2 Getting started

We will be using PERSON objects to show the usage of the API. In the source
code below you will see that ABEL handles objects ”as they are”, meaning
that to make them persistent you don’t need to add any dependencies to
their class source code.

class PERSON

3 create
make

6 feature {NONE} -- Initialization

make (first, last: STRING)
9 -- Create a newborn person.

require
first_exists: not first.is_empty

12 last_exists: not last.is_empty
do
first_name := first

15 last_name := last
age:= 0

ensure
18 first_name_set: first_name = first

last_name_set: last_name = last
default_age: age = 0

21 end

feature -- Basic operations
24

celebrate_birthday
-- Increase age by 1.

27 do
age:= age + 1

ensure
30 age_incremented_by_one: age = old age + 1

end

33 feature -- Access

first_name: STRING
36 -- The person’s first name.

3

last_name: STRING
39 -- The person’s last name.

age: INTEGER
42 -- The person’s age.

invariant
45 age_non_negative: age >= 0

first_name_exists: not first_name.is_empty
last_name_exists: not last_name.is_empty

48 end

Listing 1.1: The PERSON class

There are three very important classes in ABEL:

• The deferred class PS_REPOSITORY provides an abstraction to the ac-
tual storage mechanism.

• The PS_EXECUTOR class is responsible to execute CRUD (Create Read
Update Delete) commands. Every PS_EXECUTOR object works with a
PS_REPOSITORY.

• The PS_OBJECT_QUERY [G] class is used to describe a read opera-
tion over objects of type G. You can execute such a query in the
PS_EXECUTOR. The result will be objects of type G.

To start using the library, we first need to create an object of type
PS_REPOSITORY. In this case we will be using a more specific object of type
PS_RELATIONAL_REPOSITORY, and even more specifically a PS_IN_MEMORY_REPOSITORY
, which simulates a relational repository while storing the data in memory.
ABEL provides support for creating all kinds of PS_REPOSITORY objects
through the factory class PS_REPOSITORY_FACTORY, so that is what we are
going to use.
As a second step, we need to create an object of type PS_EXECUTOR. To do
so, we will pass the previously created repository as an argument to its
creation feature.

class TUTORIAL

3 create
make

6 feature -- Tutorial exploration features

4

explore
9 -- Tutorial code.

local
in_memory_repo: PS_RELATIONAL_REPOSITORY

12 do
print ("---o--- ABEL Tutorial ---o---")
io.new_line

15 in_memory_repo := repo_factory.
create_in_memory_repository

create executor.make (in_memory_repo)
end

18

feature -- Access

21 repo_factory: PS_REPOSITORY_FACTORY
-- Repository factory.

24 executor: PS_EXECUTOR
-- The executor of database operations used throughout

the tutorial.

27 end

Listing 1.2: The TUTORIAL class

We will use this class throughout the tutorial. You can assume that the
Eiffel features listed in this tutorial are located inside the TUTORIAL class,
if they are not enclosed in another class declaration.
We encourage you to test the features shown in this tutorial by calling
them from feature explore in class TUTORIAL.

5

Chapter 2

Basic operations

2.1 Inserting

You insert an object in the repository using feature execute_insert in
class
PS_EXECUTOR. Let’s add three new persons to the database in feature
explore:

explore
-- Tutorial code.

3 local
in_memory_repo: PS_RELATIONAL_REPOSITORY
p1, p2, p3: PERSON

6 do
print ("---o--- ABEL Tutorial ---o---")
io.new_line

9 in_memory_repo := repo_factory.
create_in_memory_repository

create executor.make (in_memory_repo)
-- Insert 3 new persons in the database

12 create p1.make ("Albo", "Bitossi")
p1.celebrate_birthday
executor.execute_insert (p1)

15 create p2.make ("Berno", "Citrini")
p2.celebrate_birthday
p2.celebrate_birthday

18 p2.celebrate_birthday
executor.execute_insert (p2)
create p3.make ("Dumbo", "Ermini")

21 executor.execute_insert (p3)

6

end

Listing 2.1: Insertion code.

2.2 Querying

A query for objects is done by creating a PS_OBJECT_QUERY [G] object
and executing it using features of PS_EXECUTOR. The generic parameter G
denotes the type of objects that should be queried.

After a successful execution of the query, you can find the result in the
iteration cursor result_cursor in class PS_OBJECT_QUERY. The feature
simple_query below shows how to get a list of persons from the reposi-
tory:

simple_query: LINKED_LIST [PERSON]
-- Query all persons from the current repository.

