
2

The Component Object Model
2.1 OVERVIEW
The goal of this chapter is to cover enough information on COM so that Eiffel
developers can use the EiffelCOM wizard in an effective way. It will not cover all of
COM since it would require an entire book but will present the main concepts needed
to understand how to build an EiffelCOM system.

Briefly said, the Component Object Model is a Microsoft binary standard that
establishes how two binary units can access each other at runtime. Such binary units
can run in the same process, in different processes on the same machine or even on
different machines. Components can be implemented in any language as long as the
compiler produces COM standard compliant binaries.

The advantages of such an approach include an increased reusability (binary
reuse), a better version management (COM standard implies that new component
versions will still be compatible with older ones) and a built-in runtime environment.
The binary reuse aspect of COM added with the source reuse ability of Eiffel offer
the developer an ideal platform to increase considerably their productivity.

2.2 GENERALITIES
This paragraph will present briefly the principal notions of COM needed to
understand the rest of this chapter. COM is a binary standard that describes how the
component can communicate with the outer-world. Communication is done through
well definedinterfaces. Each interface is aspecificationof a group of methods and
functions. An interface does not contain the implementation of these routines and
functions but only their specification (signatures). The actual implementation lies in
thecoclass. There can be different implementations of a same interface in different
coclasses. Finally each coclass can be instantiate using aclass objectorclass factory.
These three notions will be discussed further in the forthcoming paragraphs.

Interfaces

They are at the heart of any COM component. Interfaces are described in the
definition file of a component. They consist of a group of semantically related

THE COMPONENT OBJECT MODEL §2.26
functions that can be accessed by the clients of the component. Although they are a
specification they also have a physical representation. A client can request a pointer
on an interface and will access the component functions through that pointer.
Interfaces are the only possible way to access functions from a component. They
enforce information hiding by providing only the public functions to the client.

Interfaces also define thetypeof a component. Each interface corresponds to a
specificviewof the component. It can be compared to polymorphism in the Object
Oriented world. Whenever an interface from a component is requested, only the
functions defined on that interface are accessible as if the component was
polymorphically cast into an object of the type of that interface.

The COM specification requires that any interface provides access to all
interfaces on the same component. All the interface should include a specific
function calledQueryInterfacethat will provide a pointer on any other interface of
the component. Interfaces are identified with a globally unique identifier (GUID)
guaranteed to be unique in time and space. Since this function has to be on every
interface, it has been abstracted into a specific interface calledIUnknownwhich all
other interfaces must inherit from. The two other functions exposed byIUnknown
areAddRefandRelease. These functions should be called respectively when a client
gets a reference on an interface or when it discards that reference. These two
functions define the lifetime of the component: each interface keeps track of clients
keeping a reference on them and when no clients have references anymore, the
componentcan be unloaded from memory. You might start to worry thinking that
this business of reference counting will imply lots of headaches, memory leaks, etc...
and you would be right should you choose a low-level language to implement your
components. Fortunately, you will never have to implement or use these functions in
Eiffel: all the processing related toIUnknownis provided by the EiffelCOM runtime.
Calls toQueryInterfaceare done “behind the scene” and only when needed. The
lifetime of the component is also taken care of by the EiffelCOM runtime.

Coclass

We have seen that interfaces can be perceived as views of a component. This
conceptual representation actually maps the implementation of an EiffelCOM
component since the coclass inherits from the interfaces and implements their
deferred features. Indeed, interfaces are deferred classes with all features accessible
from outside deferred. The coclass is an Eiffel class that inherits from these
interfaces and implements all the features. This design is not specific to Eiffel though
and can be found in other languages as well. The coclass defines the behavior of the
interfaces functions.

Class Object

We have seen that interfaces are accessed through interface pointers. But how does
a client get hold on one of these?

§2.3 TYPES OF COMPONENTS 7
The answer lies in the class object. The name of this module should really be
coclass factory since its goal is to spawn instances of the coclass on request. Class
objects are accessed by COM whenever a client request a new instance of the
associated component. COM loads the class object and asks it to provide the
interface pointer requested by the client.

The way a class object is loaded in memory (this process is calledactivation)
depends on the location of the component (SeeLocation for a description of the
possible locations of a component). If the component is an in-process server then the
class object is called directly through the functions exported from the DLL. If the
component is an out-of-process server then it provides COM with a pointer to the
class object. In both cases, once the component is loaded, COM has access to the
class object and can call it would a client request a new instance of a component.

The code for the class object is generated by the EiffelCOM wizard so that Eiffel
programmers will not have to worry about it.

