
Objective-C Frameworks to Eiffel Converter

 Master Thesis

 By: Matteo Cortonesi
 Supervised by: Benjamin Morandi
 Prof. Dr. Bertrand Meyer

 Student Number: 05-917-455

1

Abstract

EiffelVision [2] is an object-oriented framework for graphical user interface
development, originally created by Eiffel Software. It is designed to be platform
independent but it is not implemented for Mac OS X (although a GTK+/X11 based
version exists). A necessary step towards this direction is the porting of Cocoa, an
Apple framework used to create Mac OS X native applications, to Eiffel.

This led to the development of an automated tool that converts Objective-C
frameworks to Eiffel.

2

Acknowledgments

I would like to thank my mentor, Prof. Bertrand Meyer, for giving me the
opportunity to work in his company, Eiffel Software, in Santa Barbara (California,
USA) where I spent a very pleasant time.

I would also like to say a special thanks to Emmanuel Stapf who hosted me for
the first week in Santa Barbara. In addition, his support during the design, initial
development and technical issues has been extraordinary. I enjoyed very much
working and discussing with him.

Thanks to my supervisor Benjamin Morandi too for his continuous support and
valuable feedback.

Many thanks also to Raphael Meyer, Annie Meyer, Isabelle Meyer for the
support and Ian King for technical help.

Last but not least, thanks to my family and friends who supported me during
my whole time at ETH.

3

Contents
1 Introduction! 6

...1.1 Goal! 6
...1.2 Related Work! 6

..1.3 Outline! 7
2 Objective-C Overview! 7

..2.1 Instance Methods! 7
...2.2 Class Methods! 8

..2.3 Declaring A Class Interface! 8
..2.4 Creating Objects! 9

...2.5 Memory Management! 9
..2.6 Class Clusters! 10

3 Tool Architecture! 10
4 Parser! 11
5 Semantic Analyzer! 11
6 Code Generation! 13

..6.1 Objective-C Identifiers! 13
...6.2 C Structs! 14

...6.2.1 Basic Type Fields! 14
..6.2.2 Struct Fields! 15

...6.2.3 Structs Comparison! 17
...6.3 Objective-C Classes! 17

.......................................6.3.1 Mapping Of Objective-C Method Names! 17
..6.3.2 Introducing The Top Level Classes! 18

...6.3.3 Mapping Inheritance! 18
..6.3.4 Wrapping Objective-C Objects! 19

...6.3.5 Memory Management Invariant! 19
..6.3.6 Mapping Procedures! 19

.............................6.3.7 Mapping Queries With Expanded Return Type! 20
............................6.3.8 Mapping Queries With Structs As Return Type! 21
............................6.3.9 Mapping Queries With Objects As Return Type! 22

...6.3.10 Mapping The Objective-C Class Type! 33
................6.3.11 Mapping Objective-C Categories (Methods Grouping)! 36

..6.3.12 Mapping Class Methods! 36
..6.3.13 Object Creation! 36

..6.3.14 Subclassing! 40
..6.3.15 Callbacks! 44

..6.4 Objective-C Categories! 54
..6.5 Objective-C Protocols! 55

...6.5.1 Introduction! 55
..6.5.2 Mapping Objective-C Protocols! 56

..6.5.3 Name Clashes! 57
7 Developers Guide! 57
8 Users Guide! 57

..8.1 Wrapper Generator! 58
...8.2 Generating A Cocoa Wrapper! 58
4

..8.3 Using The Generated Cocoa Framework! 58
9 Conclusion! 59
10 Future Work! 60
11 References! 60

5

1 Introduction
EiffelVision is an objective-oriented framework for graphical user interface

development, originally created by Eiffel Software.

The EiffelVision library offers an object-oriented framework for
graphical user interface (GUI) development. Using EiffelVision,
developers can access all necessary GUI components, called widgets
(buttons, windows, list views) as well as truly graphical elements such
as points, lines, arcs, polygons and the like – to develop a modern,
functional and good-looking graphical interactive application.

EiffelVision has played a major role at Eiffel Software and provided
numerous Eiffel projects with a powerful, portable graphics
development platform. EiffelStudio is totally reliant on EiffelVision for
its graphical elements and overall interaction with the user.

Eiffel Software

The existing implementation of EiffelVision for Mac OS X is based on GTK+ and
runs under the X11 application. Therefore, it does not integrate well with the Mac
OS X platform. The interface does not use the look and feel of Mac OS X, aqua, and
many of the Mac OS X services are not available (standard keyboard shortcuts, file
associations, icon in the dock, standard dialogs to open/save files, etc.). In
addition, because GTK+ depends on a lot of other packages, we are not able to
provide a simple binary installation package for EiffelStudio on Mac OS X.

1.1 Goal

Initially, the goal was to start from the existing work done by Daniel Furrer [6],
to produce a final and solid Cocoa framework for Eiffel and, if time allowed it,
completing the Eiffel Vision implementation.

Yet we quickly realized this was not an optimal choice. Not only we want to
provide a solid Cocoa framework, we also want it to be maintainable and
extensible such that it will not fall into disuse (just like what happened with other
projects, see chapter 1.2 Related Work). This is especially true because Apple
updates the frameworks every once in 1 or 2 years.

Hence, we decided to take a step back and aim at a higher goal: engineering a
tool that automatically converts full Objective-C frameworks to Eiffel. This will
allow an automated update of the Eiffel Cocoa wrapper with little to no user
intervention. Likewise, it will allow the conversion of other Mac OS X or iOS (the
OS used by iPhones, iPod Touches and iPads) frameworks.

Coming up with an Eiffel version of the Cocoa framework is probably the
hardest step. EiffelVision can be implemented on top of it more easily.

1.2 Related Work

In the past, there have been a few attempts to make EiffelVision run on the Mac
(see Vision4Mac [4], EiffelCocoa [5]). However, none of these projects has been
completed and they have not been updated since long time.

6

A more recent attempt [6] has been made by Daniel Furrer. This, however, was
not completely finished and further work remains to be done. For example, only
about 20% of the 800 Cocoa classes are (partially) implemented. What is more, it
has huge memory leaks because of no working memory management for the
Objective-C objects, it is arduous to use and it does not provide a seamless
developing experience.

1.3 Outline

In chapter 2 we give a brief description of the Objective-C programming
language. This is only an informal, minimal overview of the language. It is not
meant to be a full introduction to Objective-C. We recommend the reader
unfamiliar with it to read Apple documentation [7] and [8].

 In chapter 3 we present an overview of the architecture of the tool.
Chapters 4 and 5 discuss the parsing and semantic analyzation done by the tool.
In chapter 6 about code generation we describe in detail how we generate Eiffel

classes to wrap Objective-C frameworks. This is the central chapter of this
document.

Chapters 7 and 8 are guides for developers and users, respectively.
We conclude in chapter 9 and give an idea for future work in chapter 10.
Chapter 11 is a list of references.

2 Objective-C Overview
Before describing the phases of the wrapper generator in detail, we will give a

brief overview of the Objective-C programming language used in Mac OS X and
iOS. For a better and detailed description read [7].

2.1 Instance Methods

Instance methods are methods that can be called on instances of a class.
The basic syntax for calling a method on an object is this:

[anObject method];
[anObject methodWithArgument:anArgument];

Listing 1: calling an instance a method on an object.

Methods can return a value.

result = [anObject method];
result = [anObject methodWithArgument:anArgument];

Listing 2: instance methods returning a value.

Methods can take multiple arguments. In Objective-C, a method name can be
split up into several segments. In the header, a multi-argument method looks like
this:

7

- (NSString *)stringByReplacingOccurrencesOfString:(NSString *)target withString:
(NSString *)replacement;

Listing 3: declaration of a multi-argument instance method.

To call the method we write:

newString = [aString stringByReplacingOccurrencesOfString:@”PC” withString:@”Mac”];

Listing 4: calling a multi-argument instance method.

Note that these are not just named arguments. The method name is actually
stringByReplacingOccurrencesOfString:withString: in the runtime system.

2.2 Class Methods

Methods can be called on classes too. These are called class methods.

NSArray *array = [NSArray arrayWithObject:anObject];

Listing 5: calling a method on a class object.

Class methods are sometimes used to create objects. In the header, their
declaration starts with a plus before their name (compare with instance method in
listing 3).

+ (NSArray *)arrayWithObject:(id)anObject;

Listing 6: declaration of a class method.

2.3 Declaring A Class Interface

The syntax for declaring a class is the following.

#import <Cocoa/Cocoa.h>

@interface Person : NSObject {
 NSString *firstName;
 NSString *lastName;
 NSInteger age;
}

@end

Listing 7: declaration of a class with some instance variables.

First, we import Cocoa.h which declares all the (public) classes for a Cocoa
application (e.g. NSObject, the Cocoa root object).

8

Next, we declare a class named Person inheriting from NSObject with 3 fields:
firstName, lastName and age.

Listing 8 shows how to add instance methods (firstName, lastName, isAdult
and setAge).

#import <Cocoa/Cocoa.h>

@interface Person : NSObject {
 NSString *firstName;
 NSString *lastName;
 NSInteger age;
}

- (NSString *)firstName;
- (NSString *)lastName;
- (BOOL)isAdult;
- (void)setAge:(NSInteger)anAge;

@end

Listing 8: declaration of a class with instance variables and instance methods.

2.4 Creating Objects

There are two main ways to create an object. The first one is using class
methods as we saw before in listing 5. The second one consists in two method
invocations, alloc and an initializer (usually init) as shown in listing 9.

NSString *string = [[NSString alloc] init];

Listing 9: creating a NSString object.

The code in listing 9 shows a nested method call. alloc is a low-level method
that allocates memory for the object and sets up its structure such that it can be
used in the Objective-C runtime, while init performs some basic initialization. An
initializer can also take several arguments.

2.5 Memory Management

In Objective-C you can either choose between programming with or without
garbage collection. In some operating systems, e.g. iOS, garbage collection is not
supported. Therefore we have chosen not to use it. The other option is reference
counting. Cocoa provides facilities to abstract this task, namely the methods
retain and release. retain increases the retain count by 1, while release
decreases it by 1; if the retain count reaches 0 the dealloc method of the object will
get called and the object will get deallocated.

Memory management in Objective-C is based on a single simple rule, i.e. if you
own an object, you must release it when you’re done with it.

You own an object whenever:
1) you retain the object,

9

2) you receive a reference to it by a function whose name
• starts with the keywords alloc or new,
• contains the keyword copy.

This definition does not exclude multiple ownership, i.e. an object can be
owned by multiple clients.

2.6 Class Clusters

It is worth mentioning a design pattern used extensively in the Mac OS X
Foundation framework because it will be relevant for later. The Apple
documentation states the following.

Class clusters group a number of private, concrete subclasses
under a public, abstract superclass. The grouping of classes in this
way simplifies the publicly visible architecture of an object-oriented
framework without reducing its functional richness.

[...]
The abstract superclass in a class cluster must declare methods for

creating instances of its private subclasses. It’s the superclass’s
responsibility to dispense an object of the proper subclass based on
the creation method that you invoke—you don’t, and can’t, choose the
class of the instance.

Let’s consider the NSNumber class cluster as an example.

NSNumber *aChar = [NSNumber numberWithChar:’a’];
NSNumber *anInt = [NSNumber numberWithInt:1];
NSNumber *aFloat = [NSNumber numberWithFloat:1.0];
NSNumber *aDouble = [NSNumber numberWithDouble:1.0];

Listing 10: instantiating objects of a class cluster.

Each returned object – aChar, aInt, aFloat and aDouble – may belong to a
different private subclass (and in fact it does). The header files of the private
subclasses are not available.

3 Tool Architecture
As stated in chapter 1.1, goal of the tool is to convert Objective-C frameworks to

Eiffel.
Objective-C frameworks are stored in /System/Library/Frameworks and they

consist of a folder containing several header files that define symbols, declare
classes and other Objective-C entities.

10

Figure 1: Conversion workflow.

As shown in Figure 1, the tool takes a set of framework files contained in a
framework folder (not necessarily Cocoa) as an input and starts parsing the
Objective-C code with a custom parser we built. The parser outputs a forest of
Objective-C trees. These are then fed into a semantic analyzer that will add
information to the trees. Finally, the Objective-C to Eiffel compiler will generate the
Eiffel classes representing the Objective-C entities. This is the most crucial and
complicated step.

4 Parser
We did not opt for a full-fledged parser that requires a grammar for Objective-C

because it was too complex and time-consuming for the available time.
In particular, we didn’t use Gobo because a ready to use Objective-C grammar

for Geyacc was missing. Moreover, the part we were interested in was just a small
percentage of the full grammar. This would have caused an overhead for the
understanding of the tools and issues for the tweaking of the grammar.

For this reason, we decided to build a custom parser from scratch.
The parser is able to parse class interfaces, categories, protocols, instance- and

class methods declarations and properties – all the typical Objective-C entities.
It is also able to correctly parse header files that contain preprocessor statements

(such as #if, #define, etc.), structs, typedefs and enums.