3 local
query: PS_OBJECT_QUERY [PERSON]

do
6 create Result.make

create query.make
executor.execute_query (query)

9

across query as query_result
loop

12 Result.extend (query_result.item)
end

end

Listing 2.2: A simple query.

We now add in feature explore the code to print the linked list returned
by feature simple_query:

explore
-- Tutorial code.

3 local
in_memory_repo: PS_RELATIONAL_REPOSITORY
p1, p2, p3: PERSON

6 do
-- Same code as before
-- Query the database and print result

9 print_result (simple_query)

7

end

Listing 2.3: Printing the query result.

Feature print_result takes the linked list result of the query and prints
all its elements. Usually the result of such a query is very big, and you
are probably only interested in objects that meet certain criteria, e.g. all
persons of age 20. You can read more about it in Chapter 3.

Please note that ABEL does not enforce any kind of order on a query
result.

2.3 Updating

Updating an object is done through feature execute_update in PS_EXECUTOR

. Let’s update the age attribute of Berno Citrini by celebrating his birthday:

explore
-- Tutorial code.

3 local
in_memory_repo: PS_RELATIONAL_REPOSITORY
p1, p2, p3: PERSON

6 do
-- Same code as before
-- Update an existing person in the database and print

the result again
9 p2.celebrate_birthday

executor.execute_update (p2)
print_result (simple_query)

12 end

Listing 2.4: Printing the query result.

The object to update needs to be previously known to ABEL through an
insert or a successful query (see Section 2.5).

2.4 Deleting

Deletion is done through feature execute_delete in PS_EXECUTOR. Let’s
now delete Albo Bitossi from the database:

explore
-- Tutorial code.

3 local
in_memory_repo: PS_RELATIONAL_REPOSITORY

8

p1, p2, p3: PERSON
6 do

-- Same code as before
-- Delete Dumbo Ermini from the database and print the

result again
9 executor.execute_delete (p3)

print_result (simple_query)
end

Listing 2.5: Deleting an object.

The object to delete needs to be previously known to ABEL through an
insert or a successful query (see Section 2.5). A way to delete objects that
always works (because ABEL queries for them in advance) is described in
Section 3.3.

2.5 Dealing with Known Objects

ABEL keeps track of objects that have been inserted or queried. This is im-
portant because in case of an update or delete, the library internally needs
to map the object in the current execution of the program to its specific
entry in the database.

Because of that, you can’t update or delete an object that is not yet
known to ABEL. As an example, the following two functions will fail:

1 failing_update
-- Try and fail to update a new person object
local

4 a_person: PERSON
do
create a_person.make ("Bob", "Barath")

7 executor.execute_update (a_person)
-- Results in a precondition violation

end
10

failing_delete
-- Try and fail to delete a new person object

13 local
a_person:PERSON

do
16 create a_person.make ("Cersei", "Lannis")

executor.execute_delete (a_person)
-- Results in a precondition violation

9

19 end

Listing 2.6: Failing updates and deletes.

Please note that there’s another way to delete objects, described in Sec-
tion 3.3, which doesn’t have this restriction.

The feature is_persistent in PS_EXECUTOR can tell you if a specific
object is known to ABEL and hence has a link to its entry in the database.

10

Chapter 3

Advanced Queries

3.1 The query mechanism

As you already know from Section 2.2, queries to a database are done by
creating an object of type PS_OBJECT_QUERY[G] and using it from within a
PS_EXECUTOR. The actual value of the generic parameter G determines the
type of the objects that will be returned, including any conforming type
(e.g. descendants of G).

ABEL will by default load an object completely, meaning all objects
that can be reached by following references will be loaded as well (see
also Chapter 4).

3.2 Criteria

You can filter your query results by setting criteria in the query object,
using feature set_criteria in PS_OBJECT_QUERY. There are two types of
criteria: predefined and agent criteria.

3.2.1 Predefined Criteria

When using a predefined criterion you pick an attribute name, an operator
and a value. During a read operation, ABEL checks the attribute value of
the freshly retrieved object against the value set in the criterion, and filters
away objects that don’t satisfy the criterion.

Most of the supported operators are pretty self-describing (see class
CRITERION_FACTORY in Section 3.2.3). An exception could be the like op-
erator, which does pattern-matching on strings. You can provide the like
operator with a pattern as a value. The pattern can contain the wildcard

11

characters * and ?. The asterisk stands for any number (including zero) of
undefined characters, and the question mark means exactly one undefined
character.

