
Generic Component Lookup

Till G. Bay1, Patrick Eugster2, and Manuel Oriol1

1 Chair of Software Engineering, Swiss Federal Institute of Technology in Zürich
CH-8092 Z̈urich, Switzerland

2 Purdue University, Dept. of Computer Science, West Lafayette, IN 47907, USA

Abstract. The possibilities currently offered to conduct business at an electronic
level are immense. Service providers offer access to their attendances through
components placed on the Internet; such components can be combined to build
applications, which can themselves be used as components by further business
units. The final leg of the way to this paradigm has been paved by the advent of
service-oriented architectures in general, and Web Services in particular.
With protocols existing for any parties to communicate, the most critical ingredi-
ent to the success of a business idea remains the task of choosing one’s business
partners. At a technical level, this translates to the issue of identifyingwhichcom-
ponents represent the most adequate services to build a final application.
While each middleware technology and system proposed in the past has been
described with its scheme for “looking up” components, this paper chooses the
more difficult approach of trying to distill the fundamentals of component lookup.
We propose a generic model of component lookup — applicable to settings as
diverse as tagged sets, classic white pages, or even method dispatch — and its
implementation. We illustrate our model through various examples of existing
lookup schemes. It turns out that in our generic context the common distinction
between name-based and type-based lookup becomes rather artificial.

1 Introduction

The evolution from the Internet to the World Wide Web, more recently boosted by the
advent of the semantic web and Web Services, has marked the gradual transformation
of a communication infrastructure consisting of bare metal into a mighty platform fos-
tering interaction of business parties.

The possibilities currently offered to conduct business at an electronic level are
amazingly vast. Service providers offer access to their attendances through components
placed on the Internet; such components can be combined to build applications, which
can themselves be used as components by further business units. Web Service tech-
nologies typically provide the glue between individual components by proposing safe,
efficient, and flexible communication protocols.

The most critical ingredient to the success of a business idea remains the task of
setting up interactions, that is, choosing one’s business partners. The success – or fail-
ure – of an entire business plan can depend on a single participant. At a technical level,
the selection of appropriate business partners translates to the issue of identifyingwhich
components represent the most adequate services to build a final application. In partic-
ular, application designers have to face the challenge of specifying their own compo-
nents, and choosing foreign components according to potentially several specifications.

Coding algorithms to perform such selections is an onerous task, and the outcome is
usually an ad-hoc solution of limited application scope.

Each middleware technology and system proposed in the past has typically been
described with its own scheme for “looking up” components, i.e., seeking, selecting,
and connecting to components. In fact, the high number of non-redundant systems for
looking up components advocates for a tighter integration or a composition model for
such systems. In this paper, we try to distill the fundamentals of component lookup. We
propose a generic model of multiple specifications component lookup based on mathe-
matical formulae, calledCOLOS (generic COmponent LOokup based on Specification
matching). By differentiating betweenexplicitandimplicit component specifications, as
well as betweeninternal andexternalones, our model becomes applicable to settings
as diverse as tagged sets, name-based schemes, or even method dispatch. What we pro-
pose is thus a framework intended to provide programmers with an infrastructure to use
and freely encode specifications and add them to associated components. By offering
the possibility of combining specifications by the means of mathematical operators, our
system is able to sort the components that match with agroup of specificationsand put
first the components that matchbestaccording to user-defined criteria.

Our way of combining specifications and their matching is robust to distribution as
results can be collected in a peer-to-peer manner. Our implementation is itself based
on collections of components that can be combined, and includes the foundations for
building secure matching as it can also be used for locking.

We illustrate our model through various examples of existing lookup schemes. Quite
interestingly, it turns out that in the generic context we consider, the traditional differen-
tiation made in the past between value-based (“white pages”) and type-based (“yellow
pages”) is artificial.

Roadmap.Section 2 presents preliminary material, including our model of components
and their specifications, and related approaches. Section 3 elaborates on our generic
model of component matching. Section 4 illustrates that model through various match-
ing schemes. Section 5 discusses the deployment and the use of our implementation
based onCOLOS. Section 6 draws final conclusions.

2 Preliminaries

Various systems and models have been described in the past for coordinating compo-
nents in distributed settings. This section starts by presenting a simple abstract model
of lookup, and then relating that model to a set of predating approaches.

2.1 Lookup Model

Components are described towards the outside world by respectivespecifications(see
Figure 1). Lookup services basically provide components, on one hand, a means to
construct and advertise such specifications, and on the other hand, a mechanism to
query components based on (specification)templates. The composition and nature of
these specifications and templates, as well as thematchingbetween them, vary between
approaches.