5 Semantic Analyzer
The code generator needs to be able to distinguish between several types. E.g.
• Pointers to instance objects,
• pointers to structs,
• structs,
• basic types (enums included),
• pointers to Objective-C selectors,
• pointers to Objective-C class objects,
• function pointers,

11

• Objective-C blocks.
These types will be treated differently when they are returned or passed to a

function. E.g. an integer is passed by value, whereas an object is passed by
reference.

This is extremely complicated to achieve by simply parsing. Therefore, we
implemented a semantic analyzer too.

In order to find out about the semantic value of a type we use Objective-C type
encodings, a character string identifying types such as basic types (ints, etc.),
pointers, tagged structures, unions or class names – any type, in fact, that can be
used as an argument to the C sizeof() operator. To get the type encoding of a
specific type we use the @encode(type) compiler directive (see [8] for more
information). The type encodings are summarized in Table 1.

Code Meaning

c A char

i An int

s A short

l A long, l is treated as a 32-bit quantity on 64-bit programs.

q A long long

C An unsigned char

I An unsigned int

S An unsigned short

L An unsigned long

Q An unsigned long long

f A float

d A double

B A C++ bool or a C99 _Bool

v A void

* A character string (char *)

@ An object (whether statically typed or typed id)

A class object (Class)

: A method selector (SEL)

[array type] An array

{name=type...} A structure

12

Code Meaning

(name=type...) A union

bnum A bit field of num bits

^type A pointer to type

? An unknown type (among other things, this code is used for
function pointers)

Table 1: Objective-C Type Encodings.

In order to resolve the type encodings, we first parse the entire system of header
files collecting all the types we need to encode. Next, we generate and compile an
Objective-C file with all the encode statements with the types we parsed as
argument and we load the executable as a dynamic library in the tool to read the
type encodings. After this step, we know the type encoding of each type name.
This is particular useful with structs, because the type encoding gives information
about the struct fields too. For instance, @encode(CGRect) would return the string
“{CGRect={CGPoint=dd}{CGSize=dd}}”, i.e. a struct named CGRect with two
fields of type CGPoint and CGSize respectively, both of which have two fields of
type double (type encoding d). CGRect is in fact declared as follows:

typdef struct CGRect {
 CGPoint origin;
 CGSize size;
} CGRect;

Listing 11: declaration of type definition for CGRect.

6 Code Generation
As explained in chapter 3, the responsibility of the code generator is to convert

the parsed Objective-C framework into Eiffel classes. The main goal here is to end
up with a generated Eiffel code that provides a seamless user experience to the
developer that will be using it. In particular, we don’t want the user to worry about
the Objective-C memory management.

A fundamental problem is the mapping of Objective-C entities to Eiffel. In the
following chapters we will introduce all the Objective-C entities and present their
mapping to Eiffel.

6.1 Objective-C Identifiers

Class/struct names and identifiers in Objective-C use the camel case naming
convention. Identifiers are mapped to names following the underscore convention.
Class/struct names, in addition, are capitalized. Table 2 shows examples.

13

Objective-C Example Eiffel Example

Class name MyClass MY_CLASS

Struct MyStruct MY_STRUCT

Identifier anArgument an_argument

Table 2: Class/struct names and identifiers mapping examples.

6.2 C Structs

C structs are not classes in Objective-C. In Eiffel, however, they are mapped to
classes. Every mapped struct inherits from MEMORY_STRUCTURE. This class defines
several facility features that we use to wrap the C struct. In particular:

• an attribute item of type POINTER that points to the C struct,
• a structure_size feature returning an INTEGER that specifies the size of the

memory allocated pointed by item in bytes. This feature is redefined in our
wrapper class. We can find out about the size of a C struct with the sizeof()
operator,
• a creation procedure make that automatically allocates structure_size bytes

and sets item to point to that allocated memory. When the Eiffel object is
disposed the memory pointed by item is freed automatically.
• a creation procedure make_by_pointer that simply initializes item with the

passed argument. The memory pointed by item is shared and it is not freed
when the Eiffel object is disposed.
For each C struct field we generate an Eiffel getter and setter (exported to every

client) and private externals to get and set the values of the C struct. We consider,
for example, a struct field named field.

We support two kinds of field types:
1) Basic types (ints, floats, etc.)
2) C structs.

6.2.1 Basic Type Fields
We consider a struct tagged as MyStruct. Let field be a MyStruct field and let

its type be BASIC_TYPE (e.g. an int, float, etc.). We generate a private getter and
setter (we use the c_ prefix to denote these are C externals and to distinguish them
from the actual getter and setter) as shown in Listing 12.

14

feature {NONE} -- Implementation

c_field (a_struct_pointer: POINTER): BASIC_TYPE

 -- Return the field value.
 external
 "C inline use <Cocoa/Cocoa.h>"
 alias
 "return (((MyStruct *) $a_struct_pointer)->field);"
 end

c_set_field (a_struct_pointer: POINTER; a_c_field: BASIC_TYPE)

 -- Set the corresponding C struct field with `a_c_field'.
 external
 "C inline use <Cocoa/Cocoa.h>"
 alias
 "((MyStruct *) $a_struct_pointer)->field = $a_c_field;"
 end

Listing 12: private getter and setter for field.

In the getter we use the passed pointer to a MyStruct struct to access the field
and return it with the usual C syntax. In the setter we do pretty much the same
thing except that we set the field with the passed argument.

Next, we generate the actual getter and setter exported to every client. This
features simply call the externals we described earlier in Listing 11 passing item as
an argument (see listing 13).

field: BASIC_TYPE assign set_field

 -- Return the struct field.
 do
 Result := c_field (item)
 end

set_field (a_field: BASIC_TYPE)

 -- Set `field' with 'a_field'.
 do
 c_set_field (item, a_field)
 ensure
 field_set: field ~ a_field
 end

Listing 13: exported getter and setter for field.

6.2.2 Struct Fields
We now consider fields that are structs themselves. Let MyStruct be a struct

with a field named field. Furthermore, let field be of type MyStruct2, an other
struct. We first consider the case of setting the field. Listing 14 shows the private
external and the exported setter.

15

feature -- Setters

set_field (a_origin: MY_STRUCT_2)

 -- Set `field' with 'a_field'.
 do
 c_set_field (item, a_field.item)
 ensure
 field_set: field ~ a_field
 end

feature {NONE} -- Implementation

c_set_field (a_struct_pointer: POINTER; a_c_field: POINTER)
 -- Set the corresponding C struct field with `a_c_field'.
 external
 "C inline use <Cocoa/Cocoa.h>"
 alias
 "((MyStruct *) $a_struct_pointer)->field = *((MyStruct2 *) $a_c_field);"
 end

Listing 14: private and public setters for field.

The external simply takes the struct pointed by the passed argument
(a_c_field) and copies it to the corresponding field.

The getter is implemented using the same copy behavior – the returned struct is
an object backed by a copy of the actual struct. This is needed because we do not
want 2 Eiffel object to point in the same memory area: it would be trickier to free
the memory occupied by the struct when multiple objects are pointing to it. Listing
15 shows the getter implementation.

feature -- Getters

field: MY_STRUCT_2 assign set_field
 -- Return the struct field.
 do
 create Result.make
 c_copy_field (item, Result.item)
 end

feature {NONE} -- Implementation

c_field_copy_address (a_struct_pointer: POINTER; result_pointer: POINTER)
 -- Set `result_pointer’ with the address of a copy of the field.
 external
 "C inline use <Cocoa/Cocoa.h>"
 alias
 "[
 size_t size = sizeof(((MyStruct *) $a_struct_pointer)->field);
 memcpy($result_pointer, &(((MyStruct *) $a_struct_pointer)->field),
size);
]"
 end

Listing 15: private and public getters for field.

16

6.2.3 Structs Comparison
In order to retain the same behavior as in C, we redefine is_equal to compare

the memory pointed by the item attributes of the 2 structs (see listing 16).

is_equal (other: like Current): BOOLEAN
 -- Is `other' attached to an object considered
 -- equal to current object?
 do
 Result := item.memory_compare (other.item, structure_size)
 end

Listing 16: is_equal function to compare 2 structs.

6.3 Objective-C Classes

Objective-C classes are mapped to Eiffel classes. However, some of their
functionalities such as class methods and categories, cannot be directly mapped to
an Eiffel class. In the following chapters we describe the mapping for each
Objective-C entity.

6.3.1 Mapping Of Objective-C Method Names
Method names in Objective-C have the following form.

 setFirstName:lastName:age:

Listing 17: an Objective-C method name.

We convert the words to underscore syntax and we replace the colons with 2
underscores if the colon is not the last character in the name or with 1 underscore if
the colon is the last character. This ensures the mapping function is injective.
Listing 18 shows the method name in listing 17 after its conversion.

set_first_name__last_name__age_

Listing 18: method name converted to Eiffel style.

The double underscore is also used to make the labeled arguments more
readable. The trailing underscore is still required to distinguish between method
names that are equal except for a trailing colon. An example is given in listing 19.

setNeedsDisplay:
setNeedsDisplay

Listing 19: 2 similar Objective-C method names.

We also have to make sure method names don’t have conflicts with Eiffel
keywords. Cocoa has, in fact, several method names that generate conflicts, such as
class, prefix, result, attribute, copy and print. To solve this problem we
append the _objc suffix to those method names.

17

6.3.2 Introducing The Top Level Classes
The generated Eiffel classes inherit (directly or indirectly) from a set of auxiliary,

pre-written top level classes. We introduce these classes in Figure 2.

NS_NAMED_CLASS

NS_ANY

NS_COMMON

NS_OBJECTObjC
Protocols

NS_OBJECT_UTILS

ObjC
Utilities

ObjC
Classes

NS_CATEGORY_COMMON

ObjC
Categories

Figure 2: Top level classes. The clouds represent a set of classes. Arrows denote
the inheritance relationship.

We give a brief description of these classes. We will describe them in more
depth as needed in the following chapters.

NS_ANY is the top most class of the generated framework, it inherits from ANY.
The NS prefix comes from the naming convention [7] used in the Cocoa framework.

NS_NAMED_CLASS is an auxiliary class that declares features useful when
descending classes need to know their original Objective-C name.

NS_CATEGORY_COMMON is a common ancestor for all eiffel classes representing
Objective-C categories.

NS_OBJECT_UTILS is a common ancestor for all eiffel classes containing
Objective-C class methods. Note that NS_OBJECT_UTILS is not a pre-written class, it
is generated by the tool.

Finally, NS_COMMON contains mechanisms inherited by NS_OBJECT – the main
Cocoa root class – and every eiffel class representing Objective-C protocols. Note
that NS_OBJECT is not a pre-written class, it is generated by the tool.

6.3.3 Mapping Inheritance
The inheritance chain of Objective-C classes is retained in the generated

wrapper. That is to say if Objective-C class ClassA inherits from ClassB, the
corresponding Eiffel class CLASS_A will inherit from CLASS_B too.

18

6.3.4 Wrapping Objective-C Objects
NS_COMMON declares an attribute item of type POINTER. This attribute points to

the wrapped Objective-C object. For example, the attribute item of an instance of
NS_STRING will point to the corresponding NSString Objective-C object.

6.3.5 Memory Management Invariant
In order to satisfy the memory management rule (see chapter 2.5) we define the

following invariants:

Invariant 1: An Eiffel wrapper object owns the Objective-C object pointed by item.
Invariant 2: An Eiffel wrapper object releases the Objective-C object pointed by item

when it is disposed.

With the term Eiffel wrapper object we mean an instance of an Eiffel class that
inherits from NS_OBJECT.

If invariant 1 and 2 hold, we will not have memory leaks according to the
memory management rule described in chapter 2.5.

There is a special class that does not need to satisfy the invariants: OBJC_CLASS.
We present this class in chapter 6.3.10.

6.3.6 Mapping Procedures
For each Objective-C procedure we generate 2 features. The first one consists in

an external feature exported to NONE whose name is prefixed with objc_. It has the
arguments of the original Objective-C procedure along with a pointer pointing to
the Objective-C object the method has to be invoked on. Let’s consider the method
of class NSText in listing 20.

- (void)setTextColor:(NSColor *)aColor

Listing 20: an Objective-C procedure.

 Listing 21 shows the generated external for it.

objc_set_text_color_ (an_item: POINTER; a_color: POINTER)
 -- Auto generated Objective-C wrapper.
 external
 "C inline use <AppKit/AppKit.h>"
 alias
 "[
 [(NSText *)$an_item setTextColor:$a_color];
]"
 end

Listing 21: external procedure generated for the setTextColor: Objective-C
procedure.

The wrapper generator converts the name of the Objective-C method (see
chapter 6.3.1) and completes the header of the external with the name of the
framework that declares the method (in this case AppKit/AppKit.h). Finally it

19

generates the Objective-C code that calls the method on the passed argument
(an_item).

