
EiffelCOM
and the

EiffelCOM wizard

Interactive Software Engineering

CONTENTSii
This manual describes EiffelCOM version 4.5.

Corresponds to release 4.5 of the ISE Eiffel environment, November 1999.

Copyright 2000 ISE. All rights reserved. Duplication and distribution (paper,
electronic or otherwise) prohibited without the written permission of the copyright
owsner.

The use of the product described herein is subject to the terms of the ISE Eiffel
end-user license.

Interactive Software Engineering
ISE Building, 2nd floor
270 Storke Road
Goleta, CA 93117 USA
805-685-1006, fax 805-685-6869@

<info@eiffel.com>, http://eiffel.com

http://eiffel.com
mailto:info@eiffel.com

Contents
EiffelCOM and the EiffelCOM wizard i

1 Getting Started 1
1.1 CREATING A NEW COM COMPONENT 1

 Step by step instructions 1
• First look at the generated code 2
 implementing the component 2
 Tips 2

1.2 ACCESSING A COMPONENT 3
 Step by step instructions 3
• First look at the generated code 3
 Implementing a client 4
 Contracts 4
 Summary 4

2 The Component Object Model 5
2.1 OVERVIEW 5
2.2 GENERALITIES 5

 Interfaces 5
 Coclass 6
 Class Object 6

2.3 TYPES OF COMPONENTS 7
 Location 7
 Access Type 8

CONTENTSiv
2.4 DEEPER INTO COM 10
 Apartments 10
 Marshalling 11
 Summary 12

3 The EiffelCOM Wizard 13
3.1 OVERVIEW 13
3.2 THE WIZARD 14

 Main Window 14
 Required File 16
 Introduction Dialog 16
 Definition File Dialog 17
 IDL Marshalling Definition Dialog 17
 Type Library Marshalling Definition Dialog 18
 Final Dialog 19
 Definition File Processing 20
 Generated Files 21
• Class Hierarchy 21

3.3 ACCESSING A COMPONENT 23
 Using the Generated Code 23
 Contracts 23
 Exceptions 25
 Summary 27

3.4 BUILDING A COMPONENT 27
 Using the Generated Code 28
 Component’s GUI 28
 Exceptions 29
 Summary 30

4 The EiffelCOM Library 31
4.1 COMPOUND FILES 31

 Storages 31
• Streams 32
 Other classes 33
• Summary 34

1

Getting Started
\

ter
\

The following step by step tutorials will help you create your first EiffelCOM
projects. An EiffelCOM project can consist either in accessing an existing COM
component from Eiffel or in creating a new COM component.

1.1 CREATING A NEW COM COMPONENT
This first tutorial describes the steps involved in creating a COM component in
Eiffel. These components can be either DLLs (in-process) or EXEs (out-of-process).
This tutorial will focus on creating an in-process component. This component, called
StringManipulator, will expose one interfaceIString that include the functions
ReplaceSubstringand PruneAll corresponding respectively to the features
replace_substringand prune_all of the EiffelBaseSTRINGclass. IString also
includes the propertyString that represents the string being manipulated. This
property can be set or read. Other languages will then be able to access these features
using this component.

Step by step instructions

• Launch the EiffelCOM Wizard (from theStartmenu, openProgramsthenEiffelXXand clickEiffelCOM
Wizard)

• ChooseCreate a new project

• Click Next

• ChooseServer code for a new component

• Click Next

• Click the topBrowsebutton and open the file$EIFFEL4\examples\com\wizard\string_manipulator
string_manipulator.idl where$EIFFEL4 represents the path to your EIFFEL45 directory.

• Click the bottomBrowsebutton and select the directory where you want to create the project (la
referenced asdestination folder). Choose $EIFFEL4\examples\com\wizard\string_manipulator
generatedwhere$EIFFEL4 represents the path to your EIFFEL45 directory.

• Click Next

• ChooseVirtual Table, Standard Marshalling

GETTING STARTED §1.12
• Click Next

• Click Finish

• Wait until the wizard is done.

First look at the generated code

The first interesting file you might want to look at is the filegenerated.txtin the
destination folder. It includes a list of all the files that the wizard generated. When
done, the wizard automatically launches EiffelBench with the generated project, you
can use EiffelBench to browse the system and get an idea of the class hierarchy. The
most interesting classes are the ones in relation with the generated coclass
STRING_MANIPULATOR_COCLASS. This class inherits from
ISTRING_INTERFACEcorresponding to the IString interface. The coclass is
deferred since we are creating a project for a server. It has one descendant
STRING_MANIPULATOR_COCLASS_IMPthat implements the deferred features
of the interface. The default implementation returns the errorE_notimplto the client.
This error means that the function is not implemented on that server.

implementing the component

We want to do something more interesting than just returning an error to our client
an are going to edit the implementation of the features in
STRING_MANIPULATOR_COCLASS_IMP. This class will not be overwritten by
future executions of the wizard. There is an implementation of the coclass in
$EIFFEL4\examples\com\wizard\string_manipulator\server\. Just copy this file
over to $EIFFEL4\examples\com\wizard\string_manipulator\generated\server\
componentand quick melt your project. Voila!, you have your first EiffelCOM
component up and running.

Tips

• If you are to develop an EiffelCOM component, you will most probably need to
set the registry entryMELT_PATH. This value needs to be setup in the case the
system is not launched from the directory containing the byte code (by default
EIFGEN\W_code). The EiffelCOM component client will launch the server from
its current location and will cause the server to crash if theMELT_PATHkey is
not setup properly. To put this value in your registry, create a key under
HKEY_CURRENT_USER\SOFTWARE\ISE\Eiffel45with the same name as the
name of your project (e.g.string_manipulator) and add the string value named
MELT_PATHcontaining the path to the byte code (.meltedfile). You will find an
example of such entry in the filemelted_path.regin $EIFFEL4\wizard\config.
You can edit this file as needed (replacestring_manipulatorwith the name of your
system and change the path to point on the correct location using ‘\\’ as directory
separator) and double click it to enter the information in your registry.

§1.2 ACCESSING A COMPONENT 3
• To test your component, you need first to register it. If the component is in-process
then it is registered via theregsvr32utility using the following syntax:regsvr32
system_name.dllwhere system_name is the name of the dll (e.g.
string_manipulator). If the component is out-of-process then it is register using
the following syntax:system_name.exe -Regserverwhere system_nameis the
name of the component executable file.

For the purpose of this tutorial you will need to register the component with the
following command (run from a dos console):regsvr32 string_manipulator.dlland
to enter the information in$EIFFEL4\wizard\config\melted_path.reg. You will have
to change the content of this file if you did not installEiffel underC:\.

1.2 ACCESSING A COMPONENT
Now that we have build a component, we are going to reuse it from another Eiffel
project. The same exact steps should be followed for components written in any
language.