MATCHING

Specification Template

Internal,

The component External,

The component’s runtime environment

Implicit

Explicit

Fig. 1. Component and lookup model

Internal vs. external specification.When viewing specifications as being based on dif-
ferent properties, one can in a first step distinguish betweeninternalandexternalprop-
erties. Internal properties are based on the nature of components themselves, i.e., they
reflect properties of a given component. External criteria reflect properties which per-
tain to the surroundings of the component, such as its context or (runtime) environment.

Implicit vs. explicit specification.In a second step, one can distinguish betweenimplicit
and explicit properties. The former kind of criteria reflect intrinsic propertiesof the
services providedby a given component; they are not influenced by the nature and
set of targeted clients for that component, or the means by which the component is
made available to such consumers. Explicit criteria in contrast, manifest in the way
the component’s very design is influenced by the perspective of making it ultimately
available to the outside world.

Static vs. dynamic evaluation.Furthermore, the evaluation of the matching can be
static, i.e., based on attributes of component specifications which are evaluated once
and for all when the component is loaded, ordynamic, in which case the matching
becomes a continuous process (see Section 5.1).

2.2 Examples

We illustrate the above model through a set of well-known lookup services, and overview-
ing derivatives for each. Results are summarized in Table 1 (due to the sparse occur-
rence of dynamic criteria in common lookup services the distinction static/dynamic is
however omitted).

Domain Name System (DNS).DNS is very likely to be the most frequently used, static,
name-based lookup system. Components are IP addresses, the specifications are (inter-
nal) host names, the templates are host names as well, and the matching tries to find
the component that registers with a given host name (explicitly) and returns it’s IP if
possible.

Network Information Service (NIS).NIS is one of the oldest type-based, static lookup
systems. Components are the entries of the maps (external), the specifications are map
names (implicit), the templates are either map names or nicknames (e.g.,passwd for
passwd.byname), and the matching is the result of theypcat command.

CORBA.The Common Object Request Broker Architecture (CORBA) [1] defines both
a Naming Service and Trading Object Service for name-based and type-based lookup of
objects respectively. The Naming Service represents the original means of looking up
objects based on ahierarchicalnaming scheme, where an object is registered (explicit)
and made available by attaching it (external) a unique nameN1. · · · .Nn of which each
componentNi is a name/kind-pair. In this case, specifications and templates are both
defined as sets of such pairs. Names for the Java RMI registry, or regular expressions,
are similar in that sense, withn = 1.

The Trading Object Service offers rich combinations of means of defining the ser-
vice type of a component. The most preferred way of attaching a type specification to
a component consists in attaching it a name/value-pair. This definition of a component
is external and explicit as well: the “type” describes actual properties of the component
itself, but is not implicit like the actual classification of a component according to the
type system of the considered language/environment.

Note that the OMG has more recently specified the Interoperable Name Service,
defining URL-format object references that can be typed into a program to reach ser-
vices at a remote location, including the Naming Service.

RM-ODP. The Reference Model for Open Distributed Processing (RM-ODP) [2] de-
fines, similarly to CORBA, both a “white pages” (name-based) and “yellow pages”
(type-based) lookup service (both explicit and external), going by the names of relo-
cator and trader respectively. The latter service describes two roles which interacting
components may take:exportersof services, andimporters. A service descriptionis an
interface (type) and a set of properties attached to it, and aservice offerbinds a service
description to a concrete component, which can be a CORBA object or another object.
Properties are thus used to describe specifications and templates, the latter ones being
more precisely combinations of properties; rules are expressed based on properties and
operators (these are called matching criteria).

A novelty of the trader specification is the description of delegation and collabora-
tion among individual trader units, which however does not seem to impact the model
ultimately perceived by an application programmer, as, expressed in our terminology,
specifications are simply cascaded.