This feature is exported to NONE because it is part of the implementation and
thus not part of the interface. The second generated feature is shown in listing 22
and it is exported to ANY.

set_text_color_ (a_color: detachable NS_COLOR)
 -- Auto generated Objective-C wrapper.
 local
 a_color__item: POINTER
 do
 if attached a_color as a_color_attached then
 a_color__item := a_color_attached.item
 end
 objc_set_text_color_ (item, a_color__item)
 end

Listing 22: set_text_color_ procedure.

As we can see from the code, the argument is declared as detachable, this is in
fact always the case (except for basic types or structs). This is because Cocoa
always accepts Void pointers as arguments. The routine first checks whether the
argument is attached. If it is it sets a local variable (a_color__item) to the
Objective-C object wrapped by a_color. Then it simply calls the external feature
with item (the attribute pointing to the wrapped Objective-C object) as first
argument and a_color__item as second argument. If a_color was Void
a_color__item would have been equal to the default_pointer (i.e. NULL).

The argument considered in this example (a_color) was of pointer type
(NSColor *), therefore the external in listing 17 declared the argument as POINTER.
If the argument was a basic type (e.g. int, float, double, etc.) the type would
have been an Eiffel basic type too (e.g. INTEGER_32, REAL_32, REAL_64) and the
second argument of the external call in listing 22 could have been passed as is
without invoking item on it (this is because basic types in Eiffel are expanded: they
are passed by value, not by reference). Note that even if the type is not explicitly a
basic type, but rather an enum or typedef, the wrapper generator is smart enough
to figure that out and to use the correct Eiffel basic type for it. Lastly, structs are
handled as pointer types.

The code shown above does not break invariant 1 nor 2.

6.3.7 Mapping Queries With Expanded Return Type
Queries that return basic types such as int, float, double, etc. are mapped

similarly to chapter 6.3.6. Let’s consider the method of class NSView in listing 23.

- (BOOL)isHidden;

Listing 23: an Objective-C function returning a basic type.

Listing 24 shows the generated external and wrapping function for it.

20

feature {NONE} -- Implementation

objc_is_hidden (an_item: POINTER): BOOLEAN
 -- Auto generated Objective-C wrapper.
 external
 "C inline use <AppKit/AppKit.h>"
 alias
 "[
 return [(NSView *)$an_item isHidden];
]"
 end

feature

is_hidden: BOOLEAN
 -- Auto generated Objective-C wrapper.
 do
 Result := objc_is_hidden (item)
 end

Listing 24: generated external and wrapping function for the isHidden
Objective-C function.

The wrapping function is_hidden simply returns the value returned by the
external. The external returns the result of the Objective-C function. Because the
return type is a basic C type, we don’t need to wrap it: we can just pass it to Eiffel.

The code shown above does not break invariant 1 nor 2 because the returned
data is an object.

6.3.8 Mapping Queries With Structs As Return Type
Let’s consider the method of class NSView in listing 25.

- (NSRect)frame;

Listing 25: an Objective-C function returning a struct.

Listing 26 shows the generated code for it.

21

feature {NONE} -- Implementation

objc_frame (an_item: POINTER; result_pointer: POINTER)
 -- Auto generated Objective-C wrapper.
 external
 "C inline use <AppKit/AppKit.h>"
 alias
 "[
 *(NSRect *)$result_pointer = [(NSView *)$an_item frame];
]"
 end

feature

frame: NS_RECT
 -- Auto generated Objective-C wrapper.
 do
 create Result.make
 objc_frame (item, Result.item)
 end

Listing 26: generated code for the Objective-C function frame.

The wrapping function creates a new instance of the wrapped struct (create
Result.make). Then it calls the external passing item and the pointer of the newly
created struct wrapper (Result.item). The external copies the struct returned by
the Objective-C function to the memory pointed by Result.item.

Invariant 1 and 2 only apply to Eiffel objects wrapping Objective-C objects.
Structs are not Objective-C objects. The code is, however, memory leaks free
because the memory allocated for the returned struct-wrapping Eiffel object will be
freed when the Eiffel object is disposed.

6.3.9 Mapping Queries With Objects As Return Type
Let’s consider the method of class NSArray in listing 27.

- (id)objectAtIndex:(NSUInteger)index;

Listing 27: an Objective-C function returning an object.

This method takes a NSUInteger (i.e. an unsigned long on 64 bit machines) as
argument and returns an identifier (id), that is to say an object of type NSObject.
The generation of the external is similar to the previous cases. Listing 24 shows the
generated external for that method.

22

objc_object_at_index_ (an_item: POINTER; a_index: NATURAL_64): POINTER
 -- Auto generated Objective-C wrapper.
 external
 "C inline use <Foundation/Foundation.h>"
 alias
 "[
 return (EIF_POINTER)[(NSArray *)$an_item objectAtIndex:$a_index];
]"
 end

Listing 28: external generated for the objectAtIndex: Objective-C function.

The external simply returns the address of the object returned by the Objective-
C function. What the wrapping function needs to do is to create an Eiffel object to
wrap the returned Objective-C object. This is, however, not always needed because
there might be already an Eiffel object in the runtime wrapping that object. We
want the returned Objective-C object to be wrapped by at most 1 Eiffel object.
When this is satisfied we say the identity property holds. The following example
illustrates the problems that might arise when this property does not hold.

array: NS_MUTABLE_ARRAY

add_object_at_beginning_of_array (an_object: NS_OBJECT)
 do
 array.insert_object__at_index_ (an_object, 0)
 ensure
 object_added: attached array.object_at_index_ (0) as object and then
 object = an_object
 end

Listing 29: example illustrating the identity property problem.

The code inserts a NS_OBJECT object in a NS_MUTABLE_ARRAY array at index 0.
The postcondition checks whether the object has been inserted correctly. Yet if the
code of object_at_index_ creates a new Eiffel object to wrap the returned
NS_OBJECT the postcondition will fail. This might be very surprising for a
developer using the framework.

To solve this problem we need Objective-C objects to keep track of which Eiffel
object is currently wrapping them. We use Objective-C associative references to
achieve this. Associative references simulate the addition of object instance
variables to an existing Objective-C class. (see [7]).

We add two routines that make use of associative references in the NS_ANY class.
The first one (objc_set_eiffel_object) sets the Eiffel object wrapping an
Objective-C object, the second one (objc_get_eiffel_object) gets the Eiffel
object that is wrapping an Objective-C object. We first describe
objc_set_eiffel_object shown in listing 30.

23

objc_set_eiffel_object (a_pointer: POINTER; an_object: POINTER)
 -- [...]
 external
 "C inline use <assert.h>"
 alias
 "[
 EIF_OBJECT object_to_associate = NULL;
 if ($an_object != NULL) {
 assert(!objc_getAssociatedObject($a_pointer, NULL));
 object_to_associate = eif_create_weak_reference($an_object);
 } else {
 EIF_OBJECT associated_object = (EIF_OBJECT)objc_getAssociatedObject
($a_pointer, NULL);
 assert(associated_object);
 eif_free_weak_reference(associated_object);
 }
 objc_setAssociatedObject($a_pointer, NULL, (id)object_to_associate,
OBJC_ASSOCIATION_ASSIGN);
]"
 end

Listing 30: the objc_set_eiffel_object procedure.

The first argument is a pointer to an Objective-C object, the second one is a
POINTER to an Eiffel object. If an_object is not the default_pointer, the routine
associates it with the Objective-C object pointed by a_pointer. It also needs to use
the eif_create_weak_reference function to get a weak reference to the Eiffel
object that stays valid in time because the Eiffel garbage collector may move the
object around. eif_create_weak_reference does not prevent the garbage
collector to collect the Eiffel object if it is not referenced anymore. Otherwise, i.e.
an_object is the default_pointer, the routine deletes the association and uses
eif_free_weak_reference to delete the weak reference for the Eiffel object. In
other words, this routine sets or unsets a reference from an Objective-C object to an
Eiffel object.

The second routine is shown in listing 31.

objc_get_eiffel_object (a_pointer: POINTER): detachable ANY
 -- [...]
 external
 “C inline use <objc/runtime.h>"
 alias
 "[
 EIF_OBJECT associated_object = (EIF_OBJECT)objc_getAssociatedObject
($a_pointer, NULL);
 if (associated_object != NULL) {
 return eif_access(associated_object);
 } else {
 return NULL;
 }
]"
 end

Listing 31: the objc_get_eiffel_object function.

24

This function takes only 1 argument, i.e. a pointer to an Objective-C object. It
returns the Eiffel object associated with the Objective-C object pointed by
a_pointer. If there is no Eiffel object associated it simply returns Void.

Now that we have a way to set, unset and get references from Objective-C
objects to Eiffel objects we can generate a wrapping function for methods that
return objects just like the one shown in listing 27. Listing 32 shows the code.

object_at_index_ (a_index: NATURAL_64): detachable NS_OBJECT
 -- Auto generated Objective-C wrapper.
 local
 result_pointer: POINTER
 do
 result_pointer := objc_object_at_index_ (item, a_index)
 if result_pointer /= default_pointer then
 if attached objc_get_eiffel_object (result_pointer) as
existing_eiffel_object then
 check attached {like object_at_index_} existing_eiffel_object as
valid_result then
 Result := valid_result
 end
 else
 check attached {like object_at_index_} new_eiffel_object
(result_pointer, True) as valid_result_pointer then
 Result := valid_result_pointer
 end
 end
 end
 end

Listing 32: the wrapping function generated for objectAtIndex:.

First, the external feature is called and the returned object is assigned to
result_pointer. If it is the default_pointer the function will return Void.
Otherwise we check whether the object pointed by result_pointer already has an
Eiffel object associated with it using the objc_get_eiffel_object function. If that
is the case we simply return the associated Eiffel object. If not, we create a new
Eiffel wrapper object with the new_eiffel_object function and return it.

The new_eiffel_object function is declared in NS_ANY and it takes 2
arguments. The first one is the Objective-C object that needs to be wrapped, the
second one is a boolean that indicates whether the Objective-C object needs to be
sent a retain message or not. This is needed because of invariant 1 (see chapter
6.3.5) which states the following.

 Invariant 1: An Eiffel wrapper object owns the Objective-C object pointed by item.

We recall the memory management definition of ownership for convenience of
the reader.

You own an object whenever:
1) you retain the object,
2) you receive a reference to it by a function whose name

• starts with the keywords alloc or new,
• contains the keyword copy.

25

If the object assigned to result_pointer was returned by an Objective-C
function whose name starts with alloc, new or contains the keyword copy we do
not need to retain the object pointed by it, otherwise yes. This ensures invariant 1 is
satisfied. In the example above (listing 32) the function name is objectAtIndex:,
we therefore need to retain the object pointed by result_pointer. This is why the
second argument of new_eiffel_object is True. The wrapper generator is able to
determine whether to retain an object or not just by looking at the function name.

We will now describe the new_eiffel_object function. We will start with a
simplified version and give the full version in the next chapters.

new_eiffel_object (a_pointer: POINTER; retain: BOOLEAN): detachable NS_OBJECT
 -- [...]
 do
 check attached {like new_eiffel_object} internal.new_instance_of
(get_eiffel_type (a_pointer)) as eiffel_object then
 if retain then
 eiffel_object.make_with_pointer_and_retain (a_pointer)
 else
 eiffel_object.make_with_pointer (a_pointer)
 end
 end
 end

Listing 33: the new_eiffel_object function.

As we explained in the paragraph above, the first argument of
new_eiffel_object is a pointer to an Objective-C object that needs to be wrapped,
the second one specifies whether that object needs to be retained or not. First, the
function creates a new Eiffel object of the right type using the
{INTERNAL}.new_instance_of function. The get_eiffel_type is a function that
returns the Eiffel type corresponding to the Objective-C type (we will describe it
later in this chapter). After the Eiffel object of the right kind has been created, we
still need to associate it with the corresponding Objective-C object and vice-versa
and – if that is the case – retain the Objective-C object. To do this we make use of
the make_with_pointer and make_with_pointer_and_retain procedures
defined in NS_COMMON. Listing 34 shows a preliminary version of
make_with_pointer (we will present the full code in following chapters).

make_with_pointer (a_pointer: POINTER)
 -- Initialize `Current' with `a_pointer'.
 require
 a_valid_pointer: a_pointer /= default_pointer
 do
 item := a_pointer
 objc_set_eiffel_object (item, $Current)
 ensure
 item_set: item = a_pointer
 end

Listing 34: the make_with_pointer creation procedure.

The function sets item to the passed Objective-C pointer and then associates the
Eiffel object ($Current) with the Objective-C object.

26

make_with_pointer_and_retain simply retains the Objective-C object before
passing it to the make_with_pointer procedure (see listing 31).

make_with_pointer_and_retain (a_pointer: POINTER)
 -- Initialize `Current' with `a_pointer' and send
 -- it an Objective-C retain message.
 require
 a_valid_pointer: a_pointer /= default_pointer
 do
 make_with_pointer (objc_retain (a_pointer))
 ensure
 item_set: item = a_pointer
 end

Listing 35: the make_with_pointer_and_retain creation procedure.