Step by step instructions

• Launch the wizard

• ChooseCreate a new project and clickNext

• Click Next again

• Click the top Browsebutton and open the file$EIFFEL4\examples\com\wizard\
string_manipulator\string_manipulator.idlwhere$EIFFEL4 represents the path to
your EIFFEL45 directory.You could also choose to open the type library (.tlb) that
was generated by the wizard whenCREATINGA NEW COM COMPONENTin
the destination folder of that first project.

• Click the bottomBrowsebutton and select the directory where you want to create the
project (later referenced asdestination folder). Choose$EIFFEL4\examples\com\
wizard\string_manipulator\generatedwhere$EIFFEL4 represents the path to your
EIFFEL45 directory.

• Click Next

• Click Finish

• Wait until the wizard is done.

First look at the generated code

In the case of a client the wizard will precompile the generated code and open
EiffelBench on the precompilation project.Note: a precompilation project is read-
only, you will need to start another EiffelBench to reuse the generated classes.The
interesting classes are all related to the coclass proxy
STRING_MANIPULATOR_PROXY. The proxy is the Eiffel class that gives access to
the component. Each feature on the proxy calls the corresponding interface function

GETTING STARTED §1.24
on the component. You can use the EiffelBench opened by the wizard to browse
through the generated classes and get an idea of the class hierarchy.

Implementing a client

We are now going to implement a client of theStringManipulatorcomponent. Open
a new EiffelBench that will be used to create the client project. Create the project in
$EIFFEL4\examples\com\wizard\string_manipulator\clientusing the ace file found
in that directory. Freeze and run the project. You are now accessing the previously
built component and calling functions on its interfaces!. The interesting class is
MY_STRING_MANIPULATOR which inherits from the generated
STRING_MANIPULATOR_PROXY and redefine the feature
replace_substring_user_precondition. The generated interfaces will include
contracts for each exposed function. You can redefine theuser_preconditionfeatures
to implement your own preconditions.

Contracts

Contracts can be broken directly on the proxy in which case you will get a standard
contract violation or in the server. If contracts are broken on the server then the
exception will be forwarded by the EiffelCOM runtime to the client. The feature
replace_substring_user_preconditionin MY_STRING_MANIPULATORincludes
the following commented line:

Un-comment this line by removing the preceding ‘--’ and comment out the rest
of the feature. Now the contract of thereplace_substringfeature is wrong and
erroneous calls can be made. Quick melt the changes and run the client. Enter some
invalid numbers in the fields used to call this feature. After you clickReplaceyou
will see an error message box warning you that a precondition was violated on the
server side. This is how you can use contracts ‘over the wire’. The preconditions was
violated in the server, this exception was caught by the EiffelCOM runtime and sent
back to the client.

Summary

You now have the basic knowledge needed to run the EiffelCOM wizard and produce
or access COM components. The benefits of using the wizard are numerous
including a fast and easy generation of “plumbing” code as well as enhanced
debugging capabilities through the use of contracts. The wizard is also very generic,
it can generate or wrap any kind of components. We hope you enjoy using it as much
as we enjoyed developing it,

The EiffelCOM team.

-- Result := True

2

The Component Object Model
2.1 OVERVIEW
The goal of this chapter is to cover enough information on COM so that Eiffel
developers can use the EiffelCOM wizard in an effective way. It will not cover all of
COM since it would require an entire book but will present the main concepts needed
to understand how to build an EiffelCOM system.

Briefly said, the Component Object Model is a Microsoft binary standard that
establishes how two binary units can access each other at runtime. Such binary units
can run in the same process, in different processes on the same machine or even on
different machines. Components can be implemented in any language as long as the
compiler produces COM standard compliant binaries.

The advantages of such an approach include an increased reusability (binary
reuse), a better version management (COM standard implies that new component
versions will still be compatible with older ones) and a built-in runtime environment.
The binary reuse aspect of COM added with the source reuse ability of Eiffel offer
the developer an ideal platform to increase considerably their productivity.

2.2 GENERALITIES
This paragraph will present briefly the principal notions of COM needed to
understand the rest of this chapter. COM is a binary standard that describes how the
component can communicate with the outer-world. Communication is done through
well definedinterfaces. Each interface is aspecificationof a group of methods and
functions. An interface does not contain the implementation of these routines and
functions but only their specification (signatures). The actual implementation lies in
thecoclass. There can be different implementations of a same interface in different
coclasses. Finally each coclass can be instantiate using aclass objectorclass factory.
These three notions will be discussed further in the forthcoming paragraphs.

Interfaces

They are at the heart of any COM component. Interfaces are described in the
definition file of a component. They consist of a group of semantically related

THE COMPONENT OBJECT MODEL §2.26
functions that can be accessed by the clients of the component. Although they are a
specification they also have a physical representation. A client can request a pointer
on an interface and will access the component functions through that pointer.
Interfaces are the only possible way to access functions from a component. They
enforce information hiding by providing only the public functions to the client.

Interfaces also define thetypeof a component. Each interface corresponds to a
specificviewof the component. It can be compared to polymorphism in the Object
Oriented world. Whenever an interface from a component is requested, only the
functions defined on that interface are accessible as if the component was
polymorphically cast into an object of the type of that interface.

The COM specification requires that any interface provides access to all
interfaces on the same component. All the interface should include a specific
function calledQueryInterfacethat will provide a pointer on any other interface of
the component. Interfaces are identified with a globally unique identifier (GUID)
guaranteed to be unique in time and space. Since this function has to be on every
interface, it has been abstracted into a specific interface calledIUnknownwhich all
other interfaces must inherit from. The two other functions exposed byIUnknown
areAddRefandRelease. These functions should be called respectively when a client
gets a reference on an interface or when it discards that reference. These two
functions define the lifetime of the component: each interface keeps track of clients
keeping a reference on them and when no clients have references anymore, the
componentcan be unloaded from memory. You might start to worry thinking that
this business of reference counting will imply lots of headaches, memory leaks, etc...
and you would be right should you choose a low-level language to implement your
components. Fortunately, you will never have to implement or use these functions in
Eiffel: all the processing related toIUnknownis provided by the EiffelCOM runtime.
Calls toQueryInterfaceare done “behind the scene” and only when needed. The
lifetime of the component is also taken care of by the EiffelCOM runtime.

Coclass

We have seen that interfaces can be perceived as views of a component. This
conceptual representation actually maps the implementation of an EiffelCOM
component since the coclass inherits from the interfaces and implements their
deferred features. Indeed, interfaces are deferred classes with all features accessible
from outside deferred. The coclass is an Eiffel class that inherits from these
interfaces and implements all the features. This design is not specific to Eiffel though
and can be found in other languages as well. The coclass defines the behavior of the
interfaces functions.

