
3

The EiffelCOM Wizard
3.1 OVERVIEW

COM is a standard that allows software components written in different languages
to communicate with each other. Unfortunately, building COM compliant
applications requires the developments of huge amount of code only dedicated to
support the technology. The EiffelCOM wizard was designed to free programmers
from writing all the plumbing code.

The EiffelCOM wizard is a powerful tool that enables the fast development of COM
components in Eiffel. It also helps accessing existing COM components from Eiffel
systems. It consists of a series of dialogs which ask about the properties of a
component. This information is used to produce an Eiffel system skeleton including
all the code needed to access or create a component. It also produces component-
specific runtime libraries.

The wizard is intended to allow Eiffel developers with little COM knowledge to
develop or reuse COM components. The design of the generated code follows the
Eiffel standards and should be familiar to any experienced Eiffel user. The only
prerequisite to use the EiffelCOM wizard is an understanding of theInterface
Definition Language. IDL is the main tool used to describe a component and can be
processed by standard compilers to generateType Libraries.They can be analyzed
by tools, such as the EiffelCOM wizard, that need information on a given
component. The IDL syntax is very close to C and easy to learn.

The wizard will generate code from a Type Library and additional information
given by the user. This code will consist of Eiffel classes, C/C++ files, and library
files. The library files are produced automatically from the generated C and C++
code. These are given for information only and you will not need to work with them
to build your EiffelCOM system.

THE EIFFELCOM WIZARD §3.214
The wizard can automatically compile the generated C and Eiffel code.MIDL, the
Microsoft IDL compiler, is used by the wizard to produce the Type Library
corresponding to the given IDL file. You may also provide the wizard with the type
library directly. For the remainder of the manualDefinition Filewill refer to the input
file given to the wizard (either an IDL file or a Type Library).

3.2 THE WIZARD

Let’s focus on the wizard itself and the different questions that need to be answered
to generate the code. There are five different dialogs but each session will use only
four of them. The third dialog is different depending on whether the Definition File
is an IDL file or a Type Library. Once the dialogs have been completed, the wizard
will start analyzing the Type Library and will eventually generate the code.

Main Window

The EiffelCOM wizard can be launched from the Windows start menu:

whereEiffelXXcorresponds to your Eiffel installation (e.g. Eiffel45). The following
window will be displayed:

Figure 4: Code Generation Process

Start->Programs->EiffelXX->EiffelCOM Wizard

Eiffel

IDL MIDL Type
Library C/C++

Libraries
(.lib)

Wizard

§3.2 THE WIZARD 15
The introduction dialog lets you choose between opening an existing project or
creating a new one. Creating a new project will open theIntroduction Dialog.
Opening an existing project will display an open file dialog from which you can
select a previously saved EiffelCOM project.

The main window includes a toolbar and a menu. The first three buttons on the
toolbar correspond to the first three entries in the File menu:New, OpenandSave.
Newresets all the information previously entered in the wizard.Openbrings up an
Open File Dialog that can be used to retrieve a previously saved EiffelCOM project.
Saveis used to save the current project. A project is defined by all the values entered
in the wizard. A project can be saved only after the wizard has been run. The file
extension for an EiffelCOM project isewz.

The second menu,Build, includes the entriesLaunch WizardandGenerate (no
wizard) corresponding respectively to the last two toolbar buttons. The former
activates theIntroductionDialog while the later launches the generation with the
current settings and bypasses the dialogs. This last button can be used only when a
project has been loaded or when the wizard has been run once.

The last four buttons on the dialogBack, Next, CancelandHelp are common to
all dialogs displayed throughout the execution of the wizard.Nextvalidates all the
values entered in the current dialog and activates the next one.Backdiscards all the
values entered in current dialog and displays the previous one.Cancelexits the
dialog and discards all the values entered. Finally,Helpbrings up this manual.

Figure 5: EiffelCOM Wizard Main Window

THE EIFFELCOM WIZARD §3.216

ess.

ts and
Required File

Before you launch the wizard you need to make sure you have a definition file ready
for the component you want to access or create.

Introduction Dialog

The first dialog asks if you want to access or build a component. If you want to access
an existing component then the generated code will be for a client. If you choose to
build a new one, the generated code will be for a COM server. Choose the server or
client check box to specify which kind of project you want to work on. You may
specify both in the case where both the component and its client(s) will be written in
Eiffel.

This dialog also asks for the location of the component. EiffelCOM supports all
location types:

• In-Process: These components are Dynamic Link Libraries (DLLs) that will be loaded inside the client proc
The server runs in the same process as the client.