2.3 TYPES OF COMPONENTS
ActiveX, DirectX, OCX, COM+, ADO+, ASP etc.... who never heard of these
technologies? They all represent yet another use of the COM standard. This
paragraph will focus on categorizing COM components according to their own
properties as well as the context in which they are used. The categorization will
define how the EiffelCOM wizard should be used to wrap or create a component.

Location

The first criteria that defines the type of component is from where it will be accessed:
will the component be loaded in the client process or will the component be a remote
server for a distributed application? In the former case, the component is compiled
as a Dynamic Link Libraries (DLL) while in the latter case it is a standard
executable.

In-process Components

Typical instances of DLL components are found in technologies such as OCX,
ActiveX or ASP. These are small, downloadable binaries that will be loaded and

Figure 1: Component Creation

Class Object Component

Client
Request

Activation Creation

Interface Pointer

C
O
M

THE COMPONENT OBJECT MODEL §2.38
executed in acontainer. The container acts as a client of the component. The
EiffelCOM wizard provides the ability to wrap such components by providing
access to its interface to any Eiffel container. It is also possible to create a new In-
process component in Eiffel. One main difference with out-of-process component
(other than the nature of the module, DLL versus executable) is the way in-process
components are activated. In the case of out-of-process components, the component
will specify COM when it is ready to receive calls from client. In the case of an in-
process server the call is coming directly from COM: COM first loads the DLL into
the client process and then calls the exported functionDllGetClassObjectto access
the component class object. The other three exported functions of an in-process
component areDllRegister to register the component in the Windows registry,
DllUnregister to unregister the component from the registry and finally
DllCanUnloadNowwhich gets called by COM whenever it tries to unload the
component from memory. These four functions must be accessible from outside the
DLL for the in-process component to work properly.

Out-of-process Components

These components are standard executable acting as servers that can be accessed
locally or over a network. Typically used in a three tier client server architecture, the
major difference with in-process servers (other than the module type - executable
instead of DLL) is their lifetime. In-process components are typically loaded to
achieve a specific task and unloaded just after while out-of-process components are
servers supposed to run continuously. The EiffelCOM wizard allows to build clients
for such servers in Eiffel. It also provides the ability to create such servers.

Access Type

Regardless of its location, a COM components can be accessed either directly
through its interfaces or by using Automation.

Automation

Automation consists in using a well known interface to provide access to a group
of methodsand properties. This interface calledIDispatch includes the method
invokethat allows to call a method, set or get a property on the Automation server.
One advantage of that approach is that the interface is astandard interfacewhose
functions and methods are specified. As a result, Windows can include a built-in
marshaller for that interface (SeeMarshallingfor information on what a marshaller
is). The supported types (known as Automation types) and their Eiffel equivalents
are listed in the following table:

COM Type Eiffel equivalent Description

boolean BOOLEAN Standard boolean

unsigned char CHARACTER Standard character

§2.3 TYPES OF COMPONENTS 9
The other advantage is a more dynamic discovery of the methods and properties
of a component at runtime. Indeed theIDispatchinterface also includes methods to
check whether a method or property is available and, in that case, get its identifier.
This process is calledlate bindingand allows component to discover at runtime what
are other components functionality.

This approach has also a lot of drawbacks: firstly,late bindingis not an efficient
way of calling a function on an interface since its identifier must first be requested
and then the function called. That’s two round trips which can be expensive in a
distributed environment. Secondly, since the marshaller is built-in, it has to know in
advance all the possible types that a function can accept to be able to marshall the
corresponding data. There are consequently a limitation on the number of types that
one can use in signatures of functions on an Automation compatible interface. The
set of available types is calledVariant and cover most of the standard types. It does
not allow however the passing of complex user defined data types. For these reasons
Automation is mostly used in scripting environments (where speed is not an
important factor) to accomplish simple tasks.

Direct Access

Direct interface access is the preferred way to access remote servers where speed
becomes a concern and data types are specific to the application. The first interface

double DOUBLE Standard double

float REAL 2 bytes real

int INTEGER Standard integer

long INTEGER Standard integer

short INTEGER 2 bytes integer

BSTR STRING Standard string

CURRENCY ECOM_CURRENCY Currency value

DATE DATE Standard date

SCODE INTEGER Return status

Interface IDispatch * ECOM_QUERIABLE Automation interface

Interface IUnknown * ECOM_QUERIABLE Generic interface

dispinterface ECOM_QUERIABLE Automation interface

CoclassTypename TYPE_NAME Component main class

SAFEARRAY(TypeName) ARRAY [TypeName] Array

TypeName* CELL [TypeName] Pointer to type

Decimal ECOM_DECIMAL Decimal value

THE COMPONENT OBJECT MODEL §2.410
pointer on the component is obtained through the class object (seeClassObject).
Other interfaces on the component are obtained by calling theQueryInterface
function.