UDDI. Theuniversal description, discovery and integration(UDDI) [3] specification
defines a lookup service for Web Services. Such aregistry is centered around apublic
cloud, a set of replica nodes storing white pages (abstract services by ”name”), yellow
pages (by ”type”), and green pages (by ”description” and ”location”). Targeting at Web
Services, UDDI encompasses a set of XML messages for SOAP-based interaction with
registries. Each party is described through abusiness entity, several of which can be
linked throughpublisher assertions. A business serviceis a particular Web Service of-
fered by a business entity. Such a service is described by one or morebinding templates,

which optionally contain textual service descriptions, and URLs for the respective ser-
vices. Finally,binding templatesrefer to one or moretModels, which contain the point-
ers to actual descriptions of the services offered, and delineate the interaction protocols
with the respective services. All the above-mentioned entities describe a refined pattern
for specifications in the sense of our model introduced before-hand. The enforcing of
authentication is covered in our model by external explicit criteria (see Section 4.5). The
load distribution among nodes forming the public cloud is achieved in our implemen-
tation in an efficient manner by distributing the matching, greatly transparently, over a
peer-to-peer overlay network (see Section 5.1).

Note that UDDI is a rare example of dynamic lookup, where components can be
notified of changes in specifications of other components. Further examples are given
by load balancing, or reuse frequency [4].

Service Groups.Sadou et al. [5] introduce a notion ofservice groupto mediate between
client and server components. These are motivated by the desire for type evolution, e.g.,
the possibility of adding parameters to methods. Just like in RM-OPD, the approach
introduces both a notion oftypewhich reflects provided services (i.e., the server side)
in the terminology introduced by the authors, and a notion ofrole which represents the
needs of customers (i.e., the client side).

At a first glance, one could hence be brought to viewing the types of [5] as spec-
ifications in our case, roles as templates, and service groups as defining the matching,
respectively. However, the emphasis of [5] consists in making services of a given type
available to clients expecting a slightly different type. Service groups are thus a form of
glue aiming at expressinghow to pass from a given type to a given role. They consist in
stubs for respective server objects, which transform invocations based on a given role
(the expected type) such as to fit the effective type. In our model, this represents explicit,
internal component registration, and the specifications are made up of the stubs.

In a sense, HydroJ [6] and LuckyJ [7], can be seen as similar approaches to service
groups, as these are also based on some notion of type. Borrow/Lend [8], a derivative
of the Type-based Publish/Subscribe (TPS) abstraction [9], as suggested by the name of
the latter paradigm, in contrast, is primarily based on type-based matching of inherent
Java object types (implicit, internal). The types are augmented by (dynamic) predicate
evaluation, and with keys (explicit, external).

Coordination Spaces.The Borrow/Lend abstraction can in fact be seen as a variant of
the Linda Tuple Space [10] with callback functionalities. The original Tuple Space is
a means of exchanging information among distributed components, based on tuples of
place holders (types) and values, i.e., a mixture of value-based and type-based match-
ing, where values can also be character strings. This demonstrates how thin the border
between types and values is.

Just like Borrow/Lend, Tagged Sets [11] are a variant of Tuple Spaces, where tuple
items can also be predicates (leading to a dynamic evaluation), or keys (symmetric or
asymmetric). Similarly, SecOS [12], supports the use of keys, with a partial matching.
Clearly, any such criterion is explicit and external.

Criteria Explicit Implicit

External UDDI, CORBA Naming, Trading,
Java RMI, Linda, Regular Expressions,
Tagged Sets, Borrow/Lend, SecOS

Reuse Frequency, Load Balancing, NIS

Internal HydroJ, LuckyJ, Service Groups, DNSMethod Dispatch, Borrow/Lend
Table 1.Coarse classification of lookup services

2.3 A Note on Values and Types

A distinction that is often made when discussing component lookup is the one between
valuesandtypes. This is nicely illustrated by the metaphors of “white pages” and “yel-
low pages” respectively.

However, component lookup in a distributed heterogeneous environment is basi-
cally untyped. Matching components for their “type” boils down to matching such
components for thename of their type, an internal property of these components. The
possibility of registering several objects under a same given name, as supported by
many systems, illustrates this seamless transition; by doing so, such a name becomes
more a type description than a unique identifier. The issue of matching in such a set-
ting becomes essentially a question ofdepth, in a way similar to the issue of object
copying/cloning [13]. Any categorical distinction between values and types at this level
seems unnatural. This is captured by our abstract notions of specifications and tem-
plates, which will become clearer through the matching model presented in Section 3,
and illustrations thereof in Section 4.

3 Matching Model

The matching model presented in this section has resulted from the desire of capturing
all the different lookup criteria outlined in the previous section.

In our model, the matching of components against requirements builds on the two
basic notions introduced in the previous section, namelyspecificationsandtemplates.
The former roughly represent actual component descriptions (i.e., server-side views of
components, see Figure 1), and the latter represent requirement descriptions (i.e., client-
side views of components). In our matching model, specifications and templates are
related bymatching modules. Our goal is to be able to combine several specifications
and templates into a compact notation and to design a lookup mechanism that sorts the
retrieved components in a list.