In order to satisfy the memory management invariant 2 (i.e. an Eiffel wrapper
object releases the Objective-C object pointed by item when it is disposed) we need to
implement the dispose feature called by the garbage collector just before the object
is collected. Listing 36 shows a preliminary version of the function defined in
NS_COMMON (the full function code will be presented in the following chapters).

dispose
 -- <Precursor>
 do
 objc_set_eiffel_object (item, default_pointer)
 objc_release (item)
 end

Listing 36: the dispose procedure.

The dispose procedure first invokes the objc_set_eiffel_object in order to
dissociate the Eiffel object from the Objective-C object. objc_set_eiffel_object
will also invoke eif_free_weak_reference() to invalidate the weak reference we
previously created when we created the object. Next, it simply releases the
Objective-C object pointed by item. This ensures invariant 2 holds.

Let us now go back to the get_eiffel_type function (listing 37).

get_eiffel_type (a_pointer: POINTER): INTEGER
 -- [...]
 require
 a_valid_pointer: a_pointer /= default_pointer
 do
 Result := mapping.item (objc_class_objc (a_pointer))
 end

Listing 37: the get_eiffel_type function.

get_eiffel_type first finds out the Objective-C class of the object pointed by
a_pointer using the objc_class_objc function. Then it retrieves and returns the
Eiffel type associated with that Objective-C class using a mapping from Objective-
C classes to Eiffel types (mapping). Listing 38 shows the mapping function.

27

mapping: HASH_TABLE [INTEGER, POINTER]
 -- [...]
 local
 classes_mapper: CLASSES_MAPPER
 computed_mapping: HASH_TABLE [STRING, POINTER]
 dynamic_type: INTEGER
 once
 create classes_mapper.make
 classes_mapper.compute_mapping
 computed_mapping := classes_mapper.mapping
 create Result.make (4096)
 from
 computed_mapping.start
 until
 computed_mapping.after
 loop
 dynamic_type := internal.dynamic_type_from_string
(objc_class_name_to_eiffel_style (computed_mapping.item_for_iteration))
 check valid_dynamic_type: dynamic_type /= -1 end
 Result.put (dynamic_type, computed_mapping.key_for_iteration)
 computed_mapping.forth
 end
 end

Listing 38: the mapping function.

mapping is a hash table mapping Objective-C Class objects (the type of objects
returned by the objc_class_objc function shown in listing 37) to integers
representing Eiffel types that can be used to instantiate new Eiffel objects with the
{INTERNAL}.new_instance_of function. The function utilizes classes_mapper,
an instance of CLASSES_MAPPER, to get a mapping from Objective-C Class objects
to strings representing Objective-C class names. It then converts those strings with
the {INTERNAL}.dynamic_type_from_string function to an integer that can be
later be used with the {INTERNAL}.new_instance_of function.

We will now describe how CLASSES_MAPPER computes the mapping. The
compute_mapping function is shown in Listing 39.

28

compute_mapping
 -- Compute `mapping'.
 local
 managed_pointer: MANAGED_POINTER
 c_mapping: POINTER
 count: INTEGER
 i: INTEGER
 class_object: POINTER
 string_pointer: POINTER
 c_string: C_STRING
 pointer_bytes: INTEGER
 do
 pointer_bytes := {PLATFORM}.pointer_bytes
 c_mapping := objc_get_mapping ($count)
 create managed_pointer.own_from_pointer (c_mapping, count * pointer_bytes)
 from
 i := 0
 until
 i >= count
 loop
 class_object := managed_pointer.read_pointer (i * pointer_bytes)
 string_pointer := managed_pointer.read_pointer ((i + 1) * pointer_bytes)
 if string_pointer /= default_pointer then
 create c_string.make_shared_from_pointer (string_pointer)
 mapping.put (c_string.string, class_object)
 end
 i := i + 2
 end
 end

Listing 39: the compute_mapping procedure.

compute_mapping simply invokes objc_get_mapping to get a C array of
elements following the format [a_objc_class_object, a_objc_class_name,
a_objc_class_object2, a_objc_class_name2, ...], i.e. the i-th and i-th plus 1
elements of the array are the pointers to the Objective-C Class object and Objective-
C class name, respectively (for i an even number). The details of the code are left to
the reader.

Before we explain how objc_get_mapping computes the mapping we recall the
concept of class clusters (chapter 2.6).

Class clusters group a number of private, concrete subclasses
under a public, abstract superclass. The grouping of classes in this
way simplifies the publicly visible architecture of an object-oriented
framework without reducing its functional richness.

[...]
The abstract superclass in a class cluster must declare methods for

creating instances of its private subclasses. It’s the superclass’s
responsibility to dispense an object of the proper subclass based on
the creation method that you invoke—you don’t, and can’t, choose the
class of the instance.

29

Because of class clusters, not all returned Objective-C objects have a type known
to the wrapper generator. The wrapper generator only knows classes declared in
the header files of the framework. Which generated Eiffel class should be
instantiated if we receive an object whose type is private, i.e. not in the header
files? Let’s consider the following example. NSNumber declares a numberWithInt:
function. The returned object is, however, an instance of NSCFNumber – a private
subclass. The wrapper generator is not aware of the NSCFNumber class and thus it
did not generate the NS_CF_NUMBER Eiffel class wrapper. The only meaningful Eiffel
class to instantiate to wrap that Objective-C object would be NS_NUMBER. There are
some more complicated cases where public class clusters inherit from other class
clusters. For instance, NSMutableArray is a class cluster and it inherits from
NSArray – a class cluster again. Therefore, a private Objective-C class should be
mapped to the closest Objective-C public ancestor. In order to generate this
mapping, objc_get_mapping needs to know the list of all classes declared in the
header files (the public classes) and the list of all classes registered in the runtime
(including private classes). The list of all public classes can be easily known
because the wrapper generator can generate code in the classes_mapper.e file to
populate an array with such information. The list of all private classes can be
extracted from the list of all Objective-C classes registered in the runtime system
using the objc_getClassList Objective-C function. Listing 40 shows the
objc_get_mapping function. The code has been split on more pages to facilitate
the reading. Only the first portion of the (repetitive) code used to populate the
array is shown.

objc_get_mapping (out_count: POINTER): POINTER
 -- [...]
 external
 "C inline use <objc/runtime.h>, <assert.h>"
 alias
 "[
 int parsed_classes_count = 360;
 Class parsed_classes[parsed_classes_count];
 parsed_classes[0] = objc_getClass("NSObject");
 parsed_classes[1] = objc_getClass("NSEnumerator");
 parsed_classes[2] = objc_getClass("NSValue");
 parsed_classes[3] = objc_getClass("NSNumber");
 parsed_classes[4] = objc_getClass("NSArray");
 parsed_classes[5] = objc_getClass("NSMutableArray");
 parsed_classes[6] = objc_getClass("NSAutoreleasePool");
 parsed_classes[7] = objc_getClass("NSBundle");
 parsed_classes[8] = objc_getClass("NSDate");
 parsed_classes[9] = objc_getClass("NSCalendar");
 parsed_classes[10] = objc_getClass("NSDateComponents");
 parsed_classes[11] = objc_getClass("NSString");
 parsed_classes[12] = objc_getClass("NSMutableString");
 parsed_classes[13] = objc_getClass("NSSimpleCString");
 parsed_classes[14] = objc_getClass("NSConstantString");
 parsed_classes[15] = objc_getClass("NSCharacterSet");
[...]

30

 int runtime_classes_count = objc_getClassList(NULL, 0);
 assert(runtime_classes_count > 0);
 Class *runtime_classes = malloc(sizeof(Class) * runtime_classes_count);
 objc_getClassList(runtime_classes, runtime_classes_count);
 void **mapping = malloc(2 * sizeof(void *) * runtime_classes_count);
 int i, j;
 Class runtime_class, superclass;
 BOOL found;
 for (i = 0; i < runtime_classes_count; i++) {
 runtime_class = runtime_classes[i];
 mapping[2*i] = runtime_class;
 for (j = 0, found = NO; j < parsed_classes_count; j++) {
 if (runtime_class == parsed_classes[j]) {
 found = YES;
 break;
 }
 }
 if (found) {
 mapping[2*i + 1] = (void *)class_getName(runtime_class);
 } else {
 superclass = runtime_class;
 while (!found) {
 superclass = class_getSuperclass(superclass);
 if (superclass == nil) {
 break;
 }
 for (j = 0, found = NO; j < parsed_classes_count; j++) {
 if (superclass == parsed_classes[j]) {
 found = YES;
 break;
 }
 }
 }
 if (found) {
 mapping[2*i + 1] = (void *)class_getName(superclass);
 } else {
 // This is a private class and it is not part of any class cluster.
 mapping[2*i + 1] = NULL;
 }
 }
 }
 free(runtime_classes);
 *(int *)$out_count = 2 * runtime_classes_count;
 return mapping;
]"
end

Listing 40: the objc_get_mapping function.

The details of the code are left to the reader.
Previously in this chapter we presented a simplified version of the

new_eiffel_object function. We will now present the full version that takes into
account the special case of class objects (see listing 41). The added code has been
highlighted.

31

new_eiffel_object (a_pointer: POINTER; retain: BOOLEAN): detachable NS_OBJECT
 -- [...]
 do
 if objc_class_objc (a_pointer) = a_pointer then
 -- If `a_pointer' represents a class object
 create {OBJC_CLASS} Result.make_with_pointer (a_pointer)
 else
 check attached {like new_eiffel_object} internal.new_instance_of
(get_eiffel_type (a_pointer)) as eiffel_object then
 if retain then
 eiffel_object.make_with_pointer_and_retain (a_pointer)
 else
 eiffel_object.make_with_pointer (a_pointer)
 end
 end
 end
 end

Listing 41: the updated new_eiffel_object function.

The new code first checks whether the Objective-C object pointed by a_pointer
is a Class object (if we query a Class object for its Class object, they will return a
reference to themselves). Next we create a new instance of OBJC_CLASS, we do not
care whether to retain it or not since it is a singleton. OBJC_CLASS is a custom class
that wraps an Objective-C Class object. It is described in chapter 6.3.10.

Lastly, we need to handle the case of queries with return type SEL (Objective-C
selectors) in a special way because they are not object. Listing 36 shows the code
generated for a method named selector returning an object of type SEL.

selector: detachable OBJC_SELECTOR
 -- Auto generated Objective-C wrapper.
 local
 result_pointer: POINTER
 do
 result_pointer := objc_selector (item)
 if result_pointer /= default_pointer then
 create {OBJC_SELECTOR} Result.make_with_pointer (result_pointer)
 end	 	 	
 end

Listing 42: code generated for an Objective-C function returning a selector.

The code simply creates and initializes a new instance of OBJC_SELECTOR, a
custom class, with the returned selector pointed by result_pointer.
OBJC_SELECTOR simply declares some features like make_with_pointer, is_equal
and item (they are only exported to OBJC_SELECTOR and NS_ANY). It does not,
however, inherit from NS_ANY because we do not need the facilities declared there.
We do not have to worry about memory management when dealing with selectors
because they are never deallocated.

32

6.3.10 Mapping The Objective-C Class Type
Objective-C Class objects are a bit particular because they are not explicitly

described as objects in the documentation. The only definition the documentation
gives about Class objects is the following.

typedef struct objc_class *Class;

Listing 43: declaration of the Class type.

I.e. Class is a type definition for a pointer to an objc_class struct (an opaque
type, i.e. the interface does not declare the fields of the struct). However, variables
of type Class seem to have an objective nature because we can send them
Objective-C messages (in particular all Objective-C messages declared in the
NSObject protocol). Therefore we decided to treat them as objects in Eiffel too and
to manually create the OBJC_CLASS inheriting from NS_OBJECT.

Class objects have a name, an optional superclass and can be allocated and
registered (registered classes are known to the Objective-C runtime and instances
of them can be created). If a class has not been allocated it cannot be registered.

name: STRING
 -- The name of the class represented by `Current'.

superclass_objc: detachable OBJC_CLASS assign set_superclass_objc
 -- The superclass of this class. If the class is registered it is guaranteed
to have a superclass.
 do
 if registered then
 create Result.make_with_pointer_and_retain (objc_class_get_superclass
(item))
 else
 Result := internal_superclass_objc
 end
 ensure
 registered_implies_superclass_not_void: registered implies Result /= Void
 end

registered: BOOLEAN
 -- Is the Objective-C class represented by `Current' registered in the
Objective-C runtime?

allocated: BOOLEAN
 -- Has the Objective-C class represented by `Current' already been allocated?

Listing 44: attributes of OBJC_CLASS.

It also provides 2 creation procedures: make_with_pointer and
make_with_name (see listing 45).