You can only use attributes that are strings or numbers, but not every
type of attribute supports every other operator. Valid combinations for
each type are:

• Strings: =, like

• Any numeric value: =, <,<=, >,>=

• Booleans: =

Note that for performance reasons it is usually better to use predefined
criteria, because they can be compiled to SQL and hence the result can be
filtered in the database.

3.2.2 Agent Criteria

An agent criterion will filter the objects according to the result of an agent
applied to them.

The criterion is initialized with an agent of type PREDICATE [ANY,

TUPLE [ANY]]. There should be either an open target or a single open
argument, and the type of the objects in the query result should conform
to the agent’s open operand. For an example see Section 3.2.3.

3.2.3 Creating criteria objects

The criteria instances are best created using the CRITERION_FACTORY class.
The main features of the class are the following:

class
PS_CRITERION_FACTORY

3 create
default_create

6 feature -- Creating a criterion

new alias "[]" (tuple: TUPLE [ANY]): PS_CRITERION
9 -- Creates a new criterion according to a ‘tuple’

-- containing either a single PREDICATE or three
-- values of type [STRING, STRING, ANY].

12

12

new_agent (a_predicate: PREDICATE [ANY, TUPLE [ANY]]):
PS_CRITERION

-- Creates an agent criterion.
15

new_predefined (object_attribute: STRING;
operator: STRING; value: ANY): PS_CRITERION

18 -- Creates a predefined criterion.

feature -- Operators
21

equals: STRING = "="

24 greater: STRING = ">"

greater_equal: STRING = ">="
27

less: STRING = "<"

30 less_equal: STRING = "<="

like_string: STRING = "like"
33

end

Listing 3.1: The CRITERION FACTORY class interface

Assuming you have an object f: PS_CRITERION_FACTORY, to create a
new criterion you have two possibilities:

• The ”traditional” way

– f.new_agent (agent an_agent)

– f.new_predefined (an_attr_name, an_operator, a_val)

• The ”syntactic sugared” way

– f[[an_attr_name, an_operator, a_value]]

– f[[agent an_agent]]

caption=The CRITERION FACTORY interface

create_criteria_traditional : PS_CRITERION
3 -- Create a new criteria using the traditional approach.

13

do
-- for predefined criteria

6 Result:=
factory.new_predefined ("age", factory.less, 5)

9 -- for agent criteria
Result :=
factory.new_agent (agent age_more_than (?, 5))

12 end

create_criteria_double_bracket : PS_CRITERION
15 -- Create a new criteria using the double bracket syntax

.
do
-- for predefined criteria

18 Result:= factory[["age", factory.less, 5]]

-- for agent criteria
21 Result := factory[[agent age_more_than (?, 5)]]

end

24 age_more_than (person: PERSON; age: INTEGER): BOOLEAN
-- An example agent
do

27 Result:= person.age > age
end

Listing 3.2: Different ways of creating criteria.

3.2.4 Combining criteria

You can combine multiple criterion objects by using the standard Eiffel
logical operators. For example, if you want to search for a person called
“Albo Bitossi” with age <= 20, you can just create a criterion object for
each of the constraints and combine them:

1

composite_search_criterion : PS_CRITERION
-- Combining criterion objects.

4 local
first_name_criterion: PS_CRITERION
last_name_criterion: PS_CRITERION

7 age_criterion: PS_CRITERION
do

14

first_name_criterion:=
10 factory[["first_name", factory.equals, "Albo"]]

last_name_criterion :=
13 factory[["last_name", factory.equals, "Bitossi"]]

age_criterion :=
16 factory[[agent age_more_than (?, 20)]]

Result := first_name_criterion and last_name_criterion
and not age_criterion

19

-- using double brackets for compactness.
Result := factory[["first_name", "=", "Albo"]]

22 and factory[["last_name", "=", "Bitossi"]]
and not factory[[agent age_more_than (?, 20)]]

end

Listing 3.3: Combining criteria.

ABEL supports the three standard logical operators AND, OR and NOT.
The precedence rules are the same as in Eiffel, which means that NOT is
stronger than AND, which in turn is stronger than OR.

We can now add the necessary code to feature explore:

explore
-- Tutorial code.