Our solution relies on mathematical formulae containing templates. As an example
the formulat0 +3.0− t1 ∗ t2 combines the three templatest0, t1 andt2. Such a formula
will be evaluated for each componentC that has specificationss0, s1 ands2 respectively
corresponding to each template. The evaluation replaces each template with a value
(the matching value) that is calculated by applying a matching function (?i) between
the specifications of the component and the templates. As an example evaluating the
formula with given specifications will return the evaluation of:

(?0(s0, t0) + 3.0−?1(s1, t1)∗?2(s2, t2))

For each component, this formula yields its matching value. When a client looks
a component up, it is given a list of components sorted by their matching values in
descending order. Components for which the matching value is 0 or below are omitted
from the list. In the remainder of the section we define the theoretical framework to
formalize this intuition using denotational semantics.

3.1 Matching Modules

A matching moduleis a triplet encompassing a set of specificationsS, a set of templates
T and a matching relation?.

mm ::= (S,T, ?)
where ? : S× T → N

3.2 Specifications

A specificationS is itself a set ofspecification termssi. Informally, a specification term
is the specification for a component according to a given formalism. A templateT is
itself a set oftemplates termsti. Informally, a template term delineates a set of compo-
nents according to a given formalism. The matching relation? is a function that takes a
specification term and a template term as arguments and returns a natural number.

In short, we define here what we need for providing ways of matching specifications
and templates. Our goal being to integrate several of these modules into a multi-module
specification, we do not enter into details but rather give examples of this in Section 4.

3.3 Qualified Specifications

A qualified specification termqs is a specification term annotated with aqualifier.

s ∈ Si

val ::= n ∈ N
comp ::= < | > | 6= | ≤ | ≥ | =

qualifier ::= required comp val | ∅
qs ::= s qualifier

Qualifiers on specification terms are used as a way for the component provider to order
differences in the treatment of the matching. We specify two different types of quali-
fiers:∅ that means that we do not modify the basic mechanism (that we always omit
in practice as a notation abuse) andrequired that allows us to filter and impose a con-
dition on the matching for specific specification terms. This latter qualifier allows us,
in particular to envision security-constrained matching as shown in Section 4.5. Even
if, for now, we only consider the qualifiersrequired and∅ we could imagine other
qualifiers that modify the infrastructure’s behavior accordingly.

A component specificationCS consists of a set of qualified specification terms that
appear at most once in the set of specifications of a given matching module.

CS ::= {qs1, ..., qsn}
such that ∀ i, j ∈ [1, n] si ∈ s0 sj ∈ s0 ⇒ i = j

A component specification is the way a component provider can describe its compo-
nents.

3.4 Templates

A templateT∈ T consists of a mathematical formula using mathematical operators and
template terms.

t ∈ Ti

op ::= + | − | ∗ | /
T ::= n ∈ N | t | T op T

The idea is, that unlike qualified specification terms that are composed in a list to make
the component specification, we compose template terms to a mathematical formula in
order to allow component seekers to allocate more weight to some specification. It also
allows to exclude components that answer to a specification by using subtractions and
divisions to lower their matching values and possibly rule them out of the returned list.

3.5 Matching

The valued matchingof a component specificationCS with a templateT consists
in matching on the specification and calculating its value according to the template
definition. It is defined as follows:

valuedMatch ::= CS?vT

VJ·K : valuedMatch → Q ∪ {∞}
VJCS?vnK = n
VJCS?vtK = 0 if 6 ∃ qs = s0 q0 ∈ CS

such as ∃mm0 = (S0, T0, ?0) | t ∈ T0, s0 ∈ S0

?(s, t) otherwise
VJCS?vT1 op T2K = VJCS?vT1K op VJCS?vT2K

The intuition behind the matching we describe is the following: each template term
within the mathematical formula of the template is replaced by the result of the appli-
cation of the matching relation between the template term and the specification term of
the component specification.

Thematching complianceof a component specificationCS with a templateT de-
scribes the specification terms matched. It is defined as follows:

compliesToMatch ::= CS?cT

CJ·K : compliesToMatch → B
CJ{s required comp0 n0}?cT K = TRUE if ∃ t in T s.a. VJs?vtK comp0 n0

FALSE otherwise
CJ{s∅}?cT K = TRUE

CJ{qs1, ..., qsn}?cT K = CJ{qs1}?cT K ∧ ... ∧ CJ{qsn}?cT K
As a simple explanation, a template complies with a specification if all the required
conditions on the specifications are fulfilled by any of the basic templates.