• Out-of-process: These components are executable files that can be accessed through the network. Clien
servers run in different processes and may even run on different machines

Choose the kind of component you want to access or create. In-process
components are Active-X like components, they are usually smaller than local or
remote components and used by bigger application (often through a high level
language). Remote components can act as middleware in a three tier client server
architecture. SeeLocation for additional information on possible component
locations.

Figure 6: Introduction Dialog

§3.2 THE WIZARD 17
Definition File Dialog

This dialog is used to specify the location of the definition file for the project. An IDL
file is usually provided when building a new component since all the sources are
available. However, when it comes to accessing an existing component, the sources
might not be available. The Type Library is often embedded in the component itself
and includes enough information for the wizard to generate the code.

This dialog also serves to enter the destination folder, i.e. the directory where all the
files will be generated, preferably empty. If the wizard was used to overwrite an
existing file it would first back it up and emit a warning message. If any of the entered
values are not correct when theNext button is pressed the wizard will display a
warning message.

IDL Marshalling Definition Dialog

This dialog is displayed only for a server project and if the chosen definition file is
an IDL file. It serves to specify how marshalling will work for the component. The
first choice that has to be made is whether the component will be accessed through
Automation (usingIDispatch) or through the interface’s virtual table (for additional
information on Automation versus virtual table access, please consult COM).

Figure 7: Definition File Dialog

THE EIFFELCOM WIZARD §3.218
If you choose Automation then the Universal marshaller will be used (for additional
information on Marshalling please see COM documentation). If Virtual Table access
is specified then you have the choice between using the Windows Universal
marshaller or the marshaller generated from the definition file. Since this dialog is
displayed only when the definition file is an IDL file, choosing Standard Marshalling
will force the wizard to compile the marshaller from the code generated with the
MIDL compiler. Standard marshalling should be used whenever some interface
functions make use of non Automation compatible types (seeAutomation for a
complete listing of these types).

Type Library Marshalling Definition Dialog

This dialog is displayed only for a server project and if the definition file is a Type
Library. It includes the same controls as the previous one. You have to choose
between Automation and Virtual Table access and between Universal and Standard
marshalling.

Figure 8: IDL Marshalling Definition Dialog

§3.2 THE WIZARD 19
Because the definition file is a Type Library, the wizard cannot compile the Standard
marshaller by itself. This is the reason for having an extra text field for the path to
the marshaller (also known as Proxy/Stub pair or just Proxy/Stub). The Proxy/Stub
is a Dynamic Link Library that is used to marshall the data on the wire for a given
component (for additional information on Proxy/Stubs, please seeMarshalling).

Final Dialog

The last dialog offers a choice of different output levels. By default, the wizard will
display errors, warnings and generic information. You can choose not to see
warnings or extra information.

Figure 9: Type Library Marshalling Definition Dialog

Figure 10: Final Dialog

THE EIFFELCOM WIZARD §3.220

.

ation

uring

les and

used
piled
t corre-
tandard
This dialog also asks whether you wish to continue even though an error occurred
while compiling a file.

TheFinish button will close the dialog and start the processing of the definition
file. The project can be saved after the processing is finished.

Definition File Processing

There are six phases involved in the definition file processing:

• IDL Compilation: will occur only if the definition file is an IDL file. The wizard will compile the IDL file into a
Type Library and produce the marshaller from the generated C files if Standard Marshalling was chosen

• Type Library Parsing: The wizard analyze the type library and all its components and builds all the inform
it needs to generate the code.

• Code Generation: The wizard generates both the Eiffel and C/C++ code from the information gathered d
last step.

• C/C++ Compilation: The wizard compiles the C and C++ code generated during last phase into object fi
libraries that will be linked with the Eiffel system.

• Eiffel Compilation: The wizard compiles the generated Eiffel code into a precompiled library that can be re
from any project for a client project. In the case of a server project the generated Eiffel code will be com
into a standard project with the registration class as root class. If the location is In-process then the projec
sponds to a DLL whereas if the location of the server is out-of-process then the project corresponds to a s
executable.

• Finally, the wizard will launch EiffelBench and automatically open the generated Eiffel system.

During processing, the name and progress of each phase is displayed.

While the wizard processes the definition file it will also display information in
real time in the main window if this option was chosen in theFinalDialog. Displayed
information includes output of calls to external compilers (C, Eiffel and IDL) and
description of the current analyzed or generated Type Library item.