3 local
in_memory_repo: PS_RELATIONAL_REPOSITORY
p1, p2, p3: PERSON

6 do
-- Same code as before
-- Search for Albo Bitossi with age <= 20

9 print_result (query_with_composite_criterion)
end

Listing 3.4: Invoking the code that searches for Albo Bitossi

Where feature query_with_composite_criterion looks like the fol-
lowing:

query_with_composite_criterion: LINKED_LIST [PERSON]
-- Query using a composite criterion.

3 local
query: PS_OBJECT_QUERY [PERSON]

do

15

6 create Result.make
create query.make
query.set_criterion (composite_search_criterion)

9 executor.execute_query (query)

across query as query_result
12 loop

Result.extend (query_result.item)
end

15 end

Listing 3.5: Invoking the code that searches for Albo Bitossi

As you may have noticed, it is very simple to set criteria on a query.

3.3 Deletion queries

As mentioned in Section 2.4, there is another way to perform a deletion in
the repository from within PS_EXECUTOR. By calling execute_deletion_query
instead of execute_delete, ABEL will delete all objects in the database

that would have been retrieved by executing the query normally.

delete_person_with_deletion_query (last_name: STRING)
-- Delete person with ‘last_name’ using a deletion query

.
3 local

deletion_query: PS_OBJECT_QUERY [PERSON]
criterion:PS_PREDEFINED_CRITERION

6 do
create deletion_query.make
create criterion.make ("last_name", "=", last_name)

9 deletion_query.set_criterion (criterion)
executor.execute_deletion_query (deletion_query)

end

Listing 3.6: Using a deletion query.

We can now add the necessary code to feature explore:

explore
-- Tutorial code.

3 local
in_memory_repo: PS_RELATIONAL_REPOSITORY
p1, p2, p3: PERSON

6 do

16

-- Same code as before
-- Delete Albo Bitossi using a deletion query

9 delete_person_with_deletion_query ("Bitossi")
print_result (simple_query)

end

Listing 3.7: Invoking the code that searches for Albo Bitossi

Using a deletion query instead of a direct delete command depends upon
the situation. Usually, a direct command is better if you already have the
object in memory, whereas deletion queries are nice to use if the object is
not yet loaded from the database.

17

Chapter 4

Dealing with references

In ABEL, a basic type is an object of type STRING, BOOLEAN, CHARACTER
or any numeric class like REAL or INTEGER. The PERSON class only has

attributes of a basic type. However, an object can contain references to
other objects. ABEL is able to handle these references by storing and re-
constructing the whole object graph (an object graph is roughly defined as
all the objects that can be reached by recursively following all references,
starting at some root object).

4.1 Inserting objects with dependencies

Let’s look at the new class CHILD:

class
3 CHILD

create
6 make

feature {NONE} -- Initialization
9

make (first, last: STRING)
-- Create a new child.

12 require
first_exists: not first.is_empty
last_exists: not last.is_empty

15 do
first_name := first
last_name := last

18

18 age := 0
ensure
first_name_set: first_name = first

21 last_name_set: last_name = last
default_age: age = 0

end
24

feature -- Access

27 celebrate_birthday
-- Increase age by 1.

do
30 age := age + 1

ensure
age_incremented_by_one: age = old age + 1

33 end

feature -- Status report
36

first_name: STRING
-- The child’s first name.

39

last_name: STRING
-- The child’s last name.

42

age: INTEGER
-- The child’s age.

45

feature -- Parents

48 mother: detachable CHILD
-- The child’s mother.

51 father: detachable CHILD
-- The child’s father.

54 set_mother (a_mother: CHILD)
-- Set a mother for the child.

do
57 mother := a_mother

ensure
mother_set: mother = a_mother

60 end

19

set_father (a_father: CHILD)
63 -- Set a father for the child.

do
father := a_father

66 ensure
father_set: father = a_father

end
69

invariant
age_non_negative: age >= 0

72 first_name_exists: not first_name.is_empty
last_name_exists: not last_name.is_empty

end

Listing 4.1: The CHILD class.

This adds in some complexity: instead of having a single object, ABEL
has to insert a CHILD’s mother and father as well, and it has to repeat this
procedure if their parent attribute is also attached. The good news are that
the examples above will work exactly the same.

