Solving for zero of f1. Answer should be 1.5 Root: 1.4999886972443881 Solving for zero of system. Answer should be Checking function and Jacobian from Eiffel ARRAY [0xF33224] area: SPECIAL [0xF3323C] -- begin special object -- 0: DOUBLE = -0.57069999999999999 1: DOUBLE = -0.68159999999999998 2: DOUBLE = -0.70169999999999999 3: DOUBLE = -0.70420000000000005 4: DOUBLE = -0.70140000000000002 5: DOUBLE = -0.69189999999999996 6: DOUBLE = -0.66579999999999995 7: DOUBLE = -0.59599999999999997 8: DOUBLE = -0.41639999999999999 -- end special object -- object_comparison: BOOLEAN = False lower: INTEGER = 1 upper: INTEGER = 9 ARRAY [0xF3443C] area: SPECIAL [0xF34454] -- begin special object -- 0: DOUBLE = -0.00029697999999989122 1: DOUBLE = 0.00014287999999984535 2: DOUBLE = 0.00013422000000029577 3: DOUBLE = 0.00010471999999950299 4: DOUBLE = -0.0001239200000000551 5: DOUBLE = -0.00015121999999978541 6: DOUBLE = -7.927999999979285e-005 7: DOUBLE = 0.00016799999999972393 8: DOUBLE = 2.2080000000035405e-005 -- end special object -- object_comparison: BOOLEAN = False lower: INTEGER = 1 upper: INTEGER = 9 BASIC_MATRIX [0xF3525C] blended_storage: Void imaginary_storage: Void real_storage: ARRAY [0xF352A4] conversion_default_dual_complex: BOOLEAN = False positive_definite: BOOLEAN = False symmetric: BOOLEAN = False printout_decimals: INTEGER = 4 printout_start_column: INTEGER = 1 printout_start_row: INTEGER = 1 printout_stop_column: INTEGER = 9 printout_stop_row: INTEGER = 9 printout_width: INTEGER = 13 number_of_columns: INTEGER = 9 number_of_rows: INTEGER = 9 storage_count: INTEGER = 81 type: INTEGER = 1 scale: DOUBLE = 1 Solution without Jacobian, last_root: ARRAY [0xF3634C] area: SPECIAL [0xF36364] -- begin special object -- 0: DOUBLE = -0.57065451160065928 1: DOUBLE = -0.68162834229123037 2: DOUBLE = -0.70173245256347083 3: DOUBLE = -0.70421294008375235 4: DOUBLE = -0.70136904762728913 5: DOUBLE = -0.69186564337991452 6: DOUBLE = -0.66579201215468931 7: DOUBLE = -0.59603420128081641 8: DOUBLE = -0.41641206299847189 -- end special object -- object_comparison: BOOLEAN = False lower: INTEGER = 1 upper: INTEGER = 9 last_value: ARRAY [0xF363BC] area: SPECIAL [0xF363D4] -- begin special object -- 0: DOUBLE = 6.5601089005440372e-009 1: DOUBLE = -4.1754713020480949e-009 2: DOUBLE = -5.193165231176522e-009 3: DOUBLE = -2.3960127215616467e-009 4: DOUBLE = 2.0224926178258329e-009 5: DOUBLE = 4.8179182865482062e-009 6: DOUBLE = 2.5794992808414463e-009 7: DOUBLE = -3.8837375537781327e-009 8: DOUBLE = -1.3588596914360096e-010 -- end special object -- object_comparison: BOOLEAN = False lower: INTEGER = 1 upper: INTEGER = 9 Jacobian checked against system, ok. Solution with Jacobian, last_root: ARRAY [0xF3A39C] area: SPECIAL [0xF3A3B4] -- begin special object -- 0: DOUBLE = -0.57065451160065905 1: DOUBLE = -0.68162834229123059 2: DOUBLE = -0.70173245256347117 3: DOUBLE = -0.70421294008375235 4: DOUBLE = -0.7013690476272888 5: DOUBLE = -0.69186564337991419 6: DOUBLE = -0.66579201215468919 7: DOUBLE = -0.59603420128081663 8: DOUBLE = -0.416412062998472 -- end special object -- object_comparison: BOOLEAN = False lower: INTEGER = 1 upper: INTEGER = 9 last_value: ARRAY [0xF3A40C] area: SPECIAL [0xF3A424] -- begin special object -- 0: DOUBLE = 6.5601106769008766e-009 1: DOUBLE = -4.1754728563603294e-009 2: DOUBLE = -5.1931665634441515e-009 3: DOUBLE = -2.3960133876954615e-009 4: DOUBLE = 2.0224937280488575e-009 5: DOUBLE = 4.8179193967712308e-009 6: DOUBLE = 2.579500169019866e-009 7: DOUBLE = -3.8837384419565524e-009 8: DOUBLE = -1.3588619118820588e-010 -- end special object -- object_comparison: BOOLEAN = False lower: INTEGER = 1 upper: INTEGER = 9