Class Object

We have seen that interfaces are accessed through interface pointers. But how does
a client get hold on one of these?

§2.3 TYPES OF COMPONENTS 7
The answer lies in the class object. The name of this module should really be
coclass factory since its goal is to spawn instances of the coclass on request. Class
objects are accessed by COM whenever a client request a new instance of the
associated component. COM loads the class object and asks it to provide the
interface pointer requested by the client.

The way a class object is loaded in memory (this process is calledactivation)
depends on the location of the component (SeeLocation for a description of the
possible locations of a component). If the component is an in-process server then the
class object is called directly through the functions exported from the DLL. If the
component is an out-of-process server then it provides COM with a pointer to the
class object. In both cases, once the component is loaded, COM has access to the
class object and can call it would a client request a new instance of a component.

The code for the class object is generated by the EiffelCOM wizard so that Eiffel
programmers will not have to worry about it.

2.3 TYPES OF COMPONENTS
ActiveX, DirectX, OCX, COM+, ADO+, ASP etc.... who never heard of these
technologies? They all represent yet another use of the COM standard. This
paragraph will focus on categorizing COM components according to their own
properties as well as the context in which they are used. The categorization will
define how the EiffelCOM wizard should be used to wrap or create a component.

Location

The first criteria that defines the type of component is from where it will be accessed:
will the component be loaded in the client process or will the component be a remote
server for a distributed application? In the former case, the component is compiled
as a Dynamic Link Libraries (DLL) while in the latter case it is a standard
executable.

In-process Components

Typical instances of DLL components are found in technologies such as OCX,
ActiveX or ASP. These are small, downloadable binaries that will be loaded and

Figure 1: Component Creation

Class Object Component

Client
Request

Activation Creation

Interface Pointer

C
O
M

THE COMPONENT OBJECT MODEL §2.38
executed in acontainer. The container acts as a client of the component. The
EiffelCOM wizard provides the ability to wrap such components by providing
access to its interface to any Eiffel container. It is also possible to create a new In-
process component in Eiffel. One main difference with out-of-process component
(other than the nature of the module, DLL versus executable) is the way in-process
components are activated. In the case of out-of-process components, the component
will specify COM when it is ready to receive calls from client. In the case of an in-
process server the call is coming directly from COM: COM first loads the DLL into
the client process and then calls the exported functionDllGetClassObjectto access
the component class object. The other three exported functions of an in-process
component areDllRegister to register the component in the Windows registry,
DllUnregister to unregister the component from the registry and finally
DllCanUnloadNowwhich gets called by COM whenever it tries to unload the
component from memory. These four functions must be accessible from outside the
DLL for the in-process component to work properly.

Out-of-process Components

These components are standard executable acting as servers that can be accessed
locally or over a network. Typically used in a three tier client server architecture, the
major difference with in-process servers (other than the module type - executable
instead of DLL) is their lifetime. In-process components are typically loaded to
achieve a specific task and unloaded just after while out-of-process components are
servers supposed to run continuously. The EiffelCOM wizard allows to build clients
for such servers in Eiffel. It also provides the ability to create such servers.

Access Type

Regardless of its location, a COM components can be accessed either directly
through its interfaces or by using Automation.

Automation

Automation consists in using a well known interface to provide access to a group
of methodsand properties. This interface calledIDispatch includes the method
invokethat allows to call a method, set or get a property on the Automation server.
One advantage of that approach is that the interface is astandard interfacewhose
functions and methods are specified. As a result, Windows can include a built-in
marshaller for that interface (SeeMarshallingfor information on what a marshaller
is). The supported types (known as Automation types) and their Eiffel equivalents
are listed in the following table:

COM Type Eiffel equivalent Description

boolean BOOLEAN Standard boolean

unsigned char CHARACTER Standard character

§2.3 TYPES OF COMPONENTS 9
The other advantage is a more dynamic discovery of the methods and properties
of a component at runtime. Indeed theIDispatchinterface also includes methods to
check whether a method or property is available and, in that case, get its identifier.
This process is calledlate bindingand allows component to discover at runtime what
are other components functionality.

This approach has also a lot of drawbacks: firstly,late bindingis not an efficient
way of calling a function on an interface since its identifier must first be requested
and then the function called. That’s two round trips which can be expensive in a
distributed environment. Secondly, since the marshaller is built-in, it has to know in
advance all the possible types that a function can accept to be able to marshall the
corresponding data. There are consequently a limitation on the number of types that
one can use in signatures of functions on an Automation compatible interface. The
set of available types is calledVariant and cover most of the standard types. It does
not allow however the passing of complex user defined data types. For these reasons
Automation is mostly used in scripting environments (where speed is not an
important factor) to accomplish simple tasks.

Direct Access

Direct interface access is the preferred way to access remote servers where speed
becomes a concern and data types are specific to the application. The first interface

double DOUBLE Standard double

float REAL 2 bytes real

int INTEGER Standard integer

long INTEGER Standard integer

short INTEGER 2 bytes integer

BSTR STRING Standard string

CURRENCY ECOM_CURRENCY Currency value

DATE DATE Standard date

SCODE INTEGER Return status

Interface IDispatch * ECOM_QUERIABLE Automation interface

Interface IUnknown * ECOM_QUERIABLE Generic interface

dispinterface ECOM_QUERIABLE Automation interface

CoclassTypename TYPE_NAME Component main class

SAFEARRAY(TypeName) ARRAY [TypeName] Array

TypeName* CELL [TypeName] Pointer to type

Decimal ECOM_DECIMAL Decimal value

THE COMPONENT OBJECT MODEL §2.410
pointer on the component is obtained through the class object (seeClassObject).
Other interfaces on the component are obtained by calling theQueryInterface
function.

As information on any interface cannot be accessed dynamically, the description
of the interfaces must be provided to tools that need to handle the components such
as the EiffelCOM wizard. The official way of describing components and interfaces
is through IDL. Once an IDL file has been written to describe a component it can be
compiled withMIDL to generate both a type library and the code for the marshaller
specific to that interface.

EiffelCOM

The idea in EiffelCOM is that the way a component is accessed is implementation
detail that the user should not have to deal with. Of course he should be able to
choose what kind of access he wants to use but this choice should have no impact on
the design of the Eiffel system itself. For that reason, the Eiffel code generated by
the wizard follows the same architecture independently of the choice made for
interface access and marshalling. The difference lies in the runtime where the actual
calls to the components are implemented.

2.4 DEEPER INTO COM

The next paragraph gives a bit more details on the internals of COM. The
understanding of these details are not required to use the EiffelCOM wizard but
might help making better decisions when designing new EiffelCOM components.

Apartments

The first interesting subject that requires more in-depth cover is the execution
context of a component. Components can be run in the same process as the client but
can also run in a separate process even on a different machine.