Figure 11: Wizard Progress Dialog

§3.2 THE WIZARD 21

the

new
fel

nd will
 C++
be

ereas in
he sys-
out-of-

re not
Generated Files

The wizard will generated code in the specified destination folder. The file hierarchy
is the following:

The root folder includes two files and three subclusters.

• The filegenerated.txt includes a list of all the files generated by the wizard.

• The filecomponent.log includes a summary of the processing done by the wizard. The name of the file is
name of the definition file appended withlog (soFigure 10 presumes that the definition file was e.g.compo-
nent.idl)

• The foldersClientandServerinclude the files generated respectively for reusing a component or creating a
component. Each includes three subdirectories:Includecontains all the header files needed to compile the Eif
code,CLib contains the generated C and C++ code as well as the library files.Componentincludes the code that
wraps or defines the component. TheComponent subfolder ofServer will also include the registration class.
This Eiffel class includes the code needed to activate the component, its content depends on its location a
differ whether the component is in-process or out-of-process. You will not need to read or edit the C and
code included inCLib since the wizard will automatically compile it. It is given for information only and can
deleted (you will need to keep the library file though). TheClient andServer folders also include the Ace file
used to compile the generated Eiffel code. In the case of a client, the generated code is precompiled wh
the case of a server it is compiled in a normal system with the registration class being the root class of t
tem. In the case of a in-process server the Eiffel system is compiled into a DLL whereas in the case of an
process server, it is compiled in a standard executable.

• TheCommonfolder includes code that will be used for both the server and the client part. TheIncludeandCLib
directory contain respectively the header files and the C and C++ code. Again the C and C++ sources a
needed and can be deleted, only the library file needs to be kept for the Eiffel system to compile. TheInterfaces
subdirectory include Eiffel classes corresponding to the component interfaces and theStructures subdirectory
includes Eiffel classes wrapping data structures specified in the definition file.

Class Hierarchy

The generated Eiffel code reflects the architecture of the component described in the
definition file. Each interface corresponds to a deferred Eiffel class that includes one
deferred feature per interface function. This deferred feature is implemented in the

Figure 12: Generated Files Hierarchy

Client Server Commongenerated.txt component.log

Include CLib Component

InterfacesInclude CLib Structures

Destination Folder

Ace.aceEifgen

THE EIFFELCOM WIZARD §3.222
heir of the Eiffel class inheriting from all these interfaces. This central class will be
referred to asEiffel coclass in the rest of this document.

The Eiffel coclass inherits from the classECOM_QUERIABLEwhich is part of
the EiffelCOM library. This class includes the featuremake_from_otherthat can be
used to initialize the component from another instance ofECOM_QUERIABLE. The
Componentfolder also includes Eiffel classes wrapping interfaces that are sent to or
received by the component. Such interfaces will be referred to asimplemented
interfacesin the rest of the document. These classes inherit from both the deferred
interface class andECOM_QUERIABLE.

For both Eiffel coclass and Implemented interfaces, theINTERFACEclass
contains no implementation, it only defines the signatures of the functions that are
part of the interface. The actual implementation lies in the heir of that class.

How you should use these generated classes in your system depends on whether
you want to access an existing component (client) or build a new component in Eiffel
(server).

Figure 13: EiffelCOM System Basic Architecture

Figure 14: Implemented Interfaces

*
INTERFACE_2

*
INTERFACE_2

*
INTERFACE_N

*
ECOM_QUERIABLE

+
EIFFEL_COCLASS

+
EIFFEL_COCLASS_IMP

*
ECOM_QUERIABLE

*
INTERFACE

+
IMPLEMENTED_INTERFACE

§3.3 ACCESSING A COMPONENT 23
3.3 ACCESSING A COMPONENT

The wizard will generate all the necessary code to access the existing component. All
the plumbing is already done, so instantiating the Eiffel coclass will actually
initialize all the necessary COM internals.

Using the Generated Code

To access the component, you need to call features of the coclass. The interface
functions signatures data types are either Eiffel types defined in Eiffel data structure
libraries (EiffelBase) or wrappers of COM data types specified in the definition file.
For example, the following IDL line

will generate the following feature in the Eiffel coclass:

whereMY_STRUCT is a generated Eiffel class wrappingMyStruct.