3.6 Component Selection

Finally, we can define theselectionmechanism built on top of the valued matching and
the matching compliance. A componentC declares its interface in its component spec-
ificationCS. The component repositoryC consists in a set of components stored with
their specifications. These can be selected using the selection operator↓ that returns a
list of components for which we show the semanticsE .

C ::= {(CS1, C1), ..., (CSn, Cn)}
lookup ::= C ↓ T

EJ·K : lookup → list of (CSi, Ci)
EJC ↓ T K = {(CS′1, C

′
1), ..., (CS′m, C ′m)} ⊆ C

such that
∀i ∈ [1,m], CJCS′i?cT K and VJCS′i?vT K > 0
and ∀i, j ∈ [1, m], i < j ⇔ VJCS′i?vT K ≥ VJCS′j?vT K

Intuitively, the final result of a component selection on a repository is a list containing
elements from the repository ordered by decreasing matching values. That way, we can
obtain the component that is best adapted regarding to the templates we defined. In the
next section we show examples of such matching modules and how they can be used.

4 Illustration

This section illustrates our generic model of component lookup through a small set
of existing lookup schemes. More examples can be found in a longer version of this
paper [14] (e.g. examples based on nominal and structural subtyping or on reuse fre-
quency [4]).

4.1 Unique Identifiers

As a first simple example, we consider the selection mechanism based on a unique com-
ponent identifier. In that case the matching module can be described by the following
triplet:

mmUId ::= (N,N, ?UId)
where ?UId : N× N 7→ { 0, 1 }
?UId(x, y) = 1 ifx = y

0 otherwise

As a first example of use, we can imagine a collection of software components that have
unique identifiers:

C = {({1UId}, C1), ..., ({1337UId}, C1337), ..., ({nUId}, Cn)}
Looking up component identified by number 1337 can be made as follows:

C ↓ 1337UId = {({1337UId}, C1337)}
Note that a variation of this module can be used to describe the DNS.

4.2 Regular Expressions

Among the most widespread and popular descriptions of components are component
APIs, and component documentation. One can imagine selecting components based
on criteria expressed on their textual description, in addition to other specifications.
An example is selecting components according to their author(s), as appearing in the
documentation. This constitutes the case of matching regular expressions (note that we
use the original regular expressions as defined in Kleene algebra):

char ::= a | ...
string ::= char | string string
expr ::= ∅ | char | (expr expr) | (expr + expr) | expr∗
mmregexp ::= (string, expr, ?regexp)

where ?regexp : string × expr 7→ N
?regexp(s, e) = number of occurrences of s in e

Now imagine that a user wants to obtain a component for which John Doe is indicated
as the main author of that component in the accompanying documentation and prefer-
ably take the component with the unique identifier 1337. A collection including such a
component could then be:

C = { ({1UId, “...author : John Doe...”regexp}, C1), ...
({1337UId, “...author : John Doe...”regexp}, C1337), ...
({nUId}, Cn)}

Looking up a component fulfilling at least one of these characteristics would then pro-
duce:

C ↓ (1337UId + “ ∗ author : John Doe ∗ ”regexp) =
{ ({1337UId, “...author : John Doe...”regexp}, C1337),

({1UId, “...author : John Doe...”regexp}, C1)}
Looking up a component fullfilling both criteria can be made as follows:

C ↓ (1337UId ∗ “ ∗ author : John Doe ∗ ”regexp) =
{ ({1337UId, “...author : John Doe...”regexp}, C1337)}

4.3 Load Balancing

Another criterion of component linking, is its current load.

mmload ::= (N, ∅, ?load)
where ?load : N×∅ 7→ N+

?load(n) = number of components currently using component n

Imagine that a user wants to obtain the component which is currently experiencing the
smallest load written by John Doe. Suppose also that some components support only
up to 10 clients at the time. A collection containing such components could then be
specified as follows:

C = {({1UId, “...author : John Doe...”regexp, C1), ...
({1337UId, “...author : John Doe...”regexp, required 1337load < 10.0}, C1337), ...
({nUId, nload}, Cn)}

A programmer wishing to get such a component should perform the following
lookup (note that the result is dependant of the number of clients currently connected
to both components):

C ↓ (“ ∗ author : John Doe ∗ ”regexp/(1.0+load)) =
{ ({1UId, “...author : John Doe...”regexp, C1),