This superficial description only take into accounts processes. What happens if a
component uses multithreading to achieve it tasks? In a case of a remote server, this
scenario does not seem too esoteric. The problem is that a server does not (and
should not) know in advance what its clients will be. It cannot assume that the client
will be able to take advantage of its multithreading capabilities. Conversely a
multithreaded client should not rely on the server ability to handle concurrent access.

The solution chosen in the COM specification is to define an additional execution
context called anapartment. When COM loads a component it creates the apartment
in which the component will run. Multiple instances of a multithreaded component
will leave together in the same apartment since asynchronous calls will be handled
correctly and there is no need to add any synchronization layer. On the other hand,
singlethreaded component will be alone in their apartment and any concurrent calls
coming from clients will be first synchronized before entering the apartment. These

§2.4 DEEPER INTO COM 11
two behaviors define two different kinds of apartments:Multi Threaded Apartments
(MTA) andSingle Threaded Apartments (STA).

Apartments solve the problem of concurrency by removing the necessity of
knowing the multithreaded capability of a component and its clients. Multithreaded
clients can always make asynchronous calls and depending on whether the
component handles concurrent access or not, they will be forwarded or first
synchronized. There can be multiple instances of STA running in one process while
there will be at most one MTA.

Marshalling

At this point you might wonder how calls can “cross” the apartments boundaries.
Components from a STA can make calls to components running in a MTA and vice
versa. These apartments might be running in different processes or even on different
machines. The approach chose in the COM specification is using theproxyandstub
patterns.

The idea is to trick the client of an interface by providing an interface proxy in its
apartment. The proxy include exactly the same function as the interface itself but
their implementation will just forward the call to the actual interface. The client has
no idea whether the entity it is dealing with is the actual interface or just a proxy. One
of the main interest of that approach is that the client implementation is independent
from the location of the component.

Last explanation is not totally accurate: the call will not be forwarded to the actual
interface but to its stub. The stub is the counterpart of the proxy, it represents the
client for the interface. The interface doesn’t know either whether it is
communicating with the actual client or a stub. Although it is not totally true that the
component implementation is independent from the location of the client, the stub
pattern still helps keeping code identical for the implementation of the interface
themselves. The implementation of a component will still be different whether it is

Figure 2: Apartments

PROCESS

STAMTA

Thread

Synchronization

Client Call

Process

Apartment

THE COMPONENT OBJECT MODEL §2.412
an in-process or out-of-process component since it will have to be a DLL in one case
and a executable in the other. The design of the interfaces might also differ since out-
of-process servers will tend to avoid too many round trips.

There is one proxy/stub pair per interface. The proxy or the stub is loaded
dynamically only when needed. This proxy/stub pair constitute themarshaller. The
reason for having a single name for two different things come from how MIDL
generates its code. MIDL will produce files for one DLL in which both the proxy and
the stub will be included. This DLL is the marshaller.

Summary

This very brief introduction to the Component Object Model should be enough to get
started with the EiffelCOM wizard. It specifies the main characteristics that define
the type of a component and that need to be given to the wizard along with the
definition file.

Figure 3: Cross Apartment Calls

Component Proxy ComponentStub

Apartments boundaryApartments boundary

3

The EiffelCOM Wizard
3.1 OVERVIEW

COM is a standard that allows software components written in different languages
to communicate with each other. Unfortunately, building COM compliant
applications requires the developments of huge amount of code only dedicated to
support the technology. The EiffelCOM wizard was designed to free programmers
from writing all the plumbing code.

The EiffelCOM wizard is a powerful tool that enables the fast development of COM
components in Eiffel. It also helps accessing existing COM components from Eiffel
systems. It consists of a series of dialogs which ask about the properties of a
component. This information is used to produce an Eiffel system skeleton including
all the code needed to access or create a component. It also produces component-
specific runtime libraries.

The wizard is intended to allow Eiffel developers with little COM knowledge to
develop or reuse COM components. The design of the generated code follows the
Eiffel standards and should be familiar to any experienced Eiffel user. The only
prerequisite to use the EiffelCOM wizard is an understanding of theInterface
Definition Language. IDL is the main tool used to describe a component and can be
processed by standard compilers to generateType Libraries.They can be analyzed
by tools, such as the EiffelCOM wizard, that need information on a given
component. The IDL syntax is very close to C and easy to learn.

The wizard will generate code from a Type Library and additional information
given by the user. This code will consist of Eiffel classes, C/C++ files, and library
files. The library files are produced automatically from the generated C and C++
code. These are given for information only and you will not need to work with them
to build your EiffelCOM system.

THE EIFFELCOM WIZARD §3.214
The wizard can automatically compile the generated C and Eiffel code.MIDL, the
Microsoft IDL compiler, is used by the wizard to produce the Type Library
corresponding to the given IDL file. You may also provide the wizard with the type
library directly. For the remainder of the manualDefinition Filewill refer to the input
file given to the wizard (either an IDL file or a Type Library).

3.2 THE WIZARD

Let’s focus on the wizard itself and the different questions that need to be answered
to generate the code. There are five different dialogs but each session will use only
four of them. The third dialog is different depending on whether the Definition File
is an IDL file or a Type Library. Once the dialogs have been completed, the wizard
will start analyzing the Type Library and will eventually generate the code.

Main Window

The EiffelCOM wizard can be launched from the Windows start menu:

whereEiffelXXcorresponds to your Eiffel installation (e.g. Eiffel45). The following
window will be displayed:

Figure 4: Code Generation Process

Start->Programs->EiffelXX->EiffelCOM Wizard

Eiffel

IDL MIDL Type
Library C/C++

Libraries
(.lib)

Wizard

§3.2 THE WIZARD 15
The introduction dialog lets you choose between opening an existing project or
creating a new one. Creating a new project will open theIntroduction Dialog.
Opening an existing project will display an open file dialog from which you can
select a previously saved EiffelCOM project.

The main window includes a toolbar and a menu. The first three buttons on the
toolbar correspond to the first three entries in the File menu:New, OpenandSave.
Newresets all the information previously entered in the wizard.Openbrings up an
Open File Dialog that can be used to retrieve a previously saved EiffelCOM project.
Saveis used to save the current project. A project is defined by all the values entered
in the wizard. A project can be saved only after the wizard has been run. The file
extension for an EiffelCOM project isewz.

The second menu,Build, includes the entriesLaunch WizardandGenerate (no
wizard) corresponding respectively to the last two toolbar buttons. The former
activates theIntroductionDialog while the later launches the generation with the
current settings and bypasses the dialogs. This last button can be used only when a
project has been loaded or when the wizard has been run once.

The last four buttons on the dialogBack, Next, CancelandHelp are common to
all dialogs displayed throughout the execution of the wizard.Nextvalidates all the
values entered in the current dialog and activates the next one.Backdiscards all the
values entered in current dialog and displays the previous one.Cancelexits the
dialog and discards all the values entered. Finally,Helpbrings up this manual.