33

make_with_pointer (a_pointer: POINTER)
 -- Initialize `Current' with `a_pointer'.
 local
 c_string: C_STRING
 do
 item := a_pointer
 create name.make_from_c (objc_class_get_name (item))
 create c_string.make (name)
 allocated := True
 registered := objc_get_class (c_string.item) /= default_pointer
 end

make_with_name (a_name: STRING)
 -- Initialize `Current' with `a_class_name'
 require
 a_valid_name: not a_name.is_empty
 local
 c_string: C_STRING
 do
 name := a_name
 create c_string.make (name)
 item := objc_get_class (c_string.item)
 registered := item /= default_pointer
 allocated := registered
 ensure
 name_set: name = a_name
 end

Listing 45: creation procedures of OBJC_CLASS.

make_with_pointer initializes item, sets name (see the Objective-C
objc_class_get_name function) and the allocated and registered attribute by
checking whether the passed class exists in the Objective-C runtime (see the
Objective-C objc_get_class function). Similarly, make_with_name sets the name
and the registered attribute by checking whether the a_name argument
corresponds to the name of an Objective-C class registered in the runtime. The
allocated attribute is also set accordingly.

Because Objective-C classes are singleton objects we do not have to worry about
disposal. Therefore, the dispose feature is redefined and it does not do anything.

OBJC_CLASS also declares methods to allocate and register a class. They are
shown in listing 46.

34

allocate
 -- Creates a new Objective-C class and metaclass.
 require
 not_allocated: not allocated
 has_superclass_objc: superclass_objc /= Void
 do
 check attached superclass_objc as attached_superclass_objc then
 item := objc_allocate_class_pair (attached_superclass_objc.item, (create
{C_STRING}.make (name)).item, 0)
 end
 allocated := True
 ensure
 allocated: allocated
 end

register
 -- Register this class in the Objective-C runtime such that it can be used.
 require
 allocated: allocated
 not_registered: not registered
 do
 objc_register_class_pair (item)
 internal_superclass_objc := Void
 registered := True
 ensure
 registered: registered
 end

Listing 46: allocate and register procedures of OBJC_CLASS.

The allocate and register methods simply call their Objective-C counterpart
and the set the allocated and registered attributes accordingly.

Lastly, we also declare a feature to add methods to an Objective-C class. Listing
47 shows the code.

add_method (a_selector: OBJC_SELECTOR; an_implementation: POINTER; types: STRING):
BOOLEAN
 -- Add a new method to this class with a given name and implementation.
 -- Return `True' if the method was added successfully.
 require
 allocated: allocated
 not_registered: not registered
 local
 c_string: C_STRING
 do
 create c_string.make (types)
 Result := objc_class_add_method (item, a_selector.item, an_implementation,
c_string.item)
 end

Listing 47: add_method function of OBJC_CLASS to add methods to an Objective-
C class.

35

This function will be very useful when implementing a solution for Objective-C
callbacks (i.e. function calls from Objective-C to Eiffel).

6.3.11 Mapping Objective-C Categories (Methods Grouping)
Objective-C categories are used for 2 purposes: to group methods or to add

methods to a class without subclassing it. In this chapter we are going to map the
first use case of categories, i.e. methods grouping. We distinguish the 2 use cases by
checking in which framework the category has been defined. If it was defined in
the same framework as the original class we assume it is used to group methods
(in practice this is always the case), otherwise it is used to extend a class declared
in an other framework.

It is relatively easy to group features in Eiffel. We can just use the feature
keyword followed by a comment. We can use the Objective-C category name as a
comment.

6.3.12 Mapping Class Methods
For Objective-C class methods of a given class we generate an Eiffel class with

the original class name converted to Eiffel capital case underscore syntax with the
_UTILS suffix (it stands for utilities). These classes inherit from their corresponding
_UTILS class parent (according to the Objective-C hierarchy). The parent of the
_UTILS class of the top-most class in the Objective-C hierarchy – NSObject – is
NS_NAMED_CLASS.

6.3.13 Object Creation
Objects in Objective-C are usually created by sending an alloc method to the

class object of the type you want to instantiate, followed by an initialization
method (whose name begins with init). Listing 48 shows an example.

NSNumber *aNumber = [[NSNumber alloc] initWithInt:1];

Listing 48: instantiating an NSNumber object.

Unlike in Eiffel, initialization in Objective-C consists in assigning the returned
initialized object to a variable (just like in listing 48). This is because the initializer
does not necessarily need to return the same object it was called on (see, for
example, class clusters). Listing 49 shows a way not to do initialization.

// Wrong! Do not do this!
NSNumber *aNumber = [NSNumber alloc];
[aNumber initWithInt:1];

Listing 49: bad way to create a new NSNumber object.

Our goal is to provide an easy way for Eiffel developers to instantiate this kind
of objects. We don’t want the Eiffel developer to struggle with alloc and assigning
the result of init methods. The Eiffel way would be the one shown in Listing 50.

create n.make_with_int_ (1)

Listing 50: Eiffel way to create an object.

36

For this reason, we do not generate any alloc method and we replace the prefix
init of all Objective-C initializers with make (there is no way to tell whether a
method is used as an initializer other than checking whether it start with init, this
is in practice always the case). Listing 51 shows how the initializer looks like.

make_with_int_ (a_value: INTEGER_32)
 -- Initialize `Current'.
 do
 make_with_pointer (objc_init_with_int_(allocate_object, a_value))
 end

Listing 51: code generated for the initWithInt: Objective-C function.

The initializer calls make_with_pointer to initialize item and to set up the
reverse Objective-C association with the passed argument which happens to be a
pointer to the object returned by the initializer objc_init_with_int_ (shown in
Listing 52).

objc_init_with_int_ (an_item: POINTER; a_value: INTEGER_32): POINTER
 -- Auto generated Objective-C wrapper.
 external
 "C inline use <Foundation/Foundation.h>"
 alias
 "[
 return (EIF_POINTER)[(NSNumber *)$an_item initWithInt:$a_value];
]"
 end

Listing 52: generated function for the Objective-C initWithInt: function.

The first parameter of the initializer must be an instance of the Objective-C
class. The allocate_object function, declared in NS_COMMON, returns just that.
Listing 53 shows its implementation (the code is incomplete for didactic purposes,
we will present the full code incomplete the following chapters).

allocate_object: POINTER
 -- Allocate an Objective-C instance of `Current' and return a pointer
 -- to its address.
 local
 l_objc_class: OBJC_CLASS
 do
 create l_objc_class.make_with_name (get_class_name)
 check l_objc_class_registered: l_objc_class.registered end
 Result := objc_alloc (l_objc_class.item)
 end

Listing 53: the allocate_object function.

The function creates an OBJC_CLASS object using the name returned by
get_class_name. get_class_name is declared in NS_NAMED_CLASS and it is
redefined by inheriting classes to return the Objective-C class name associated with

37

the current Eiffel wrapper object. Next, we allocate and return an instance of that
class using the objc_alloc function.

What we achieved with this is an easy way to instantiate objects which is
familiar to Eiffel users (see listing 50). Listing 54 shows how inconvenient it would
have been to create objects using the Objective-C style.

create_a_number
 -- Only for demo purposes. This is not supported by the generated wrapper.
 local
 n: NS_NUMBER
 ns_number_utils: NS_NUMBER
 do
 create ns_number_utils
 n := ns_number_utils.alloc.init_with_int_ (1)
 end

Listing 54: example that shows the inconvenience of using Objective-C style
object creation in Eiffel.

The convenience, however, comes with a little price to pay. There are certain
situations where creating objects in this manner could result in inconsistencies or
crashes. We first explain this problem and present a solution later.

In Objective-C nothing prevents an initializer to always return the same object.
This does in fact sometimes happen. For example, the address of the object
assigned to number in listing 55 will always be the same.

number = [[NSNumber alloc] initWithInt:1];

Listing 55: creating a NSNumber instance.

This is because NSNumber stores some pre-cached NSNumber objects with
frequently used constants like the numbers [0-12]. If the argument passed to the
initializer is a number within that range, the initializer will return the cached
NSNumber object. Even [NSNumber alloc] does not really allocate a new object, it
simply returns a singleton placeholder instance (which is in fact of type
NSPlaceholderNumber). Using this technique NSNumber can create objects more
efficiently. Now, after the execution of the code in listing 56 there will be 2 Eiffel
objects pointing to the same NSNumber object.

create_two_numbers
 --
 local
 n1, n2: NS_NUMBER
 do
 create n1.make_with_int_ (1)
 create n2.make_with_int_ (1)
 -- Inconsistency in the system
 end

Listing 56: creation of 2 NS_NUMBER instances with the same initialization value
(i.e. 1).

38

Moreover, the second object creation will override the existing association
between the Eiffel object n1 and the Objective-C one. This might lead to crashes
when the 2 objects will be disposed.

We do not want the user to always check whether the object returned by an
Objective-C initializer is a singleton or not. Therefore we check this automatically
in the make_with_pointer procedure as shown in listing 57. The added code has
been highlighted.

make_with_pointer (a_pointer: POINTER)
 -- Initialize `Current' with `a_pointer'.
 require
 a_valid_pointer: a_pointer /= default_pointer
 do
 item := a_pointer
 if attached objc_get_eiffel_object (item) then
 is_shared_objc_object := True
 else
 objc_set_eiffel_object (item, $Current)
 end
 ensure
 item_set: item = a_pointer
 end

Listing 57: the updated make_with_pointer creation procedure.

The make_with_pointer procedure first checks whether there’s already an
Eiffel object associated with the Objective-C object. If this is the case it does not
override the association and it sets the is_shared_objc_object attribute to True
such that the dispose feature can be aware of this and it will not reset the
association. Listing 58 shows the code of dispose. The added code has been
highlighted.

dispose
 -- <Precursor>
 do
 if not is_shared_objc_object then
 objc_set_eiffel_object (item, default_pointer)
 end
 objc_release (item)
 end

Listing 58: the updated dispose procedure.

These little changes solve to problem of instantiating (using the create
keyword) Eiffel objects that wrap Objective-C singletons. This has, however, the
consequence of breaking the identity property, i.e. we might have multiple Eiffel
objects in the system pointing to the same Objective-C object. Listing 59 highlights
the problem with an example.

39

array: NS_MUTABLE_ARRAY

cause_trouble
 --
 local
 n1, n2: NS_NUMBER
 do
 create n1.make_with_int_ (1)
 create n2.make_with_int_ (1)
 add_object_at_beginning_of_array (n2)
 end

add_object_at_beginning_of_array (an_object: NS_OBJECT)
 --
 do
 an_array.insert_object__at_index_ (an_object, 0)
 ensure
 object_added: attached an_array.object_at_index_ (0) as object and then
 object = an_object
 end

Listing 59: example that shows how the identity property does not always hold.

The procedure add_object_at_beginning_of_array seems to satisfy the
postcondition. This, however, will not be the case in the example above because the
object returned by an_array.objcect_at_index_ (0) will be the object n1
created in the cause_trouble procedure instead of n2, i.e. the object passed to
add_object_at_beginning_of_array.

Unfortunately, we cannot provide a better solution because each object
instantiated with the create keyword in Eiffel will be a different one. Therefore, it
is impossible to wrap an Objective-C singleton if this has to be instantiated with
the create keyword. This is not a problem if, instead, a wrapped Objective-C
function returns the object. For this reason, the identity property will generally
hold. In order for the identity property to hold all the time we would need to
prevent the users to create Eiffel objects wrapping Objective-C singletons. We chose
not to do this in order not to limit functionality.

6.3.14 Subclassing
It is a rather common pattern to subclass classes of a framework. This chapter

describes what needs to be done under the hood when users decide to subclass
classes of the generated wrapper.

When a user subclasses a class of the generated wrapper we need to create a
subclass of the corresponding Objective-C class as well. This can easily be done
because of the dynamic nature of the Objective-C runtime system. Listing 60 shows
the updated allocate_object function. The added code has been highlighted.

40

allocate_object: POINTER
 -- Allocate an Objective-C instance of `Current' and return a pointer
 -- to its address.
 local
 l_objc_class: OBJC_CLASS
 do
 create l_objc_class.make_with_name (get_class_name)
 if is_subclass_instance and not l_objc_class.registered then
 l_objc_class.superclass_objc := create {OBJC_CLASS}.make_with_name
(wrapper_objc_class_name)
 l_objc_class.allocate
 l_objc_class.register
 end
 check l_objc_class_registered: l_objc_class.registered end
 Result := objc_alloc (l_objc_class.item)
 end

Listing 60: the updated allocate_object function.

The function uses the is_subclass_instance function declared in
NS_NAMED_CLASS to check whether the current object is a subclass instance of a
class of the generated wrapper (it does so by comparing the class name of the
current object with wrapper_objc_class_name, the original name of the wrapped
Objective-C class). If this is the case and the Objective-C subclass has not been
created yet (i.e. it is not registered in the runtime), it allocates and registers it. For
example, if we instantiate an Eiffel class named MY_VIEW which inherits from the
generated class NS_VIEW, a new class named MY_VIEW will be allocated and
registered in the Objective-C runtime too. MY_VIEW (in the Objective-C runtime)
will be a subclass of NSView. To make sure allocate_object will get called the
user has to ensure the original initializer will be executed. If the user redefines an
initializer he can use the Precursor keyword to call the parent implementation.