However, there are some additional caveats to take into consideration.
Let’s consider a simple example with CHILD objects “Baby Doe”, “John
Doe” and “Grandpa Doe”. From the name of the object instances you can
already guess what the object graph looks like:

BabyDoe JohnDoe GrandpaDoe
father father

Now if you insert “Baby Doe”, ABEL will by default follow all refer-
ences and insert every single object along the object graph, which means
that “John Doe” and “Grandpa Doe” will be inserted as well. This is usu-
ally the desired behavior, as objects are stored completely that way, but it
also has some side effects we need to be aware of:

• Assume an insert of “Baby Doe” has happened to an empty database.
If you now query the database for CHILD objects, it will return exactly
the same object graph as above, but the query result will actually
have three items, as the object graph consists of three single CHILD

objects.

• After you’ve inserted “Baby Doe”, it has no effect if you insert “John
Doe” or “Grandpa Doe” afterwards, because they have already been
inserted by the first statement.

20

Here is the code in feature explore that tests what we have stated
above:

explore
-- Tutorial code.

3 local
in_memory_repo: PS_RELATIONAL_REPOSITORY
p1, p2, p3: PERSON

6 c1, c2, c3: CHILD
do
-- Same code as before

9 print ("Insert 3 children in the database")
create c1.make ("Baby", "Doe")
create c2.make ("John", "Doe")

12 create c3.make ("Grandpa", "Doe")
c1.set_father (c2)
c2.set_father (c3)

15 executor.execute_insert (c1)
io.new_line
print ("Query the database for children and print

result")
18 print_children_result (query_for_children)

print ("Inserting John Doe has no effect")
executor.execute_insert (c2)

21 print_children_result (query_for_children)
end

Listing 4.2: Inserting objects having references to other objects.

You can find the code for query_for_children and print_children_result

in the ABEL repository. You will notice it is very similar to the correspond-
ing routines seen before (the only thing that changes is the kind of linked
list that is passed as an argument).

4.2 Updating objects with dependencies

ABEL does not follow references during an update by default, so for ex-
ample the following statement has no effect on the database:

explore
-- Tutorial code.

3 local
in_memory_repo: PS_RELATIONAL_REPOSITORY
p1, p2, p3: PERSON

21

6 c1, c2, c3: CHILD
do
-- Same code as before

9 print ("Updating John Doe has no effect")
if attached {CHILD} c1.father as dad then
dad.celebrate_birthday

12 end
executor.execute_update (c1)
print_children_result (query_for_children)

15 end

Listing 4.3: References are not followed by default during updates.

Section 4.3 will tell you how do change the default settings.

4.3 Going deeper in the Object Graph

ABEL has no limits regarding the depth of an object graph, and it will de-
tect and handle reference cycles correctly. You are welcome to test ABEL’s
capability with very complex objects, however please keep in mind that
this may impact performance significantly.

To overcome this problem, you can either use simple object structures,
or you can tell ABEL to only load or store an object up to a certain depth.
The default ABEL’s behavior with respect to the object graph can be changed
by using feature default_object_graph in class PS_REPOSITORY and pass-
ing an appropriate object of type PS_DEFAULT_OBJECT_GRAPH_SETTINGS.

22

Chapter 5

Transaction handling

Every CRUD operation in ABEL is by default executed within a transac-
tion. Transactions are created and committed implicitly. This is convenient
when dealing with complex object graphs, because an object doesn’t get
inserted halfway in case of an error.

As a user, you also have the possibility to use transactions explicitly.
This is done by manually creating an object of type PS_TRANSACTION and
using the *_within_transaction features in PS_EXECUTOR instead of the
normal ones. For your convenience there is a factory method new_transaction

in class PS_EXECUTOR.
Let’s consider an example where you want to update the age of every

person by one:

update_ages
-- Increase the age of all persons by one.

3 local
query: PS_OBJECT_QUERY [PERSON]
transaction: PS_TRANSACTION

6 do
create query.make
transaction := executor.new_transaction

9

executor.execute_query_within_transaction (query,
transaction)

12 across query as query_result
loop
query_result.item.celebrate_birthday

15 executor.update_within_transaction
(query_result.item, transaction)

23

end
18

transaction.commit

21 -- The commit may have failed
if transaction.has_error then
if attached transaction.error.message as msg then

24 print ("Commit has failed. Error: " + msg)
end

end
27 end

You can see here that a commit can fail in some situations, e.g. when
a write conflict happened in the database. The errors are reported in the
PS_TRANSACTION.has_error attribute. In case of an error, all changes of
the transaction are rolled back automatically.

You can also abort a transaction manually by calling feature rollback
in class PS_TRANSACTION.