Figure 5: EiffelCOM Wizard Main Window

THE EIFFELCOM WIZARD §3.216

ess.

ts and
Required File

Before you launch the wizard you need to make sure you have a definition file ready
for the component you want to access or create.

Introduction Dialog

The first dialog asks if you want to access or build a component. If you want to access
an existing component then the generated code will be for a client. If you choose to
build a new one, the generated code will be for a COM server. Choose the server or
client check box to specify which kind of project you want to work on. You may
specify both in the case where both the component and its client(s) will be written in
Eiffel.

This dialog also asks for the location of the component. EiffelCOM supports all
location types:

• In-Process: These components are Dynamic Link Libraries (DLLs) that will be loaded inside the client proc
The server runs in the same process as the client.

• Out-of-process: These components are executable files that can be accessed through the network. Clien
servers run in different processes and may even run on different machines

Choose the kind of component you want to access or create. In-process
components are Active-X like components, they are usually smaller than local or
remote components and used by bigger application (often through a high level
language). Remote components can act as middleware in a three tier client server
architecture. SeeLocation for additional information on possible component
locations.

Figure 6: Introduction Dialog

§3.2 THE WIZARD 17
Definition File Dialog

This dialog is used to specify the location of the definition file for the project. An IDL
file is usually provided when building a new component since all the sources are
available. However, when it comes to accessing an existing component, the sources
might not be available. The Type Library is often embedded in the component itself
and includes enough information for the wizard to generate the code.

This dialog also serves to enter the destination folder, i.e. the directory where all the
files will be generated, preferably empty. If the wizard was used to overwrite an
existing file it would first back it up and emit a warning message. If any of the entered
values are not correct when theNext button is pressed the wizard will display a
warning message.

IDL Marshalling Definition Dialog

This dialog is displayed only for a server project and if the chosen definition file is
an IDL file. It serves to specify how marshalling will work for the component. The
first choice that has to be made is whether the component will be accessed through
Automation (usingIDispatch) or through the interface’s virtual table (for additional
information on Automation versus virtual table access, please consult COM).

Figure 7: Definition File Dialog

THE EIFFELCOM WIZARD §3.218
If you choose Automation then the Universal marshaller will be used (for additional
information on Marshalling please see COM documentation). If Virtual Table access
is specified then you have the choice between using the Windows Universal
marshaller or the marshaller generated from the definition file. Since this dialog is
displayed only when the definition file is an IDL file, choosing Standard Marshalling
will force the wizard to compile the marshaller from the code generated with the
MIDL compiler. Standard marshalling should be used whenever some interface
functions make use of non Automation compatible types (seeAutomation for a
complete listing of these types).

Type Library Marshalling Definition Dialog

This dialog is displayed only for a server project and if the definition file is a Type
Library. It includes the same controls as the previous one. You have to choose
between Automation and Virtual Table access and between Universal and Standard
marshalling.

Figure 8: IDL Marshalling Definition Dialog

§3.2 THE WIZARD 19
Because the definition file is a Type Library, the wizard cannot compile the Standard
marshaller by itself. This is the reason for having an extra text field for the path to
the marshaller (also known as Proxy/Stub pair or just Proxy/Stub). The Proxy/Stub
is a Dynamic Link Library that is used to marshall the data on the wire for a given
component (for additional information on Proxy/Stubs, please seeMarshalling).

Final Dialog

The last dialog offers a choice of different output levels. By default, the wizard will
display errors, warnings and generic information. You can choose not to see
warnings or extra information.

Figure 9: Type Library Marshalling Definition Dialog

Figure 10: Final Dialog

THE EIFFELCOM WIZARD §3.220

.

ation

uring

les and

used
piled
t corre-
tandard
This dialog also asks whether you wish to continue even though an error occurred
while compiling a file.

TheFinish button will close the dialog and start the processing of the definition
file. The project can be saved after the processing is finished.

Definition File Processing

There are six phases involved in the definition file processing:

• IDL Compilation: will occur only if the definition file is an IDL file. The wizard will compile the IDL file into a
Type Library and produce the marshaller from the generated C files if Standard Marshalling was chosen

• Type Library Parsing: The wizard analyze the type library and all its components and builds all the inform
it needs to generate the code.

• Code Generation: The wizard generates both the Eiffel and C/C++ code from the information gathered d
last step.

• C/C++ Compilation: The wizard compiles the C and C++ code generated during last phase into object fi
libraries that will be linked with the Eiffel system.

• Eiffel Compilation: The wizard compiles the generated Eiffel code into a precompiled library that can be re
from any project for a client project. In the case of a server project the generated Eiffel code will be com
into a standard project with the registration class as root class. If the location is In-process then the projec
sponds to a DLL whereas if the location of the server is out-of-process then the project corresponds to a s
executable.

• Finally, the wizard will launch EiffelBench and automatically open the generated Eiffel system.

During processing, the name and progress of each phase is displayed.

While the wizard processes the definition file it will also display information in
real time in the main window if this option was chosen in theFinalDialog. Displayed
information includes output of calls to external compilers (C, Eiffel and IDL) and
description of the current analyzed or generated Type Library item.

Figure 11: Wizard Progress Dialog

§3.2 THE WIZARD 21

the

new
fel

nd will
 C++
be

ereas in
he sys-
out-of-

re not
Generated Files

The wizard will generated code in the specified destination folder. The file hierarchy
is the following:

The root folder includes two files and three subclusters.

• The filegenerated.txt includes a list of all the files generated by the wizard.

• The filecomponent.log includes a summary of the processing done by the wizard. The name of the file is
name of the definition file appended withlog (soFigure 10 presumes that the definition file was e.g.compo-
nent.idl)

• The foldersClientandServerinclude the files generated respectively for reusing a component or creating a
component. Each includes three subdirectories:Includecontains all the header files needed to compile the Eif
code,CLib contains the generated C and C++ code as well as the library files.Componentincludes the code that
wraps or defines the component. TheComponent subfolder ofServer will also include the registration class.
This Eiffel class includes the code needed to activate the component, its content depends on its location a
differ whether the component is in-process or out-of-process. You will not need to read or edit the C and
code included inCLib since the wizard will automatically compile it. It is given for information only and can
deleted (you will need to keep the library file though). TheClient andServer folders also include the Ace file
used to compile the generated Eiffel code. In the case of a client, the generated code is precompiled wh
the case of a server it is compiled in a normal system with the registration class being the root class of t
tem. In the case of a in-process server the Eiffel system is compiled into a DLL whereas in the case of an
process server, it is compiled in a standard executable.