With subclassing comes a problem about memory management. Let’s consider
the Eiffel class MY_VIEW shown in listing 61.

class
 MY_VIEW
inherit
 NS_VIEW
create
 make
feature -- Setting and Access
 set_data (a_data: like data)
 -- Set `data’ with `a_data’.
 do
 data := a_data
 end

 data: detachable STRING assign set_data
end

Listing 61: the code of the MY_VIEW class.

MY_VIEW declares the attribute data to store a string. Clients can save a string in
it with the setter set_data. Let’s now consider the code in listing 62.

41

array: NS_MUTABLE_ARRAY

add_my_view_to_array
 --
 local
 my_view: MY_VIEW
 do
 create my_view.make
 my_view.data := “Saved data”
 array.insert_object__at_index_ (my_view, 0)
 end

check_saved_data
 --
 do
 check
 attached array.object_at_index_ (0) as my_view and then
 attached my_view.data as data and then
 data.is_equal (“Saved data”)
 end
 end

Listing 62: example that highlights the problem of memory management when
creating and using subclasses of the generated wrapper.

The function add_my_view_to_array instantiates my_view, it saves some data
in it and adds it to an array. Let’s assume after the execution of
add_my_view_to_array the garbage collector executes a full collecting cycle. The
Eiffel object initially referenced by my_view is not referenced anymore. Therefore it
is collected releasing the corresponding Objective-C object. The corresponding
Objective-C object will not, however, be deallocated because the array retained it
when it was added (every collection class in Cocoa – e.g. arrays, dictionaries, etc. –
retains its elements when they are added and releases them when they are
removed or when the collection is deallocated). Now, if we execute the
check_saved_data procedure the object_at_index_ function will create a new
Eiffel object to wrap the result. The data attribute of the newly created Eiffel object
will obviously be Void. Ergo the data was lost.

To solve this problem we need to make sure Eiffel instances of subclasses stay in
the system until their Objective-C counterpart is not owned by anybody else except
the Eiffel object itself (i.e. its retain count is 1). To make an Eiffel object stays in the
system even though it is not referenced we can use the C function eif_protect().
We will protect the Eiffel object when its retain count becomes greater than 1 and
we will unprotect it with eif_wean() when its retain count falls back to 1. To do
this we need to override the retain and release methods of subclasses. We only
present the implementation of the retain method in listing 63 because the code of
release is similar.

42

id retain_imp(id self, SEL _cmd) {
 if ([self retainCount] = 1) {
 EIF_OBJECT associated_object = (EIF_OBJECT)objc_getAssociatedObject(self,
NULL);
 assert(associated_object);
 EIF_OBJECT object_to_associate = eif_protect(eif_access(associated_object));
 objc_setAssociatedObject(self, (void *)-1, (id)object_to_associate,
OBJC_ASSOCIATION_ASSIGN);
 }
 // Call super implementation
 SEL retain_selector = @selector(retain);
 Method super_retain_method = class_getInstanceMethod([self superclass],
retain_selector);
 IMP super_retain_imp = method_getImplementation(super_retain_method);
 return super_retain_imp(self, retain_selector);
}

Listing 63: the retain_imp function.

The first thing to notice is that the function is not declared as an Objective-C
function but as a C function with 2 parameters. In fact, the implementation of
every Objective-C function is a C function accepting at least 2 parameters. The first
one is a pointer to the current object (self) and the second one is a pointer to the
selector of the method that has been called (_cmd). retain_imp() has not been
declared inside an Objective-C class because we need to redefine it for classes we
do not know at compile time. Instead, it is contained in the external
objc_callbacks.m file and declared in objc_callbacks.h. We are still able to
reference this function from the Eiffel code because it will be compiled as a C
library together with the Eiffel executable.

The function first checks whether the retain count of the Objective-C is 1. If this
is the case it means the function will increment it to 2 and therefore we need to
protect the Eiffel object. We retrieve the Eiffel object associated with the Objective-
C object using objc_getAssociatedObject() and we protect it with eif_protect
(). Next, we store the new EIF_OBJECT reference in the Objective-C object with a
different key (-1). The Eiffel function objc_get_eiffel_object needs to be
updated to first try to get the Eiffel object associated with the key -1 (if it does not
find any reference it will try to retrieve the other reference stored with the key
NULL). For more information about associative references and keys in Objective-C
see [7]. At this point, retain_imp simply calls the parent implementation which
will increment the retain count by 1.

We now need to add the implementation of retain_imp() to every retain
method of the subclasses. We do this by updating the allocate_object function.
The added code has been highlighted in listing 64.

43

allocate_object: POINTER
 -- Allocate an Objective-C instance of `Current' and return a pointer
 -- to its address.
 local
 l_objc_class: OBJC_CLASS
 do
 create l_objc_class.make_with_name (get_class_name)
 if is_subclass_instance and not l_objc_class.registered then
 l_objc_class.superclass_objc := create {OBJC_CLASS}.make_with_name
(wrapper_objc_class_name)
 l_objc_class.allocate
 -- Add a custom retain method
 create selector.make_with_name ("retain")
 check l_objc_class.add_method (selector, retain_imp, "@@:") end
 -- Add a custom release method
 create selector.make_with_name ("release")
 check l_objc_class.add_method (selector, release_imp, "v@:") end
 l_objc_class.register
 end
 check l_objc_class_registered: l_objc_class.registered end
 Result := objc_alloc (l_objc_class.item)
 end

Listing 64: the updated allocate_object function.

The added code uses the add_method feature of OBJC_CLASS to add the new
implementation of retain. retain_imp is simply a function that returns a pointer
to the retain_imp() function in listing 63. The third argument of add_method is
the type encoding of the method. This is needed by the Objective-C runtime
system. For more information about type encodings see [8].

One more thing to consider when subclassing are methods redefinitions. This is
quite straightforward to achieve in Eiffel using the redefine keyword. If,
however, the redefined method is called by an Objective-C function the
corresponding Eiffel version will not get called. The chapter 6.3.15 about callbacks
discusses and solves this issue.

6.3.15 Callbacks
 Like in many other object-oriented frameworks, the Hollywood principle

applies: do not call us, we will call you. That is to say the user does not generally add
functionality to an application by instantiating classes of the framework and
calling their methods. Contrarily, he inherits from them and redefines existing
methods that act as placeholders to add functionality. The framework will
automatically call those pieces of code. In Cocoa, for example, in order to
implement a view that draws a custom shape, the user needs to inherit from
NSView and redefine the drawRect: method. The user does not need to call
drawRect: directly, the framework will do that automatically when it is needed.

Unfortunately, if an Eiffel object inheriting from NS_VIEW redefines draw_rect_
it will not automatically receive calls coming from the Objective-C Cocoa
framework. This does not only apply to redefined methods. It applies to every
Eiffel method we would like to receive Objective-C calls from. This is a quite
frequent pattern, for instance when specifying the function to call when a
NS_TIMER fires or to receive NS_EVENTs from the Cocoa Event System like a mouse
down event.

44

The first idea was to use trampolines [9]. This, however, would have been a
highly platform dependent solution because we would have needed to deal with
assembly code and low-level arguments passing in the x64 architecture which is
much more complicated compared to the x86 architecture.

The second idea was to generate for each possible callback a C function that
packs the arguments in an array and passes that array to a corresponding eiffel
function that will unpack the arguments and will call the actual Eiffel method.
This, however, was not feasible because it would have generated too much code (1
additional C and Eiffel function for each method).

Both the first and second idea have been re-though several times to find
possible optimizations. However, the biggest downside they share is that they only
generate support for callbacks of routines generated by the tool. If a user wanted
an Objective-C function to call back an Eiffel function that was not already
generated by the tool (this is a recurrent pattern in Cocoa) he would have needed
to write all the C and Eiffel code to create a bridge for the callback. This is a poor
developing experience.

Therefore, we finally though of a solution to make the process of adding Eiffel
functions that can be called from Objective-C as seamless as possible.

Listing 65 shows how to make an Eiffel feature callable from Objective-C.

class
 MY_VIEW
inherit
 NS_VIEW redefine make, draw_rect_ end
create
 make
feature {NONE} -- Initialization
 make
 --
 do
 add_objc_callback (“drawRect:”, agent draw_rect_)
 Precursor
 end
feature -- Drawing
 draw_rect_ (a_rect: NS_RECT)
 --
 do
 -- Draw a shape
 end

Listing 65: the code of the MY_VIEW class.

The code declares a class named MY_VIEW which inherits from NS_VIEW and
redefines the draw_rect_ method to draw a custom shape. In order to redirect calls
from the drawRect: method of the associated Objective-C object to draw_rect_ the
user simply needs to redefine an initializer (e.g. make) and use the
add_objc_callback procedure to specify the name of the Objective-C selector they
want to redirect the calls from and an Eiffel agent pointing to the routine they want
to be called. When the user is done adding callbacks, he needs to invoke the parent
implementation of the creation procedure using the Precursor keyword. The user
does not have to worry about anything else. The callback system will take care of
the memory management, arguments wrapping/unwrapping, return values, etc.
At the moment, callbacks support arguments of basic type (int, double, etc.),

45

objects and structs. The supported return types are objects and basic types except
doubles. It is, however, easy to extend the callback system to support other return
types.

We now describe the callback system. The add_objc_callback procedure is
declared in NS_COMMON. When a callback is added using that procedure it is saved
in the objc_callbacks hash table declared in NS_COMMON. The hash table is
indexed by Objective-C selectors and the elements are tuples. Each tuple contains
the Eiffel agent to call back, its return type, an array with the type of the arguments
and the Objective-C type encoding of the method. Listing 66 shows the
add_objc_classback function.

46

add_objc_callback (selector_name: STRING; eiffel_callback: ROUTINE [ANY, TUPLE])
 -- Add an Objective-C callback associated to an eiffel function to the
current class.
 require
 is_subclass_instance: is_subclass_instance
 local
 selector: OBJC_SELECTOR
 return_type: detachable TYPE [detachable ANY]
 arguments_types: ARRAY [TYPE [detachable ANY]]
 argument_type: TYPE [detachable ANY]
 arguments_tuple: TYPE [detachable ANY]
 objc_encodings: STRING
 i: INTEGER
 do
 create selector.make_with_name (selector_name)
 create arguments_types.make_empty
 create objc_encodings.make_empty
 if attached {PREDICATE [ANY, TUPLE]} eiffel_callback as
eiffel_predicate_callback then
 return_type := {BOOLEAN}
 objc_encodings.append (objc_encoding_for_eiffel_type (return_type))
 elseif attached {FUNCTION [ANY, TUPLE, detachable ANY]} eiffel_callback as
eiffel_function_callback then
 return_type :=
eiffel_function_callback.generating_type.generic_parameter_type (3)
 objc_encodings.append (objc_encoding_for_eiffel_type (return_type))
 else
 check attached {PROCEDURE [ANY, TUPLE]} eiffel_callback end
 objc_encodings.append ("v")
 end
 objc_encodings.append ("@:")
 arguments_tuple := eiffel_callback.generating_type.generic_parameter_type (2)
 from
 i := 1
 until
 i > arguments_tuple.generic_parameter_count
 loop
 argument_type := arguments_tuple.generic_parameter_type (i)
 arguments_types.force (argument_type, i)
 objc_encodings.append (objc_encoding_for_eiffel_type (argument_type))
 i := i + 1
 end
 objc_callbacks.force ([[return_type, arguments_types], objc_encodings,
eiffel_callback], selector.item)
 end

Listing 66: the add_objc_callback procedure.

The procedure first determines what the return type of the Eiffel callback is.
Next, it does the same for the arguments. Finally, it adds the information in the
objc_callbacks hash table. In order to compute the Objective-C type encoding of
each Eiffel type we use the objc_encoding_for_eiffel_type function shown in
listing 67.