As usual, here is the code for feature explore:

explore
-- Tutorial code.

3 local
in_memory_repo: PS_RELATIONAL_REPOSITORY
p1, p2, p3: PERSON

6 c1, c2, c3: CHILD
do
-- Same code as before

9 print ("Celebrating the birthday for all PERSON
objects in the repository")

update_ages
print_result (simple_query)

12 end

Listing 5.1: Testing an update with explicit transaction.

5.1 Transaction isolation levels

ABEL supports the four standard transaction isolation levels found in al-
most every database system:

• Read Uncommitted

• Read Committed

24

• Repeatable Read

• Serializable

The different levels are defined in TRANSACTION_ISOLATION_LEVEL. You
can change the transaction isolation level by calling feature
set_transaction_isolation_level in class PS_REPOSITORY. The de-
fault transaction isolation level of ABEL is defined by the actual storage
backend.

Please note that not every backend supports all isolation levels. There-
fore a backend can also use a more restrictive isolation level than you actu-
ally instruct it to use, but it is not allowed to use a less restrictive isolation
level.

25

Chapter 6

Error handling

As ABEL is dealing with I/O and databases, runtime errors may happen.
The library will in general raise an exception in case of an error and expose
the error to the library user as an PS_ERROR object. ABEL recognizes two
different kinds of errors:

• Irrecoverable errors: fatal errors happening in scenarios like a dropped
connection or a database integrity constraint violation. The default
behavior is to rollback the current transaction and raise an exception.
If you catch the exception in a rescue clause and manage to solve the
problem, you can continue using ABEL.

• Recoverable errors: exceptional situations typically not visible to the
user, because no exception is raised when they occur. An example
is a conflict between two transactions. ABEL will detect the issue
and, in case of implicit transaction management, retry. If you use
explicit transaction management, ABEL will just doom the current
transaction to fail at commit time.

ABEL maps database specific error messages to its own representation
for errors, which is a hierarchy of classes rooted at PS_ERROR. The follow-
ing list shows all error classes that are currently defined.

If not explicitly stated otherwise, the errors in this lists belong to the
first category (fatal errors).

• CONNECTION_PROBLEM: A broken internet link, or a deleted serializa-
tion file.

• TRANSACTION_CONFLICT: A write conflict between two transactions.
This is a recoverable error.

26

• UNRESOLVABLE_TRANSACTION_CONFLICT: A write conflict between
implicit transactions that doesn’t resolve after a retry.

• ACCESS_RIGHT_VIOLATION: Insufficient privileges in database, or no
write permission to serialization file.

• VERSION_MISMATCH: The stored version of an object isn’t compatible
any more to the current type.

• INTERNAL_ERROR: Any error happening inside the library, e.g. a
wrong SQL compilation.

• GENERAL_ERROR: Anything that doesn’t fit into one of the categories
above.

If you want to handle an error, you have to add a rescue clause some-
where in your code.

You can get the actual error from the feature PS_EXECUTOR.error or
PS_TRANSACTION.error or - due to the fact that the PS_ERROR class inher-
its from DEVELOPER_EXCEPTION - by performing an object test on Eiffel’s
EXCEPTION_MANAGER.last_exception.

For your convenience, there is a visitor pattern for all ABEL error types.
You can just implement the appropriate functions and use it for your error
handling code.

The following code shows an example. Note that only relevant features
are shown:

class
3 MY_PRIVATE_VISITOR
inherit
PS_ERROR_VISITOR

6

feature
shall_retry: BOOLEAN

9 -- Should my client retry the operation?

visit_access_right_violation (
12 error: PS_ACCESS_RIGHT_VIOLATION)

-- Visit an access right violation error.
do

15 add_some_privileges
shall_retry := True

end

27

18

visit_connection_problem (error: PS_CONNECTION_PROBLEM)
-- Visit a connection problem error.

21 do
notify_user_of_abort
shall_retry:=False

24 end
end

27 class
TUTORIAL

30 feature

my_visitor: MY_PRIVATE_VISITOR
33 -- A user-defined visitor to react to an error.

executor: PS_EXECUTOR
36 -- The CRUD executor used throughout the tutorial.

39 do_something_with_error_handling
-- Perform some operations. Deal with errors in case of

a problem.
do

42 -- Some complicated operations
rescue
my_visitor.visit (executor.last_error)

45 if my_visitor.shall_retry then
retry

else
48 -- The exception propagates upwards, and maybe

-- another feature can handle it
end

51 end
end

Listing 6.1: Sample error handling using a visitor.