• TheCommonfolder includes code that will be used for both the server and the client part. TheIncludeandCLib
directory contain respectively the header files and the C and C++ code. Again the C and C++ sources a
needed and can be deleted, only the library file needs to be kept for the Eiffel system to compile. TheInterfaces
subdirectory include Eiffel classes corresponding to the component interfaces and theStructures subdirectory
includes Eiffel classes wrapping data structures specified in the definition file.

Class Hierarchy

The generated Eiffel code reflects the architecture of the component described in the
definition file. Each interface corresponds to a deferred Eiffel class that includes one
deferred feature per interface function. This deferred feature is implemented in the

Figure 12: Generated Files Hierarchy

Client Server Commongenerated.txt component.log

Include CLib Component

InterfacesInclude CLib Structures

Destination Folder

Ace.aceEifgen

THE EIFFELCOM WIZARD §3.222
heir of the Eiffel class inheriting from all these interfaces. This central class will be
referred to asEiffel coclass in the rest of this document.

The Eiffel coclass inherits from the classECOM_QUERIABLEwhich is part of
the EiffelCOM library. This class includes the featuremake_from_otherthat can be
used to initialize the component from another instance ofECOM_QUERIABLE. The
Componentfolder also includes Eiffel classes wrapping interfaces that are sent to or
received by the component. Such interfaces will be referred to asimplemented
interfacesin the rest of the document. These classes inherit from both the deferred
interface class andECOM_QUERIABLE.

For both Eiffel coclass and Implemented interfaces, theINTERFACEclass
contains no implementation, it only defines the signatures of the functions that are
part of the interface. The actual implementation lies in the heir of that class.

How you should use these generated classes in your system depends on whether
you want to access an existing component (client) or build a new component in Eiffel
(server).

Figure 13: EiffelCOM System Basic Architecture

Figure 14: Implemented Interfaces

*
INTERFACE_2

*
INTERFACE_2

*
INTERFACE_N

*
ECOM_QUERIABLE

+
EIFFEL_COCLASS

+
EIFFEL_COCLASS_IMP

*
ECOM_QUERIABLE

*
INTERFACE

+
IMPLEMENTED_INTERFACE

§3.3 ACCESSING A COMPONENT 23
3.3 ACCESSING A COMPONENT

The wizard will generate all the necessary code to access the existing component. All
the plumbing is already done, so instantiating the Eiffel coclass will actually
initialize all the necessary COM internals.

Using the Generated Code

To access the component, you need to call features of the coclass. The interface
functions signatures data types are either Eiffel types defined in Eiffel data structure
libraries (EiffelBase) or wrappers of COM data types specified in the definition file.
For example, the following IDL line

will generate the following feature in the Eiffel coclass:

whereMY_STRUCT is a generated Eiffel class wrappingMyStruct.

Contracts

The wizard cannot generate fully specified contracts. Indeed, the tool has no domain
specific knowledge and can only generate contracts that are domain independent.
Such contracts, although useful, are not enough to describe entirely the behavior of
the component. Generated contracts include void Eiffel objects as well as C pointer
validity (for wrappers) checking. There might be other conditions to allow calls to
an Eiffel coclass feature. Invariants and postconditions can be enforced in a heir of
the generated Eiffel coclass. Preconditions, however, cannot be strengthened. A
workaround provided by the wizard is to generate a precondition function for each
feature in the interface. The default implementation of these functions always return
True. They should be redefined to implement the correct behavior:

HRESULT InterfaceFunction ([in] int a, [out, retval] MyStruct * b)

interface_function (a: INTEGER): MY_STRUCT

interface_function (a: INTEGER): MY_STRUCTis
-- Example of a generated Eiffel coclass feature

require
interface_function_user_precondition:

interface_function_user_precondition
do

...
ensure

non_void_my_struct: Result /= Void
end

THE EIFFELCOM WIZARD §3.324
So the complete class hierarchy for an Eiffel client coclass is the following:

Figure 15: EiffelCOM Client System

*
INTERFACE_2

*
INTERFACE_2

*
INTERFACE_N

*
ECOM_QUERIABLE

*
GENERATED_EIFFEL_COCLASS

++
USER_DEFINED_EIFFEL_COCLASS

§3.3 ACCESSING A COMPONENT 25
Another advantage of the previous hierarchy is that it adds incrementality to the
EiffelCOM system. Indeed, should the definition file be modified and the wizard run
once more against it, your code would not be changed. Only the generated Eiffel
coclass would be, and it would suffice to adapt your heir accordingly.

Exceptions

Another issue is the COM requirement that any interface function should return a
status value (known as aHRESULT). This leads to side effect features which the
Eiffel methodology tends to avoid. The workaround used in EiffelCOM systems is
to map these return values into Eiffel exceptions. Should the server the EiffelCOM
system is accessing return an error code, the EiffelCOM runtime will raise an Eiffel
exception that your code should catch.

As a result, any feature in the coclass client making calls to the user defined Eiffel
coclass should include a rescue clause. The processing done in this clause might
depend on the nature of the exception. All the standard COM exceptions can be
found in the library classECOM_EXCEPTION_CODESwhich is inherited from by
ECOM_EXCEPTION. The later also inherits from the kernel classEXCEPTIONS
and can consequently be used by the coclass client to catch the exceptions.

Figure 16: EiffelCOM Client System Exception Raising

+
GENERATED_EIFFEL_COCLASS

++
USER_DEFINED_EIFFEL_COCLASSCOCLASS_CLIENT

Relationships

Inheritance........
Client.................
Exceptions.........

THE EIFFELCOM WIZARD §3.326
The following code snippet illustrates how a client can process exceptions raised
in the Eiffel coclass:

indexing
description: “Eiffel coclass client example”

class
COCLASS_CLIENT

inherit
ECOM_EXCEPTION

export
{NONE} all

end

create
make

feature {NONE} -- Initialization

makeis
-- Initialize Eiffel coclass.

do
create coclass.make

end

§3.4 BUILDING A COMPONENT 27

ward
ass to
plies to
Summary

There are a few rules to follow when building an Eiffel coclass client but they are straightfor
and do not add any constraints. The first rule consist in inheriting the generated Eiffel cocl
implement the preconditions if needed and to ensure better incrementality. The second rule ap
the client: any feature call to the Eiffel coclass should include a rescue clause.