47

objc_encoding_for_eiffel_type (eiffel_type: detachable TYPE [detachable ANY]): STRING

 do

 create Result.make_empty

 if

 attached {TYPE [BOOLEAN]} eiffel_type or

 attached {TYPE [CHARACTER_8]} eiffel_type or

 attached {TYPE [INTEGER_8]} eiffel_type

 then

 Result.append ("c")

 elseif attached {TYPE [INTEGER_16]} eiffel_type then

 Result.append ("s")

 elseif attached {TYPE [INTEGER_32]} eiffel_type then

 Result.append ("i")

 elseif attached {TYPE [INTEGER_64]} eiffel_type then

 Result.append ("q")

 elseif attached {TYPE [NATURAL_8]} eiffel_type then

 Result.append ("C")

 elseif attached {TYPE [NATURAL_16]} eiffel_type then

 Result.append ("S")

 elseif attached {TYPE [NATURAL_32]} eiffel_type then

 Result.append ("I")

 elseif attached {TYPE [NATURAL_64]} eiffel_type then

 Result.append ("Q")

 elseif attached {TYPE [REAL_32]} eiffel_type then

 Result.append ("f")

 elseif attached {TYPE [REAL_64]} eiffel_type then

 Result.append ("d")

 elseif attached {TYPE [detachable OBJC_CLASS]} eiffel_type then

 Result.append ("#")

 elseif attached {TYPE [detachable OBJC_SELECTOR]} eiffel_type then

 Result.append (":")

 elseif attached {TYPE [detachable CG_POINT]} eiffel_type then

 Result.append ("{CGPoint=dd}")

 elseif attached {TYPE [detachable CG_SIZE]} eiffel_type then

 Result.append ("{CGSize=dd}")

 elseif attached {TYPE [detachable NS_RANGE]} eiffel_type then

 Result.append ("{_NSRange=QQ}")

 elseif attached {TYPE [detachable CG_RECT]} eiffel_type then

 Result.append ("{CGRect={CGPoint=dd}{CGSize=dd}}")

 elseif attached {TYPE [detachable NS_DECIMAL]} eiffel_type then

 Result.append ("{?=b8b4b1b1b18[8S]}")

 elseif attached {TYPE [detachable NS_AFFINE_TRANSFORM_STRUCT]} eiffel_type then

 Result.append ("{?=dddddd}")

 elseif attached {TYPE [detachable AE_DESC]} eiffel_type then

 Result.append ("{AEDesc=I^^{OpaqueAEDataStorageType}}")

 elseif attached {TYPE [detachable CG_AFFINE_TRANSFORM]} eiffel_type then

 Result.append ("{CGAffineTransform=dddddd}")

 elseif attached {TYPE [detachable CA_TRANSFORM3D]} eiffel_type then

 Result.append ("{CATransform3D=dddddddddddddddd}")

 elseif attached {TYPE [detachable CV_SMPTE_TIME]} eiffel_type then

 Result.append ("{CVSMPTETime=ssIIIssss}")

 else

 -- Assume it's an Objective-C wrapped object

 Result.append ("@")

 end

 end

Listing 67: the objc_encoding_for_eiffel_type function.

48

For each Eiffel type the function returns the specific Objective-C type encoding.
Structs have a particular type encoding so each struct has its dedicated if. The ifs
for the structs are generated automatically by the wrapper generator based on the
struct declarations it finds. For more information about type encodings see [8].

We now give an overview of the path a callback runs through. Let’s consider the
situation shown in figure 3.

Figure 3: overview of the path of a callback.

An Eiffel object of type MY_VIEW and subclass of NS_VIEW is wrapping the
corresponding instance of the Objective-C class MY_VIEW (subclass of NSView). The
implementation of drawRect: has been installed with a C function with variable
arguments that packs all its arguments in a C array and forwards them to the
pointer_callbacks_bridge function of the corresponding Eiffel object.
pointer_callbacks_bridge will then unpack the arguments and wrap them, if
necessary, taking care of memory management issues. Finally,
pointer_callbacks_bridge will call the draw_rect_ agent with the unpacked
arguments. Note that the C function used to hijack the call to drawRect: and
redirect it to pointer_callbacks_bridge is the same for all callbacks. It is defined
in the external objc_callbacks.m file. The pointer_callbacks_bridge name
starts with pointer because that is its return type (void *). This means it can be
used for callbacks returning objects, selectors and basic types except doubles. It
also can’t be used for callbacks returning structs. We designed the callbacks system
to be easily extendible. Therefore, it is relatively easy to add support for callbacks
doubles. In the following paragraphs we will describe the callbacks system in
more detail.

49

In order to install the hijacking function in the callbacks we need to update the
allocate_object function as shown in listing 68. The added code has been
highlighted.

allocate_object: POINTER
 -- Allocate an Objective-C instance of `Current' and return a pointer
 -- to its address.
 local
 l_objc_class: OBJC_CLASS
 do
 create l_objc_class.make_with_name (get_class_name)
 if is_subclass_instance and not l_objc_class.registered then
 l_objc_class.superclass_objc := create {OBJC_CLASS}.make_with_name
(wrapper_objc_class_name)
 l_objc_class.allocate
 -- For each callback
 across objc_callbacks as objc_callbacks_cursor loop
 -- Add a callback hijacker
 create selector.make_with_pointer (objc_callbacks_cursor.key)
 callbacks_hijacker := pointer_callbacks_hijacker
 check l_objc_class.add_method (selector, callbacks_hijacker,
objc_callbacks_cursor.item.objc_encoding) end
 end
 -- Add a custom retain method
 create selector.make_with_name ("retain")
 check l_objc_class.add_method (selector, retain_imp, "@@:") end
 -- Add a custom release method
 create selector.make_with_name ("release")
 check l_objc_class.add_method (selector, release_imp, "v@:") end
 l_objc_class.register
 end
 check l_objc_class_registered: l_objc_class.registered end
 Result := objc_alloc (l_objc_class.item)
 end

Listing 68: the updated allocate_object function.

The added code loops through all the user-added callbacks. For each callback
we use the add_method procedure of OBJC_CLASS to add a method with the
selector of the callback and our hijacking function as implementation
(pointer_callbacks_hijacker). pointer_callbacks_hijacker is simple a C
external that returns a C function pointer to the pointer_callbacks_hijacker
function defined in objc_callbacks.m. Another change we need to do concerns
make_with_pointer. The added code has been highlighted in listing 69.

50

make_with_pointer (a_pointer: POINTER)
 -- Initialize `Current' with `a_pointer'.
 require
 a_valid_pointer: a_pointer /= default_pointer
 do
 item := a_pointer
 if attached objc_get_eiffel_object (item) then
 is_shared_objc_object := True
 else
 objc_set_eiffel_object (item, $Current)
 end
 if is_subclass_instance then
 objc_connect_callbacks_bridge (item, $pointer_callbacks_bridge, 1)
 end
 ensure
 item_set: item = a_pointer
 end

Listing 69: the make_with_pointer creation procedure.

The code basically stores a function pointer to the Eiffel feature
pointer_callbacks_bridge in the wrapped Objective-C object such that we can
call that Eiffel function from Objective-C.

We can now present the code of the C function declared in objc_callbacks.m
that redirects Objective-C calls to the Eiffel callbacks bridge feature. Listing 70
shows the first part of the function.

51

void * pointer_callbacks_hijacker (id self, SEL _cmd, ...) {

 va_list variableArguments;

 va_start(variableArguments, _cmd);

 NSMethodSignature *methodSignature = [self methodSignatureForSelector:_cmd];

 int argumentsCount = [methodSignature numberOfArguments];

 void **arguments = NULL;

 if (argumentsCount > 2) {

 arguments = malloc(sizeof(void *) * (argumentsCount - 2)); // Freeing is done in eiffel
code.

 }

 int i;

 for (i = 2; i < argumentsCount; i++) {

 const char *argumentType = [methodSignature getArgumentTypeAtIndex:i];

 BOOL argumentRead = YES;

 if (argumentType[0] == '@') {

 arguments[i - 2] = (void *)va_arg(variableArguments, void *);

 }

 switch (argumentType[0]) {

 case 'c':

 case 'i':

 case 's':

 case 'C':

 case 'I':

 case 'S': {

 int *value_pointer = malloc(sizeof(value_pointer)); // Freeing is done in eiffel
code.

 *value_pointer = va_arg(variableArguments, int);

 arguments[i - 2] = value_pointer;

 break;

 }

 case 'q':

 case 'Q': {

 long long *value_pointer = malloc(sizeof(value_pointer)); // Freeing is done in
eiffel code.

 *value_pointer = va_arg(variableArguments, long long);

 arguments[i - 2] = value_pointer;

 break;

 }

 case 'f':

 case 'd': {

 double *value_pointer = malloc(sizeof(value_pointer)); // Freeing is done in eiffel
code.

 *value_pointer = va_arg(variableArguments, double);

 arguments[i - 2] = value_pointer;

 break;

 }

 case '@':

 case '#':

 case ':': {

 void *object = va_arg(variableArguments, void *);

 arguments[i - 2] = object;

 break;

 }

 default: {

 argumentRead = NO;

 break;

 }

 }

Listing 70: the first part of the pointer_callbacks_hijacker() function.

52

The function returns a pointer (void *) and it accepts at least 2 arguments. The
implementation of every Objective-C instance method is actually a C function
accepting at least 2 arguments. The first one is a reference to the object the selector
has been called on (self), the second one is the selector itself (_cmd). For more
information see [8]. Because of this reason the first 2 arguments of
pointer_callbacks_hijacker are declared just like that. However,
pointer_callbacks_hijacker can accept a variable number of arguments. This
way we can use only one function to redirect every kind of callback (except those
returning structs or doubles).

The first thing the function does is to retrieve the method signature associated
with the called method. Next it loops though all arguments and retrieves them
using the C va_arg macro. Because va_arg needs the type of the argument to
retrieve we need to query the Objective-C runtime system to get the type encoding
of each argument. Based on the type encoding we can specify a type for va_arg
and store a pointer to the value it returns in the arguments array that we
previously allocated (note that the array is freed later by some Eiffel code it is
passed to). Structs arguments are a slightly special case. The code of the function
does not know a priori the structs declared in the Objective-C framework.
Therefore, when the wrapper generator is translating an Objective-C framework to
Eiffel it will modify the objc_callbacks.m file and add the code to extract the
structs it found.

The final part of the pointer_callbacks_hijacker function is shown in listing
71 (we omitted the part that extracts structs with va_arg).

typedef void * (*eiffel_callback_bridge_type)(EIF_REFERENCE, EIF_POINTER,
EIF_POINTER);
eiffel_callback_bridge_type eiffel_callback_bridge = (eiffel_callback_bridge_type)
objc_getAssociatedObject(self, (void *)1);
// Get the EIF_OBJECT.
// First try to get the EIF_OBJECT created with eif_protect.
EIF_OBJECT eiffel_object = (EIF_OBJECT)objc_getAssociatedObject(self, (void *)-1);
if (eiffel_object == nil) {
	 // If there is no eiffel object created with eif_protect() associated with
self
	 // then there is one created with eif_create_weak_reference().
	 eiffel_object = (EIF_OBJECT)objc_getAssociatedObject(self, NULL);
}

return eiffel_callback_bridge(eif_access(eiffel_object), _cmd, arguments);

Listing 71: the final part of the pointer_callbacks_hijacker() function.

The code first retrieves the address of the Eiffel function to forward the
arguments to (pointer_callbacks_bridge, see Figure 3). Then it retrieves the
Eiffel object associated with the current Objective-C object. Finally, it invokes the
Eiffel function pointer_callbacks_bridge passing the selector and the
arguments array. It is important to note that we also return the value returned by
that Eiffel function. This allows us to support callbacks that return data. If a
callback does not return any data the returned data is simple ignored.

The pointer_callbacks_bridge function (defined in NS_COMMON) is too long to
be listed here. We only give a brief description of it. The first thing it does is to
retrieve the information associated with the passed selector by querying the
objc_callbacks hash table described earlier in this chapter (note that every Eiffel

53

wrapping object has its own dedicated hash table). Then it iterates though the
passed arguments array extracting them. Arguments of basic type con be easily
assigned to Eiffel types like integers, reals, booleans, etc. However, structs and
objects need a special treatment because they need to be wrapped by an Eiffel
object. If an Eiffel object is already wrapping the extracted Objective-C object then
it is reused (this way we avoid to create multiple Eiffel objects pointing to the same
Objective-C object and therefore satisfying the identity property). Next, we call the
actual Eiffel callback (we have this information because we extracted it from the
objc_callbacks hash table). If the Eiffel callback is a procedure we do not need to
do additional tasks. If, instead, it is a function we need to convert the returned
value to POINTER type (this is the return type of pointer_callbacks_bridge) and
to return that. The C function pointer_callbacks_hijacker defined in the
objc_callbacks.m will return that value to the Objective-C caller of the callback.

6.4 Objective-C Categories

In this chapter we will explain how we mapped Objective-C categories that
have been defined in a framework different than the one of the original class (i.e.
the purpose of the category was extending the original class).

Let us consider the example of NSString. NSString is declared in the
Foundation framework. However, the AppKit framework declares a category on
NSString called NSStringDrawing. NSStringDrawing declares methods such as
drawInRect:withAttributes:, i.e. methods to draw strings. These methods do
not really belong to the NSString class, yet they are not declared in a subclass.
They are used as utility methods for NSString. Therefore, we decided to map
categories to utility classes in the manner described in the following paragraph.

First, we convert the Objective-C category name to Eiffel underscore style
appending the _CAT suffix that stands for category. Next, we generate the Eiffel
class inheriting from NS_CATEGORY_COMMON. For each method declared in the
category we generate an external as described in chapter 6.3. We also generate a
wrapper function. Listing 72 shows an example for the
drawInRect:withAttributes: method.

draw_in_rect__with_attributes_ (a_ns_string: NS_STRING; a_rect: NS_RECT; a_attrs:
NS_DICTIONARY)
 -- Auto generated Objective-C wrapper.
 do
 objc_draw_in_rect__with_attributes_ (a_ns_string.item, a_rect.item,
a_attrs.item)
end

Listing 72: generated code for the Objective-C drawInRect:with:Attributes:
category method.