({1337UId, “...author : John Doe...”regexp}, C1337)}

4.4 Compliance to an Interface

It very often happens that programmers want to obtain components that comply to a
given interface. Informally, compliance to an interface is expressed in terms of a struc-
tural subtyping relationship. Suppose thatI1 is compliant toI2 if and only if I1 has at
least the same procedures asI2.

p procedure names
t types names
procedure ::= (p, {t0, ..., tn})
I ::= {procedure1, ..., proceduren}
mmcomply ::= (Interfaces, Interfaces, ?comply)

where ?comply : Interfaces× Interfaces 7→ {0, 1}
?comply(I1, I2) = 1 iff I2 ⊆ I1, 0 otherwise

Supposing that some components offer procedures to set and get their internal attributes,
the collection of components could be:

C = {({1UId, {set a {V oid, string}, get a {string}, decrement {}}comply, C1), ...
({1337UId, “...author : John Doe...”regexp}, C1337), ...
({nUId, nload, {set a {V oid, string}, get a {string}}}comply, Cn)}

Then a program seeking for components that comply to an interface containingset a
andget a could make the following lookup:

C ↓ {set a {V oid, string}, get a {string}}comply =
{ ({1UId, {set a {V oid, string}, get a {string}, decrement {}}comply, C1),

({nUId, nload, {seta {V oid, string}, geta {string}}}comply, Cn)}
Variants of this example are countless as we could return the number of procedures in
common, or the number of lacking procedures etc. However this is the simplest variant
and it corresponds to the approach of service groups [5].

4.5 Secure Linking

By specifying arequired clause, a componentprovidercan enforce the matching of a
specification as a necessary precondition for handing out any reference to its compo-
nent. Our current example is presenting encrypted matching and can be considered as
a subset of tagged sets [11] or any other matching mechanisms driven or restricted by
encryption [12, 8].

We callE(K, value) the encryption andD(K, value) the decryption, for which we
give the semanticsSJ·K that we detail below.

SKey SymetricKeys
AKey Asymmetric Keys (private)
AKey Asymmetric Keys (public)
value ::= basicvalue | valueAKey | valueSKey

e ::= value | E(SKey, e) | E(AKey, e) | D(SKey, e) | D(AKey, e)

SJ·K : e 7→ value
SJvalueK = value
SJvalueK = value
SJE(SKey, e)K = SJeKSKey

SJE(AKey, e)K = SJeKAKey

SJD(SKey, eSKey)K = SJeK
SJD(AKey, eAKey)K = e

The associated matching module is then:

mmCrypt ::= (Keys, Keys, ?Crypt)
where ?Crypt : Keys×Keys 7→ {0, 1}

?Crypt(K1,K2) = 1 if SJD(K2, E(K1, value))K = value
0 otherwise

A collection containing components being locked by an asymmetric keyAKey could
then be :

C = {({1UId, “...author : John Doe...”regexp, C1), ...
({1337UId, “...author : John Doe...”regexp, requiredAKeyCrypt = 1.0}, C1337), ...
({nUId, nload, AKeyCrypt}, Cn)}

A programmer wishing to know all the components locked withAKey should then
make the following lookup:

C ↓ AKeyCrypt =
{({1337UId, “...author : John Doe...”regexp, requiredAKeyCrypt = 1.0}, C1337)
({nUId, nload, AKeyCrypt}, Cn)}

Implementation-wise, locking a component with a cryptographic key means that the ac-
cess to the component should be made on the platform where the component is located.
Similarly to tagged sets [11], the keys do not need to transit through the network.

5 COLOS Implementation

This section first presents our Eiffel implementation of the model described in Section 3.
Thereafter, we show how to use the implementation ofCOLOS in practice.

5.1 Implementation

The implementation of theCOLOS model consists mainly in the specifications, tem-
plates and the surrounding component infrastructure. Currently the framework consists
of 21 classes with 1700 lines of code altogether. We are extending it to more component
models and plan on making it available as open source.

Specifications.LL SPECIFICATIONis a list ofLL SPECIFICATIONTERMs. The de-
ferred (abstract) classLL SPECIFICATIONTERMshould be subclassed by a program-
mer who wants to define his own matching module. The only mandatory feature to be
implemented returns aSTRINGrepresenting the name of the corresponding matching
module. The infrastructure already implements the features to look through the speci-
fications given that theLL SPECIFICATIONTERMs return the correct matching mod-
ule name. This enables an implementation based on hashtables. Just like for templates,
which are described in following subsection, we use the possibility to define our own
infix operators for setting constraints on the specifications that describe a component.
The Eiffel programming language makes it easy to define these operators and together
with automatic conversion functions they allow writing easily readable code.