3.4 BUILDING A COMPONENT

Accessing components from Eiffel is only half what the EiffelCOM wizard can do.
The other part is to enable the development of COM components in Eiffel.

feature -- Basic Operations

coclass_feature_clientis
-- Example of a coclass feature caller

local
retried: BOOLEAN
coclass: EIFFEL_COCLASS_PROXY

do
createcoclass.make
if not retriedthen

coclass.coclass_feature -- Actual call
end

rescue
if exception = E_notimpl then

-- Process non implemented function error.
retried := True
retry

elseif exception = E_invalidarg then
-- Process invalid argument error.
retried := True
retry

else
-- Forward exception to caller.

end
end

end -- class COCLASS_CLIENT

THE EIFFELCOM WIZARD §3.428
Using the Generated Code

The generated Eiffel coclass features are empty features that should be redefined to
implement the intended behavior. Unlike client generated code, the server generated
code will differ whether you have chosen to implement an in-process or an out-of-
process component. The difference lies in the component activation code in the class
ECOM_<Name_of_system>_REGISTRATION. If the component is in-process then
this class includes the four functions that need to be exported from an in-process
COM component (DllRegisterServer, DllUnregisterServer, DllGetClassObjectand
DllCanUnloadNow). If the component is out-of-process then the registration class
includes call to initialize the component and its graphical user interface (see
Component’s GUI).

The architecture remains the same as when accessing a component: the generated
Eiffel coclass should be inherited from and the contract features redefined. The
default implementation for features from the generated Eiffel coclass are empty.
They should also be redefined to implement the intended behavior. These features
will be called by the EiffelCOM runtime whenever a client access an interface.

Component’s GUI

In the case of an out-of-process server, you might want to add a Graphical User
Interface to your component. There are two different scenarios in which the
component can be activated: either its user launched it explicitly (e.g. by double
clicking the executable icon) or it was launched by the COM runtime to satisfy a
client request. The GUI should appear only in the former case, when the application
has been explicitly launched by the user. The generated registration class for an out-
of-process server includes the feature:

This feature is a once function that can be redefined in a child class to return the
class corresponding to the component window. This window is displayed only if the
component is not started by COM. When COM loads an out-of-process component,
it appends the option “-embedding” to the executable. The generated registration
class looks for this option and if it is part of the process argument list then it sets the
default window appearance to hidden.

As a summary, when building a server you need to implement classes that will
inherit from the coclasses and implement the interfaces functions. The names of the

Note: For this first release, the name of the user defined coclass has to be
<Name_of_generated_coclass>_IMP. So if the generated coclass name
is MY_COCLASSthen the user defined coclass name must be
MY_COCLASS_IMP.

main_window: WEL_FRAME_WINDOW

§3.4 BUILDING A COMPONENT 29
children classes should be the names of the parent classes appended with_IMP. You
will also have to inherit from the registration class in the case of an out-of-process
component to provide the class that implements the component GUI.

Exceptions

The COM standard way of returning error status to the client is by returning an
HRESULTfrom the interface function. Such behavior is not acceptable in Eiffel and
is replaced with exceptions. In the case of accessing an existing component,
exceptions will be raise by the EiffelCOM runtime and caught by your code (see
Exceptionsfor details). While when creating a component it will be your code that
will raise exceptions and the EiffelCOM runtime that will catch them. Here is what
the code for an Eiffel coclass should look like:

indexing
description: “Eiffel coclass server example”

class
ECOM_SERVER_COCLASS_IMP

inherit
ECOM_SERVER_COCLASS-- Generated by the wizard

ECOM_EXCEPTION
export

{NONE} all
end

THE EIFFELCOM WIZARD §3.430
This class inherits from the generated Eiffel coclass and from
ECOM_EXCEPTION. It redefines the featurecoclass_featurefrom the generated
coclass. This feature is part of the interfaces functions that can be called by clients
of the component. Its implementation uses the featuretrigger from
ECOM_EXCEPTIONto raise exceptions in case the feature cannot be executed
normally (invalid argument e.g.). This exception will be catch by the EiffelCOM
runtime and mapped into anHRESULT that will be sent back to the client.

Summary

Implementing an EiffelCOM components consists in inheriting from the generated
Eiffel coclasses and implementing their features. The only specific rules to follow
relate to the redefinition of precondition features and the use of exceptions to return
error status to the client. In the case of an out-of-process server, the registration class
should be inherited from and the feature corresponding to the component window
redefined to return the correct class.

feature -- Basic Operations

coclass_feature (an_argument: ARGUMENT_TYPE)is
-- Example of a coclass feature

do
if not is_valid (an_argument)then

trigger (E_invalidargument)
else

-- Normal processing
end

end

feature {NONE} -- Implementation

is_valid (an_argument: ARGUMENT_TYPE): BOOLEANis
-- Is an_argument a valid argument?

do
-- Test of validity ofan_argument

end

end -- class ECOM_SERVER_COCLASS_IMP

4

The EiffelCOM Library
The EiffelCOM library adds compound files support to your Eiffel applications.
Compound files are structured files that can embed different types of data in a single
file. It is the ideal format to store documents including different types of information.
It is the format used by Microsoft® Office applications. This chapter will not cover
the compound files architecture itself but will focus on its support in EiffelCOM. It
requires that the user be familiar with compound files and the compound files API.

The EiffelCOM library enables the creation and use of theIRootStorage,
IStorageandIStream interfaces and includes a wrapping of all necessary structures
for handling compound files. It also includes classes that encapsulates all necessary
flags and constants.

4.1 COMPOUND FILES
The clusterecom_storageincludes the filesecom_root_storage.e, ecom_storage.e
and ecom_stream.e. These files correspond to theIRootStorage, IStorage and
IStream interfaces, respectively.

Storages

Storages are to compound files what directories are to a standard file system. They
can include nested storages and/or streams. Streams are the equivalent of files in a
standard file system. They include the data itself. The following features are
available onECOM_STORAGE objects:

• destroy_element(element_name: STRING) — removes the stream or the
substorageelement_nameof Current . You can cancel this action using a call to
revert(described later). Thus,commit(described later) will be called to confirm
the deletion.

• copy_to (stg_dest: ECOM_STORAGE) — copiesCurrent into stg_dest.

• move_element_to(element_name: STRING; stg_dest: ECOM_STORAGE;
new_element_name: STRING; movmode: INTEGER) — moves the stream or
substorage element_name tostg_dest and renameselement_nameas
new_element_name. movmodecan take one of the values described in
ECOM_STGMOVE .

THE EIFFELCOM LIBRARY §4.132
• rename_element(old_element_name, new_element_name: STRING) —
renames the stream or substorageold_elment_name asnew_element_name.

• set_class(clsid: STRING) — set the class identifier ofCurrent using theclsid
value.

• commit (mode: INTEGER) — commits all changes made inCurrent . The
commits all streams and substorages included inCurrent . modecan take one
of the values described inECOM_STGC.

• revert —discards all changes made toCurrent .

• is_compound_file(filename: STRING): BOOLEAN— checks if the system file
filename is a compound file (Result = True) or not (Result = False).

• enum_elements: ARRAY [ECOM_STATSTG] — enumerates the
ECOM_STATSTG structures associated with the streams and substorages
included inCurrent .