The first argument of the function is the NS_STRING object we want to call the
method on, the others are the method arguments. The wrapper function generation
is the same as the one described in chapter 6.3, except the first argument of the
external call is not item but rather the item attribute of the first argument. All the
considerations about memory management of chapter 6.3 apply here too.

54

6.5 Objective-C Protocols

6.5.1 Introduction
Objective-C protocols are similar to Java interfaces: they declare methods that

others are expected to implement. Concretely, a protocol is a list of methods
declarations, unattached to a class definition. Methods declared in a protocol can
be required or optional. Required methods must be implemented by classes
adopting the protocol, optional methods do not need to be implemented. Listing 73
shows an example of protocol declaration.

@protocol MyProtocol

- (void)requiredMethod;

@optional
- (void)anOptionalMethod;
- (void)anotherOptionalMethod;

@required
- (void)anotherRequiredMethod;

@end

Listing 73: example of protocol declaration.

Classes can adopt a protocol with the syntax shown in listing 74.

@interface ClassName : ItsSuperclass <protocol list>

Listing 74: example syntax to adopt protocols for classes.

Categories adopt protocols in a similar manner as classes (see listing 75).

@interface ClassName (CategoryName) <protocol list>

Listing 75: example syntax to adopt protocols for categories.

A class (or category) can adopt more than one protocol. Names in the protocol
list are separated by commas as shown in listing 76.

@interface ClassName : NSObject < Protocol1, Protocol2 >

Listing 76: a class adopting 2 protocols.

A class or category that adopts a protocol must implement all of its required
methods, otherwise the compiler issues a warning.

Protocols can incorporate other protocols using the same syntax that classes use
to adopt a protocol (listing 49).

55

@protocol ProtocolName < protocol list >

Listing 49: example syntax to adopt protocols for protocols.

6.5.2 Mapping Objective-C Protocols
For each Objective-C protocol we generate a deferred Eiffel class. The Eiffel

class name is the Objective-C protocol name converted to underscore capital case
syntax along with the _PROTOCOL suffix. Objective-C protocols that do not
incorporate other protocols inherit from NS_COMMON, otherwise they inherit from
the protocol classes they incorporate.

Required methods are generated the same way instance methods are (see
chapter 6.3). Optional methods are generated in a similar manner but with a slight
exception. Let’s consider the example shown in listing 78.

optional_method
 -- An optional method
 require
 has_optional_method: has_optional_method
 do
 [...]
 end

Listing 78: generated code for an optional method of an Objective-C protocol.

The generated optional method has a precondition: has_optional_method (the
name is generated by simply prepending the prefix has_ to the feature name). This
is a feature clients of the protocol can override if they wish to implement
optional_method. The default implementation of optional_method is to simply
call optionalMethod on the wrapped Objective-C object. In order to know if the
wrapped Objective-C object implements the optional method or not we need to
query it at runtime in the has_optional_method feature. Listing 79 shows the
default implementation of has_optional_method.

feature -- Status Report

has_optional_method: BOOLEAN
 -- [...]
 do
 Result := objc_has_optional_method (item)
 end

feature {NONE} -- Implementation

objc_has_optional_method (an_item: POINTER): BOOLEAN
 -- [...]
 external
 “C inline use <Foundation/Foundation.h>”
 alias
 “[
 return [(id)$an_item respondsToSelector:@selector(optionalMethod)];
]”
 end

56

Listing 79: generated code to check whether an optional protocol method has
been implemented or not.

The objc_has_optional_method feature shown in listing 79 uses the dynamic
nature of Objective-C to check whether the wrapped Objective-C object
implements the optional method. It does so by using the respondsToSelector:
method of NSObject.

6.5.3 Name Clashes
It is very likely to have features from different classes or protocols with the

same name. Therefore, classes inheriting from different protocols and classes will
be very likely to have feature name conflicts. The generator automatically picks a
version of the feature from the inherited classes and protocols and un-defines it in
the other parents.

7 Developers Guide
In this chapter we are going to give a brief description of the wrapper generator

folder.
The wrapper generator folder contains an Eiffel project along with other folders.

The templates folder is used to store Eiffel classes (e.g. the NS_COMMON class) to be
used as templates when generating an Objective-C wrapper. The objc_wrapper
folder is a generated and ready-to-use Eiffel version of the Cocoa framework. This
is the folder the wrapper generator automatically creates when it is executed. The
testing folder in the wrapper generator folder contains tests about structs, objects
creation, class clusters, memory management, subclassing and callbacks. All the
tests have been run under Mac OS X 10.6.4 64-bit and they all passed. We run the
tests setting the debug feature in NS_COMMON to see when objects are retained/
released by Eiffel objects. The examples folder contains two example applications,
namely EmptyCocoaApp – a starting point for creating Cocoa applications using
Eiffel – and CircleApp – an example Cocoa application to demonstrate to use of
the generated Cocoa framework for Eiffel.

The wrapper generator has been created and tested using Mac OS 10.6.4 and
EiffelStudio 6.7.8.4353. In this version there is a garbage collector bug that can
cause unexpected crashes of Eiffel programs using a converted Objective-C
framework.

The wrapper generator tool is internally organized in 2 parts: the parser and the
generator. The parser consists of several classes for Objective-C and Eiffel entities.
For each of these entities there are visitors that provide an easy and convenient
way to traverse them. The generator consists of several visitor classes that are used
to visit Objective-C entities and output Eiffel classes.

8 Users Guide
This chapter explains how to use the wrapper generator and the generated

Cocoa framework.

57

8.1 Wrapper Generator

When using the wrapper generator to translate an Objective-C framework to
Eiffel you can specify the Objective-C framework to translate in the
SHARED_CONFIGURATION file.

8.2 Generating A Cocoa Wrapper

There are some known parsing problems when parsing the Cocoa framework.
The following paragraph describes a workaround to make it parse anyway.

Make a copy of the /System/Library/Frameworks folder and change the
frameworks_path setting in SHARED_CONFIGURATION to the new location of the
frameworks folder. In order for the parser to correctly parse the header files make
the following changes.

• In AppKit/NSMatrix.h, line 216: add an end of line before @end.
• In QuartzCore/CIImage.h: inline all method declarations.
• In AppKit/NSTextField.h, line 62, add an end of line before @end.
• In AppKit/NSTextView.h: rewrite the interface of NSTextView such that it

will be on a single line after it is preprocessed.
• In AppKit/NSBezierPath.h: inline all method declarations.
• In QuartzCore/CALayer.h, line 714: inline method declaration.
• In QuartzCore/CAOpenGLLayer.h: inline all method declarations.
• In QuartzCore/CALayer.h, line 359: split property declaration in 2.
After running the wrapper generator execute the command finish_freezing

-library with a terminal in the objc_wrapper/Clib folder. Then set the right
header files in the externals of the generated structs (the wrapper generator cannot
guess them), import all needed frameworks headers in objc_callbacks.h, set the
right field names in the classes wrapping structs (contained in the structs folder)
and substitute the following files.

• objc_wrapper/Foundation/ns_string.e with templates/Optional
classes to manually add/ns_string.e. This version of NS_STRING has been
manually changed to support seamless conversion between Eiffel and Cocoa
strings.
• objc_wrapper/AppKit/ns_layout_manager.e with templates/Optional
classes to manually add/ns_layout_manager.e. A method of that class has
been uncommented in order to use it in the example application CircleApp.

8.3 Using The Generated Cocoa Framework

When using the generated Cocoa framework you should pay attention to the
following points.

• Objective-C identifiers conflicting with Eiffel keywords or existing methods
from ANY have been appended with an underscore symbol (_).
• Subclassing structs is not supported.
• Be aware of Objective-C retain cycles. This is usually not a problem.

58

• Always check the Apple documentation when subclassing wrapped classes
to see if there are any special methods you must redefine (especially for class
clusters).
• Do not call deep_twin or deep_copy on wrapped objects.
• Invoking copy on wrapped objects is not yet supported.
• To add a callback from Objective-C to an Eiffel function use the
add_objc_callback function in a creation procedure. When you are done
adding callbacks you must invoke the parent implementation of the creation
procedure using the Precursor keyword. Make sure the signature of the routine
pointed by the Eiffel agent is compatible with the signature of the Objective-C
callback. Note that callbacks returning doubles or structs are not supported yet.
• Be aware that fields of wrapped structs are always returned as a copy.

Therefore the code a_rect.size.width := 20 is not going to change the width
of a_rect.
• Be aware of a rare bug affecting va_arg in callbacks. It seems like the va_arg

implementation for 64 bit machines is buggy.

9 Conclusion
Thanks to the tool we developed we opened the door to a whole new world for

Eiffel developers. They can finally use Cocoa or any other Objective-C framework
to reach a huge amount of new users and devices (e.g. Mac, iPods, iPhones, iPads,
etc.) producing native applications that excel in interface design. This is a crucial
step for every product: a user interface that is unattractive or convoluted can make
even a great application an awful experience to use. But a beautiful, intuitive,
compelling user interface enhances an application’s functionality and inspires a
positive emotional attachment in users.

Figure 4 shows the screenshot of a very simple demo Cocoa application we
wrote exclusively in Eiffel. It can be found in examples/CircleApp.

59

Figure 4

10 Future Work
EiffelVision 2 does not have a Cocoa-based implementation yet. This is

definitely something that could be done in the future.
Other improvements to the wrapper generator could be the following.
• Adding support for copying objects implementing NS_COPYING_PROTOCOL.
• Adding support for callbacks returning doubles and structs.
• Do not return structs fields by copy (this requires a retain count mechanism

for structs too).

11 References
[1] Bertrand Meyer: Object-Oriented Software Construction, 2nd edition,

Prentice Hall, 1997.

[2] EiffelVision 2, http://docs.eiffel.com/book/solutions/eiffelvision-
introduction

[3] EiffelStudio, http://eiffelstudio.origo.ethz.ch/

[4] Vision4Mac, Carbon implementation http://vision4mac.origo.ethz.ch/

[5] EiffelCocoa, http://www.maceiffel.com/

60

http://docs.eiffel.com/book/solutions/eiffelvision-introduction
http://docs.eiffel.com/book/solutions/eiffelvision-introduction
http://docs.eiffel.com/book/solutions/eiffelvision-introduction
http://docs.eiffel.com/book/solutions/eiffelvision-introduction
http://eiffelstudio.origo.ethz.ch
http://eiffelstudio.origo.ethz.ch
http://vision4mac.origo.ethz.ch
http://vision4mac.origo.ethz.ch
http://www.maceiffel.com
http://www.maceiffel.com

[6] Daniel Furrer: EiffelVision for Mac OS X, 2009; online at: http://se.ethz.ch/
projects/daniel_furrer/project%20plan.pdf

[7] Apple, The Objective-C Programming Language; online at: http://
developer.apple.com/mac/library/documentation/Cocoa/Conceptual/
ObjectiveC/ObjC.pdf

[8] Apple, Objective-C Runtime Programming Guide; online at: http://
developer.apple.com/mac/library/documentation/Cocoa/Conceptual/
ObjCRuntimeGuide/ObjCRuntimeGuide.pdf

[9] Eiffel callback trampolines; online at: http://www.eiffelroom.org/node/405

[10] Cocoa Fundamentals Guide; online at: http://developer.apple.com/library/
mac/#documentation/Cocoa/Conceptual/CocoaFundamentals/
Introduction/Introduction.html

61

http://se.ethz.ch/projects/daniel_furrer/project%20plan.pdf
http://se.ethz.ch/projects/daniel_furrer/project%20plan.pdf
http://se.ethz.ch/projects/daniel_furrer/project%20plan.pdf
http://se.ethz.ch/projects/daniel_furrer/project%20plan.pdf
http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/ObjectiveC/ObjC.pdf
http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/ObjectiveC/ObjC.pdf
http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/ObjectiveC/ObjC.pdf
http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/ObjectiveC/ObjC.pdf
http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/ObjectiveC/ObjC.pdf
http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/ObjectiveC/ObjC.pdf
http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/ObjCRuntimeGuide/ObjCRuntimeGuide.pdf
http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/ObjCRuntimeGuide/ObjCRuntimeGuide.pdf
http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/ObjCRuntimeGuide/ObjCRuntimeGuide.pdf
http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/ObjCRuntimeGuide/ObjCRuntimeGuide.pdf
http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/ObjCRuntimeGuide/ObjCRuntimeGuide.pdf
http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/ObjCRuntimeGuide/ObjCRuntimeGuide.pdf
http://www.eiffelroom.org/node/405
http://www.eiffelroom.org/node/405
http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/CocoaFundamentals/Introduction/Introduction.html
http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/CocoaFundamentals/Introduction/Introduction.html
http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/CocoaFundamentals/Introduction/Introduction.html
http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/CocoaFundamentals/Introduction/Introduction.html
http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/CocoaFundamentals/Introduction/Introduction.html
http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/CocoaFundamentals/Introduction/Introduction.html