As information on any interface cannot be accessed dynamically, the description
of the interfaces must be provided to tools that need to handle the components such
as the EiffelCOM wizard. The official way of describing components and interfaces
is through IDL. Once an IDL file has been written to describe a component it can be
compiled withMIDL to generate both a type library and the code for the marshaller
specific to that interface.

EiffelCOM

The idea in EiffelCOM is that the way a component is accessed is implementation
detail that the user should not have to deal with. Of course he should be able to
choose what kind of access he wants to use but this choice should have no impact on
the design of the Eiffel system itself. For that reason, the Eiffel code generated by
the wizard follows the same architecture independently of the choice made for
interface access and marshalling. The difference lies in the runtime where the actual
calls to the components are implemented.

2.4 DEEPER INTO COM

The next paragraph gives a bit more details on the internals of COM. The
understanding of these details are not required to use the EiffelCOM wizard but
might help making better decisions when designing new EiffelCOM components.

Apartments

The first interesting subject that requires more in-depth cover is the execution
context of a component. Components can be run in the same process as the client but
can also run in a separate process even on a different machine.

This superficial description only take into accounts processes. What happens if a
component uses multithreading to achieve it tasks? In a case of a remote server, this
scenario does not seem too esoteric. The problem is that a server does not (and
should not) know in advance what its clients will be. It cannot assume that the client
will be able to take advantage of its multithreading capabilities. Conversely a
multithreaded client should not rely on the server ability to handle concurrent access.

The solution chosen in the COM specification is to define an additional execution
context called anapartment. When COM loads a component it creates the apartment
in which the component will run. Multiple instances of a multithreaded component
will leave together in the same apartment since asynchronous calls will be handled
correctly and there is no need to add any synchronization layer. On the other hand,
singlethreaded component will be alone in their apartment and any concurrent calls
coming from clients will be first synchronized before entering the apartment. These

§2.4 DEEPER INTO COM 11
two behaviors define two different kinds of apartments:Multi Threaded Apartments
(MTA) andSingle Threaded Apartments (STA).

Apartments solve the problem of concurrency by removing the necessity of
knowing the multithreaded capability of a component and its clients. Multithreaded
clients can always make asynchronous calls and depending on whether the
component handles concurrent access or not, they will be forwarded or first
synchronized. There can be multiple instances of STA running in one process while
there will be at most one MTA.

Marshalling

At this point you might wonder how calls can “cross” the apartments boundaries.
Components from a STA can make calls to components running in a MTA and vice
versa. These apartments might be running in different processes or even on different
machines. The approach chose in the COM specification is using theproxyandstub
patterns.

The idea is to trick the client of an interface by providing an interface proxy in its
apartment. The proxy include exactly the same function as the interface itself but
their implementation will just forward the call to the actual interface. The client has
no idea whether the entity it is dealing with is the actual interface or just a proxy. One
of the main interest of that approach is that the client implementation is independent
from the location of the component.

Last explanation is not totally accurate: the call will not be forwarded to the actual
interface but to its stub. The stub is the counterpart of the proxy, it represents the
client for the interface. The interface doesn’t know either whether it is
communicating with the actual client or a stub. Although it is not totally true that the
component implementation is independent from the location of the client, the stub
pattern still helps keeping code identical for the implementation of the interface
themselves. The implementation of a component will still be different whether it is

Figure 2: Apartments

PROCESS

STAMTA

Thread

Synchronization

Client Call

Process

Apartment

THE COMPONENT OBJECT MODEL §2.412
an in-process or out-of-process component since it will have to be a DLL in one case
and a executable in the other. The design of the interfaces might also differ since out-
of-process servers will tend to avoid too many round trips.

There is one proxy/stub pair per interface. The proxy or the stub is loaded
dynamically only when needed. This proxy/stub pair constitute themarshaller. The
reason for having a single name for two different things come from how MIDL
generates its code. MIDL will produce files for one DLL in which both the proxy and
the stub will be included. This DLL is the marshaller.

Summary

This very brief introduction to the Component Object Model should be enough to get
started with the EiffelCOM wizard. It specifies the main characteristics that define
the type of a component and that need to be given to the wizard along with the
definition file.

Figure 3: Cross Apartment Calls

Component Proxy ComponentStub

Apartments boundaryApartments boundary

	2 The Component Object Model
	2.1 OVERVIEW
	2.2 GENERALITIES
	Interfaces
	Coclass
	Class Object

	2.3 TYPES OF COMPONENTS
	Location
	In-process Components
	Out-of-process Components

	Access Type
	Automation
	Direct Access
	EiffelCOM

	2.4 DEEPER INTO COM
	Apartments
	Marshalling
	Summary