Contracts

The wizard cannot generate fully specified contracts. Indeed, the tool has no domain
specific knowledge and can only generate contracts that are domain independent.
Such contracts, although useful, are not enough to describe entirely the behavior of
the component. Generated contracts include void Eiffel objects as well as C pointer
validity (for wrappers) checking. There might be other conditions to allow calls to
an Eiffel coclass feature. Invariants and postconditions can be enforced in a heir of
the generated Eiffel coclass. Preconditions, however, cannot be strengthened. A
workaround provided by the wizard is to generate a precondition function for each
feature in the interface. The default implementation of these functions always return
True. They should be redefined to implement the correct behavior:

HRESULT InterfaceFunction ([in] int a, [out, retval] MyStruct * b)

interface_function (a: INTEGER): MY_STRUCT

interface_function (a: INTEGER): MY_STRUCTis
-- Example of a generated Eiffel coclass feature

require
interface_function_user_precondition:

interface_function_user_precondition
do

...
ensure

non_void_my_struct: Result /= Void
end

THE EIFFELCOM WIZARD §3.324
So the complete class hierarchy for an Eiffel client coclass is the following:

Figure 15: EiffelCOM Client System

*
INTERFACE_2

*
INTERFACE_2

*
INTERFACE_N

*
ECOM_QUERIABLE

*
GENERATED_EIFFEL_COCLASS

++
USER_DEFINED_EIFFEL_COCLASS

§3.3 ACCESSING A COMPONENT 25
Another advantage of the previous hierarchy is that it adds incrementality to the
EiffelCOM system. Indeed, should the definition file be modified and the wizard run
once more against it, your code would not be changed. Only the generated Eiffel
coclass would be, and it would suffice to adapt your heir accordingly.

Exceptions

Another issue is the COM requirement that any interface function should return a
status value (known as aHRESULT). This leads to side effect features which the
Eiffel methodology tends to avoid. The workaround used in EiffelCOM systems is
to map these return values into Eiffel exceptions. Should the server the EiffelCOM
system is accessing return an error code, the EiffelCOM runtime will raise an Eiffel
exception that your code should catch.

As a result, any feature in the coclass client making calls to the user defined Eiffel
coclass should include a rescue clause. The processing done in this clause might
depend on the nature of the exception. All the standard COM exceptions can be
found in the library classECOM_EXCEPTION_CODESwhich is inherited from by
ECOM_EXCEPTION. The later also inherits from the kernel classEXCEPTIONS
and can consequently be used by the coclass client to catch the exceptions.

Figure 16: EiffelCOM Client System Exception Raising

+
GENERATED_EIFFEL_COCLASS

++
USER_DEFINED_EIFFEL_COCLASSCOCLASS_CLIENT

Relationships

Inheritance........
Client.................
Exceptions.........

THE EIFFELCOM WIZARD §3.326
The following code snippet illustrates how a client can process exceptions raised
in the Eiffel coclass:

indexing
description: “Eiffel coclass client example”

class
COCLASS_CLIENT

inherit
ECOM_EXCEPTION

export
{NONE} all

end

create
make

feature {NONE} -- Initialization

makeis
-- Initialize Eiffel coclass.

do
create coclass.make

end

§3.4 BUILDING A COMPONENT 27

ward
ass to
plies to
Summary

There are a few rules to follow when building an Eiffel coclass client but they are straightfor
and do not add any constraints. The first rule consist in inheriting the generated Eiffel cocl
implement the preconditions if needed and to ensure better incrementality. The second rule ap
the client: any feature call to the Eiffel coclass should include a rescue clause.

3.4 BUILDING A COMPONENT

Accessing components from Eiffel is only half what the EiffelCOM wizard can do.
The other part is to enable the development of COM components in Eiffel.

feature -- Basic Operations

coclass_feature_clientis
-- Example of a coclass feature caller

local
retried: BOOLEAN
coclass: EIFFEL_COCLASS_PROXY

do
createcoclass.make
if not retriedthen

coclass.coclass_feature -- Actual call
end

rescue
if exception = E_notimpl then

-- Process non implemented function error.
retried := True
retry

elseif exception = E_invalidarg then
-- Process invalid argument error.
retried := True
retry

else
-- Forward exception to caller.

end
end

end -- class COCLASS_CLIENT

THE EIFFELCOM WIZARD §3.428
Using the Generated Code

The generated Eiffel coclass features are empty features that should be redefined to
implement the intended behavior. Unlike client generated code, the server generated
code will differ whether you have chosen to implement an in-process or an out-of-
process component. The difference lies in the component activation code in the class
ECOM_<Name_of_system>_REGISTRATION. If the component is in-process then
this class includes the four functions that need to be exported from an in-process
COM component (DllRegisterServer, DllUnregisterServer, DllGetClassObjectand
DllCanUnloadNow). If the component is out-of-process then the registration class
includes call to initialize the component and its graphical user interface (see
Component’s GUI).