28

Chapter 7

CouchDB Support

ABEL does not only work with an in-memory database. It is also able to
store objects in other database, both relational (like MySQL and SQLite)
and non-relational like CouchDB, always using the same API.

7.1 What is CouchDB

CouchDB is a free, open-source document-oriented database 1. CouchDB
stores objects on a persistent database using JSON documents. JSON is a
textual notation similar to XML that stores Eiffel objects like this:

{
"firstname": "Albo",

3 "lastname": "Bitossi",
"age": 0

}

Listing 7.1: Sample Eiffel Object in JSON

7.2 Setting up CouchDB

Before we can start using CouchDB from within Eiffel we have to set it
up either on a local machine or get hold of a database on the internet.
To install CouchDB locally visit www.couchdb.com and download the
appropriate package.

Once installed, CouchDB should be running in the background and is
accessible trough a browser by accessing 127.0.0.1:5984/ utils To work with

1http://couchdb.apache.org

29

www.couchdb.com
http://couchdb.apache.org

CouchDB in Eiffel we have created another tutorial which you can get at
abel/apps/sample/tutorial-couchdb/. Look for the tutorial project.ecf and open
it with EiffelStudio.

7.3 Getting started with CouchDB

On the surface there is not much difference between using the in-memory
database and CouchDB. You may notice that all we changed in the tutorial
is the call to the repo factory.

1 explore
-- Tutorial code.

local
4 p1, p2, p3: PERSON

c1, c2, c3: CHILD
couchdb_repo: PS_RELATIONAL_REPOSITORY

7 do
print ("---o--- CouchDB Tutorial ---o---")
io.new_line

10 couchdb_repo := repo_factory.create_cdb_repository ("
127.0.0.1", 5984)

create executor.make (couchdb_repo)
...

Listing 7.2: The CouchDB Tutorial

Instead of using repo factory.create in memory repository we now use
repo factory.create cdb repository(”127.0.0.1”, 5984). Whereby the first argu-
ment of this method denotes the URL where the database is located (In
this case we use the localhost) and the second argument is the used port
(we use the default CouchDB port which is 5984). If for some reason your
couch is not located on your own machine, you might have to adjust these
values to point to the correct location.

If you compare the output of this tutorial to the output you got when
using the in-memory database you might notice that nothing changed.
On the surface both these databases provide the same services. Namely
storing Eiffel objects.

7.4 Beneath the surface

Using CouchDB, Eiffel can store objects on a persistent database that can
also be accessed by other programs. If not deleted, the data will persist

30

after your program has ended. To accomplish this, ABEL will convert
Eiffel objects to JSON documents, whereby each attribute will get its own
”name”: ”value” pair. The resulting document for a person will look similar
to Listing 7.1. After running the tutorial, the stored objects can also be
explored by visiting 127.0.0.1:5984/ utils.

You will notice that for both person and child a sub-database was cre-
ated. The person database will only contain person-objects and the child
database will only contain child-objects. If you don’t want your data to re-
main in the database after the program has ended, insert a couchdb repo.wipe out
at the end of the feature explore

7.5 Limitations

CouchDB is not meant to be a relational database: it can nicely store ob-
jects as JSON Documents, that can then be searched by key. CouchDB was
mainly developed for the world wide web. For its basic API it uses cURL
which is really easy to use but for its more advanced features like map-
reduce it uses JavaScript. Map-reduce would come in handy when query-
ing for objects in the database but it is not yet integrated and therefore for
queries rather than using the inbuilt map-reduce of CouchDB ABEL uses
an Eiffel function to accomplish the same.

For more information on CoachDB see the online documentation.

31

	Introducing ABEL
	Setting things up
	Getting started

	Basic operations
	Inserting
	Querying
	Updating
	Deleting
	Dealing with Known Objects

	Advanced Queries
	The query mechanism
	Criteria
	Predefined Criteria
	Agent Criteria
	Creating criteria objects
	Combining criteria

	Deletion queries

	Dealing with references
	Inserting objects with dependencies
	Updating objects with dependencies
	Going deeper in the Object Graph

	Transaction handling
	Transaction isolation levels

	Error handling
	CouchDB Support
	What is CouchDB
	Setting up CouchDB
	Getting started with CouchDB
	Beneath the surface
	Limitations