Templates.To implement our prototype, we relied on two features of the Eiffel lan-
guage, namely (1) user-defined infix operators and (2) user-defined automatic type con-
version. Infix operators allow us to compose templates using the infix operators as de-
fined by the natural mathematical intuition while automatic conversion lets us have valid
types for general mathematical operations. According to the latest definition of Eiffel
and the priority of the operators, the usual priorities apply. The infix operators are coded
into LL TEMPLATEand are thus inherited by all templates. The automatic conversion
from DOUBLE to LL TEMPLATEensures that we can compose doubles and templates
in a same expression containing infix operators. In short, the Eiffel compiler (ISE Eiffel
5.7) converts mathematical formulae containing templates by transforming the doubles
that they contain intoTEMPLATES. As an example, the formula

template:= 2.0∗ template0−1.0/(template1−template2)

is automatically transformed by the compiler into:

template:=
((create {LL TEMPLATE}.makefrom double(2.0))∗template0) −
((create {LL TEMPLATE}.makefrom double(1.0))/(template1−template2))

The deferred classLL TEMPLATETERM, inherits from the classLL TEMPLATE.
A programmer wishing to implement a matching module should subclass it and imple-
ment the featurematchthat takes anLL SPECIFICATIONTERMas an argument and
he should also provide a feature returning the name of the matching module as men-
tioned previously. Note that in our infrastructure the onlyLL SPECIFICATIONTERMs
that can be passed as parameter to thematchfeature are the ones actually belonging to
the same matching module.

Decentralized lookup.The current matching prototype infrastructure performs central-
ized component lookup. We are currently in the process of augmenting our implemen-
tation for efficient component lookup in peer-to-peer (P2P) settings, which will make
our infrastructure available as a service within a peer group of JXTA networks [15].

In order to complete such a decentralized lookup efficiently, it is very useful to
be able to “decompose” the matching. The idea can be viewed as a generalization of
the problem of content-based event routing in P2P networks, where event contents are
viewed as consisting in several properties which are each matched against values, and
an overlay network can be built which regroups participants with common interests and
whose nodes many perform matching of only subsets of the properties (e.g. [16]).

In order to be able to decompose the matching in the lookup problem, a little help
is however required from the programmer. Both specifications and templates have to
provide access to a tree-based representation of themselves, akin to abstract syntax
trees. The individual tree nodes represent elementary matching operations, and can be
performed in a decentralized, yet minimally redundant, manner.

The logical regrouping of severaltModels to abindingTemplate, severalbindingTem-
plates to abusinessEntity, and several instances of latter kind to abusinessServicein
UDDI (see Section 2.2), is but an illustration of such a decomposition.

5.2 Using the Implementation

In the current state of the implementation ofCOLOS, a programmer wishing to use
the component lookup mechanism can simply instantiate the classLL COMPONENT-
COLLECTION and the components along with their specifications. By subclassing
the two deferred (abstract) classesLL SPECIFICATIONTERMandLL TEMPLATE-
TERM, the programmer can implement a matching module. It implies setting two vari-
ables and redefining the featurematch. Note that keeping a reference to the object en-
capsulating a component with its specification allows revoking parts of the specification
dynamically.

In the following example (see Figures 2 and 3) we show how one describes a com-
ponent and then uses our lookup mechanism to match requirements against the entire
component repository. We see how the specification terms are first declared and en-
riched with the corresponding information. Then they are added to the component’s
specification. Note how thelessoperator is used to impose a constraint on the specifi-
cation about the component’s load. In the second listing (see Figure 3) of the example
it is shown how to prepare a component lookup. Instead of specifications we are now
preparing templates that are put together to match against the component repository.
The ˆ-operator is used to initiate the matching. In the resulting list the components
are ordered according to rating of the matching in respect to the template formula. In
this case we are only interested in the component with the highest rating and we are
therefore only obtaining the first component of the resulting list.

uid specificationterm : LL UID SPECIFICATIONTERM
regexpspecificationterm : LL REGEXPSPECIFICATION
load specificationterm : LL LOAD SPECIFICATION
...
create uid specificationterm .make(”1337”)
create regexpspecificationterm .make(” This component...

author: JohnDoe”)
create load specificationterm .make(Current .component)

Current . add specificationterm to spec (uid specificationterm)
Current . add specificationterm to spec (regexpspecificationterm)
Current . add specificationterm to spec (load specificationterm <10.0)
...