Streams

Streams are where the data is actually stored. Different streams can store different
types of data. The following features are available onECOM_STREAM objects:

• seek(offset, origin: INTEGER) — sets the position of the seek pointer by adding
offset to origin. origin can contain one of the values described in
ECOM_STREAM_SEEK .

• set_size(new_size: INTEGER) — sets the size of the stream tonew_size. If the
new_sizevalue is larger than the current size of the stream, then the new bytes
fill with undefined values. If thenew_sizevalue is smaller than the current size,
the stream truncates.

• copy_to(stream_dest: ECOM_STREAM; num_bytes_to_copy: INTEGER) —
copiesnum_bytes_to_copy to stream_dest.

• commit(mode: INTEGER) — commits all changes made to the stream.mode
can take one of the values described inECOM_STGC. Compound file
implementation does not support opening streams in transacted mode, so this
method primarily flushes memory buffers.

• revert — discards all changes made to the stream. Compound file
implementation does not support opening streams in transacted mode, so this
method has no effect.

• stat (stat_flag: INTEGER) — fills an ECOM_STATSTG structure that
corresponds to current stream.

• read (buff: POINTER; num_bytes_to_read: INTEGER): INTEGER —reads
num_bytes_to_readbytes from the stream intobuff. Returns the actual number
of bytes read.

• write (buff: POINTER; num_bytes_to_write: INTEGER): INTEGER —writes
the num_bytes_to_writebytes of buffer pointed bybuff to stream, and the
returns the number of bytes actually written.

§4.1 COMPOUND FILES 33
• lock_region (offset, count: ECOM_LARGE_INTEGER; lock: INTEGER) —
restricts access to the range of bytes defined byoffsetandcount. lock can take
one of the values described inECOM_LOCKTYPES .

• unlock_region(offset, count: ECOM_LARGE_INTEGER; lock: INTEGER) —
removes the access restriction previously set usinglock_region. The arguments
are the same as forlock_region.

The last two features may of may not be available, depending on the COM
interface that the Eiffel class wraps. If the interface does not support region locking,
then the status code is set toStg_e_invalidfunction. The standard Windows
implementation of compound file does not support region locking.

All of the previous features directly encapsulate the COMIStream interface.
Thus, read/write is not very effective, since it requires a pointer on a buffer, which is
not directly available in Eiffel. As a result, theECOM_STREAM class offers the
following read/write features:

• read_string —reads a string at the current seek position in the stream and sets
last_string accordingly.

• read_character—reads a character at the current seek position in the stream and
setslast_character accordingly.

• read_integer—reads an integer at the current seek position in the stream and
setslast_integer accordingly.

• read_real—reads a real at the current seek position in the stream and sets
last_realaccordingly.

• read_boolean—reads a Boolean at the current seek position in the stream and
setslast_boolean accordingly.

• write_string(s: STRING) — writessat the current seek position in the stream.

• write_character(c: CHARACTER) — writesc at the current seek position in the
stream.

• write_integer(i: INTEGER) — writesi an integer at the current seek position in
the stream.

• write_real (r: REAL) — writesr at the current seek position in the stream.

• write_boolean(b: BOOLEAN) — writes b at the current seek position in the
stream.

• end_of_stream: BOOLEAN —True when the end of the stream is reached.

The attributeend_of_streamautomatically updates when there is a call to any of
the read/write features.

Other classes

The EiffelCOM compound file interfaces also need several other classes. These
classes handle theECOM_STATSTG structure included in theecom_structure
cluster and require some of the constants defined in theecom_flags cluster.

THE EIFFELCOM LIBRARY §4.134
The ECOM_STATSTG class is a direct encapsulation of theSTATSTG
structure. The following attributes can be set/accessed

• element_name: STRING —name of element (storage or stream).

• element_type: INTEGER— type of element (storage, stream).Result can take
one of the values described inECOM_STGTY.

• element_size: INTEGER —size of element in bytes (stream).

• modification_time: WEL_FILE_TIME —last modification time.

• creation_time: WEL_FILE_TIME —creation time.

• access_time: WEL_FILE_TIME —last access time.

• open_mode: INTEGER —mode in which element was opened.Resultcan take
one of the values described inECOM_STGM .

• locks_supported: INTEGER —A group of flags relevant only for stream. For
each lock item, indicates whether or not a call tolock_regionis worthwhile.
Result can take one of the values described inECOM_LOCK_TYPE .

• clsid: STRING —class identifier associated with the storage.

• state_bits: INTEGER —last state bits set on element (storage).

The following are the classes that encapsulate the COM constants:

• ECOM_LOCK_TYPES — defines the different lock types available for a
storage element.

• ECOM_STAT_FLAGS — specifies which field of theECOM_STATSTG
structure associated with the element to fill.

• ECOM_STGC — SToraGe Commit mode; defines the various available
commit modes.

• ECOM_STGM — SToraGe Mode; defines the opening mode for an element
(storage or stream).

• ECOM_STGMOVE — SToraGe MOVE; defines how to move a storage.

• ECOM_STGTY — SToraGe TYpe; defines the element type: storage, stream
or lockbyte.

• ECOM_STREAM_SEEK — defines the current position of the seek pointer
in a stream.

Summary

The EiffelCOM library gives access to the main compound files functionality. It
allows to create, edit and delete compound files. If your application needs to save
different types of data in one single file then compound files provide an easy and
straightforward support.

	EiffelCOM �and�the EiffelCOM wizard
	Contents

	1 Getting Started
	1.1 CREATING A NEW COM COMPONENT
	Step by step instructions
	First look at the generated code
	implementing the component
	Tips

	1.2 ACCESSING A COMPONENT
	Step by step instructions
	First look at the generated code
	Implementing a client
	Contracts
	Summary

	2 The Component Object Model
	2.1 OVERVIEW
	2.2 GENERALITIES
	Interfaces
	Coclass
	Class Object

	2.3 TYPES OF COMPONENTS
	Location
	In-process Components
	Out-of-process Components

	Access Type
	Automation
	Direct Access
	EiffelCOM

	2.4 DEEPER INTO COM
	Apartments
	Marshalling
	Summary

	3 The EiffelCOM Wizard
	3.1 OVERVIEW
	3.2 THE WIZARD
	Main Window
	Required File
	Introduction Dialog
	Definition File Dialog
	IDL Marshalling Definition Dialog
	Type Library Marshalling Definition Dialog
	Final Dialog
	Definition File Processing
	Generated Files
	Class Hierarchy

	3.3 ACCESSING A COMPONENT
	Using the Generated Code
	Contracts
	Exceptions
	Summary

	3.4 BUILDING A COMPONENT
	Using the Generated Code
	Component’s GUI
	Exceptions
	Summary

	4 4 The EiffelCOM Library
	4.1 COMPOUND FILES
	Storages
	Streams
	Other classes
	Summary