The architecture remains the same as when accessing a component: the generated
Eiffel coclass should be inherited from and the contract features redefined. The
default implementation for features from the generated Eiffel coclass are empty.
They should also be redefined to implement the intended behavior. These features
will be called by the EiffelCOM runtime whenever a client access an interface.

Component’s GUI

In the case of an out-of-process server, you might want to add a Graphical User
Interface to your component. There are two different scenarios in which the
component can be activated: either its user launched it explicitly (e.g. by double
clicking the executable icon) or it was launched by the COM runtime to satisfy a
client request. The GUI should appear only in the former case, when the application
has been explicitly launched by the user. The generated registration class for an out-
of-process server includes the feature:

This feature is a once function that can be redefined in a child class to return the
class corresponding to the component window. This window is displayed only if the
component is not started by COM. When COM loads an out-of-process component,
it appends the option “-embedding” to the executable. The generated registration
class looks for this option and if it is part of the process argument list then it sets the
default window appearance to hidden.

As a summary, when building a server you need to implement classes that will
inherit from the coclasses and implement the interfaces functions. The names of the

Note: For this first release, the name of the user defined coclass has to be
<Name_of_generated_coclass>_IMP. So if the generated coclass name
is MY_COCLASSthen the user defined coclass name must be
MY_COCLASS_IMP.

main_window: WEL_FRAME_WINDOW

§3.4 BUILDING A COMPONENT 29
children classes should be the names of the parent classes appended with_IMP. You
will also have to inherit from the registration class in the case of an out-of-process
component to provide the class that implements the component GUI.

Exceptions

The COM standard way of returning error status to the client is by returning an
HRESULTfrom the interface function. Such behavior is not acceptable in Eiffel and
is replaced with exceptions. In the case of accessing an existing component,
exceptions will be raise by the EiffelCOM runtime and caught by your code (see
Exceptionsfor details). While when creating a component it will be your code that
will raise exceptions and the EiffelCOM runtime that will catch them. Here is what
the code for an Eiffel coclass should look like:

indexing
description: “Eiffel coclass server example”

class
ECOM_SERVER_COCLASS_IMP

inherit
ECOM_SERVER_COCLASS-- Generated by the wizard

ECOM_EXCEPTION
export

{NONE} all
end

THE EIFFELCOM WIZARD §3.430
This class inherits from the generated Eiffel coclass and from
ECOM_EXCEPTION. It redefines the featurecoclass_featurefrom the generated
coclass. This feature is part of the interfaces functions that can be called by clients
of the component. Its implementation uses the featuretrigger from
ECOM_EXCEPTIONto raise exceptions in case the feature cannot be executed
normally (invalid argument e.g.). This exception will be catch by the EiffelCOM
runtime and mapped into anHRESULT that will be sent back to the client.

Summary

Implementing an EiffelCOM components consists in inheriting from the generated
Eiffel coclasses and implementing their features. The only specific rules to follow
relate to the redefinition of precondition features and the use of exceptions to return
error status to the client. In the case of an out-of-process server, the registration class
should be inherited from and the feature corresponding to the component window
redefined to return the correct class.

feature -- Basic Operations

coclass_feature (an_argument: ARGUMENT_TYPE)is
-- Example of a coclass feature

do
if not is_valid (an_argument)then

trigger (E_invalidargument)
else

-- Normal processing
end

end

feature {NONE} -- Implementation

is_valid (an_argument: ARGUMENT_TYPE): BOOLEANis
-- Is an_argument a valid argument?

do
-- Test of validity ofan_argument

end

end -- class ECOM_SERVER_COCLASS_IMP

	3 The EiffelCOM Wizard
	3.1 OVERVIEW
	3.2 THE WIZARD
	Main Window
	Required File
	Introduction Dialog
	Definition File Dialog
	IDL Marshalling Definition Dialog
	Type Library Marshalling Definition Dialog
	Final Dialog
	Definition File Processing
	Generated Files
	Class Hierarchy

	3.3 ACCESSING A COMPONENT
	Using the Generated Code
	Contracts
	Exceptions
	Summary

	3.4 BUILDING A COMPONENT
	Using the Generated Code
	Component’s GUI
	Exceptions
	Summary