Fig. 2. Specification declaration

uid template: LL UID TEMPLATE
regexptemplate: LL REGEXPTEMPLATE
load template: LL LOAD TEMPLATE
component: LL COMPONENT
components: LL COMPONENTCOLLECTION
...
create uid template.makr (”1337”)
create regexptemplate.make(”∗author: JohnDoe∗”)
create load template.make
component:= (componentŝ((uid template+regexptemplate) /(1.0+ load template))) .

get first component
...

Fig. 3. Using the lookup infrastructure

6 Conclusions

Lookup mechanisms are an essential part of the very foundations of distributed com-
ponent interaction. Various systems and specifications have been proposed in the liter-
ature, each targeting at a specific setting.

We have presentedCOLOS, a generic model of component lookup, which can be
used to express most predating lookup schemes.COLOS matches component specifi-
cations against templates using mathematical formulae. We have described this match-
ing through denotational semantics, illustrated it through various examples, and pre-
sented an implementation ofCOLOS in Eiffel. The implementation reflects exactly
the theory and uses automatic transformations as well as infix operators to obtain ex-
tremely compact and intuitive code. We envision the definition of further “common”
matching modules, and intend to implement our framework on top of a fully decentral-
ized peer-to-peer overlay network. Furthermore, we plan to port it to a wider range of
programming languages and platforms in order to obtain interoperability.

References

1. Group, O.M.: The Common Object Request Broker Architecture: Core Specification, Ver-
sion 3.0.3. OMG (2004)

2. Blair, G., Stefani, J.B.: Open Distributed Processing and Multimedia. Addison-Wesley
(1997)

3. ShaikhAli, A., Rana, O., Al-Ali, R., Walker, D.: Uddie: An extended registry for web ser-
vices. In: SAINT-W ’03: Proceedings of the 2003 Symposium on Applications and the
Internet Workshops (SAINT’03 Workshops). (2003) 85

4. Pauls, K., Bay, T.: Reuse Frequency as Metric for Dependency Resolver Selection. In:
Component Deployment: Third International Working Conference, CD 2005. Volume 3798.
(2005) 164–176

5. Sadou, S., Koscielny, G., Mili, H.: Abstracting Services in a Heterogeneous Environment. In:
IFIP/ACM International Conference on Distributed Systems Platforms (Middleware 2001).
(2001) 141–159

6. Lee, K., LaMarca, A., Chambers, C.: Hydroj: object-oriented pattern matching for evolvable
distributed systems. In: OOPSLA ’03: Proceedings of the 18th annual ACM Conference on
Object-Oriented Programing, Systems, Languages, and Applications. (2003) 205–223

7. Oriol, M., Di Marzo Serugendo, G.: A disconnected service architecture for unanticipated
run-time evolution of code. IEE Proceedings-Software, Special Issue on Unanticipated Soft-
ware Evolution151(2) (2004) 95–107

8. Eugster, P., Baehni, S.: Abstracting Remote Object Interaction in a Peer-to-Peer Environ-
ment. Concurrency & Computation: Practice and Experience17(7-8) (2005)

9. Eugster, P., Guerraoui, R.: Distributed Programming with Typed Events. IEEE Software
2(21) (2004) 56–64

10. Carriero, N., Gelernter, D.: Applications experience with Linda. ACM Sympos. on Parallel
Programming (1985)

11. Oriol, M., Hicks, M.: Tagged Sets: A Secure and Transparent Coordination Medium. In: 7th
Int. Conf. on Coordination Models and Languages. (2005)

12. Bryce, C., Oriol, M., Vitek, J.: A Coordination Model for Agents Based on Secure Spaces.
In: 3rd Int. Conf. on Coordination Models and Languages. (1999) 4–20

13. Gregono, P., Sakkinen, M.: Copying and Comparing: Problems and Solutions. In: 14th
European Conference on Object-Oriented Programming (ECOOP 2000). (2000) 226–250

14. Bay, T., Eugster, P., Oriol, M.: A First Order Model of Component Lookup. Technical report,
Swiss Federal Institute of Technology in Zurich (ETHZ) (2006)

15. Oaks, S., Gong, L.: Jxta in a Nutshell. O’Reilly & Associates, Inc. (2002)
16. Eugster, P., Guerraoui, R.: Probabilistic Multicast. In: 3rd IEEE International Conference on

Dependable Systems and Networks (DSN 2002). (2002) 313–323

