
Origo IDE integration

Rafael Bischof

02-911-758
Master Thesis

March 2007 - September 2007

Chair of Software Engineering
Department of Computer Science

ETH Zürich

Till Bay
Prof. Bertrand Meyer

ii

Abstract

The goal of this master thesis is to design and implement extensions for sev-
eral Integrated Development Environments that allow a developer to interact
with the Origo development platform directly.

iii

iv

Acknowledgments

I want to thank my supervisor Till Bay. Further thanks go to Peter Wyss,
my friend and co-worker on Origo. A special thank to Patrick Ruckstuhl,
who did not only write almost the whole Origo system but also helped me
with dozens of problems with EiffelStudio and Eiffel in general. His advices
and knowledge saved me many days of work. And I thank Beat Strasser who
helped me to solve several Eclipse and Java related problems.

v

vi

Contents

Abstract iii

Acknowledgments v

1 Introduction 1
1.1 Motivation . 1
1.2 Overview . 1

2 Design 3
2.1 General Design . 3
2.2 Extension Mechanisms . 3

2.2.1 EiffelStudio . 3
2.2.2 Visual Studio . 4
2.2.3 Eclipse . 5

3 Command Line Tool 7
3.1 Purpose . 7
3.2 Usage . 7
3.3 Methods . 8

3.3.1 login . 8
3.3.2 project list of user . 8
3.3.3 my name . 9
3.3.4 my password . 9
3.3.5 release . 9
3.3.6 workitem list . 10
3.3.7 workitem . 11
3.3.8 ftp upload . 11
3.3.9 ftp file list . 11
3.3.10 ftp delete . 12

3.4 Workitem Format . 12
3.4.1 General Workitem Data 12

vii

3.4.2 Issue Workitems . 13
3.4.3 Release Workitems . 13
3.4.4 Commit Workitems . 14
3.4.5 Wiki Workitems . 15
3.4.6 Blog Workitems . 16

3.5 Code Design . 17
3.5.1 Overview . 17
3.5.2 ROOT CLASS . 17
3.5.3 ORIGO USAGE PRINTER 17

4 IDE Integration 19
4.1 Overview . 19
4.2 Preferences . 19
4.3 Workitem Display . 20
4.4 Release Dialog . 20

4.4.1 Upload Tab . 23
4.4.2 Release Tab . 23

5 EiffelStudio 6 Integration 25
5.1 Differences to the Standard Integration 25
5.2 Installation Instructions . 25
5.3 Code Documentation . 26

5.3.1 Menu Commands . 26
5.3.2 Preferences . 26
5.3.3 API Calls . 26
5.3.4 Tool Window . 27
5.3.5 Release Dialog . 27

6 Visual Studio 2005 Integration 29
6.1 Installation Instructions . 29
6.2 Code Documentation . 29

6.2.1 Package . 29
6.2.2 Menu Commands . 30
6.2.3 Options . 30
6.2.4 API Calls . 30
6.2.5 Tool Window . 31
6.2.6 Release Dialog . 31

7 Eclipse 3.3 Integration 33
7.1 Installation Instructions . 33
7.2 Code Documentation . 33

viii

7.2.1 Plug-in . 33
7.2.2 Menu Commands . 34
7.2.3 Preferences . 34
7.2.4 API Calls . 34
7.2.5 View . 34
7.2.6 Release Dialog . 35

8 Origo Tutorial 37
8.1 Introduction . 37
8.2 Creating a User Account . 37
8.3 Creating a Project . 37
8.4 Basic Project Settings . 39

8.4.1 Project Home . 39
8.4.2 Logo . 39
8.4.3 Forums . 39
8.4.4 Adding other Developers 42
8.4.5 Subversion (SVN) . 42

8.5 Using Workitems . 42
8.6 Issue Tracker . 44
8.7 Creating a Release . 45

9 Future Work 47

List of Figures 49

Bibliography 51

ix

x

Chapter 1

Introduction

1.1 Motivation

The distributed software development platform Origo allows to interact with
the platform by using an XML-RPC API. Using this protocol and the exten-
sion mechanisms of various integrated development environments (IDEs) it is
possible to integrate features of Origo into the IDEs. This eases and speeds
up the development process because a developer does not have to use Origo’s
website for everything and can perform some tasks and access information
directly in his IDE.

The goal of this work is to write extensions for various IDEs. We decided
in favor of EiffelStudio (cf. [Eif]) because the Origo platform is mostly written
in the Eiffel programming language and EiffelStudio is the most popular
IDE for Eiffel. Origo supports projects independent of the programming
languages they use, so we also implemented integrations for Visual Studio
(cf. [Visa]), which is a very popular IDE for C++ and .NET on Windows,
and for Eclipse (cf. [Ecla]), which is an open source, platform independent
IDE used for Java and many other programming languages.

1.2 Overview

In Chapter 2 we describe the general design of the integrations by using a
command line tool and give a short overview over the extension mechanisms
of the three chosen IDEs. Chapter 3 explains everything about the command

1

line tool and can also be used as a manual. What the IDE integrations can do
and how you do it is described in Chapter 4. In Chapters 5 to 7 we describe
for each IDE how the integration is installed and give a short overview about
the source code structure and what can be found in which class. Finally
Chapter 8 is a tutorial that shows how the basic features of Origo can be
used.

2

Chapter 2

Design

2.1 General Design

Because we have to implement same functianlity for three different IDEs of
which each one uses another programming language for extensions we decided
to implement a separate command line tool to perform the actual API calls.
This way we do not have to search for and use XML-RPC and FTP libraries
for each of these programming languages, in particularly this would have
been a problem in EiffelStudio (see Section 2.2.1). Instead we have to start a
process (the command line tool) and parse it’s standard output. Methods to
do this are part of the base framework of every used programming language.

2.2 Extension Mechanisms

Each of the three chosen IDEs has another extension mechanism although
they all provide the functionality we needed for our integrations. In this
section we will shortly describe these mechanisms.

2.2.1 EiffelStudio

The extension mechanism of EiffelStudio is clearly the hardest to use of the
three IDEs: it does not have any extension support at all. But because Eif-
felStudio is an open source application there was still a way to extend it with

3

Origo functionality. Unfortunately this approach made things more compli-
cated because we had to deal with a large amount of almost undocumented
source code. At this point we once again want to thank Patrick Ruckstuhl
who knew the code structure and whose help saved us days of work.

Because it’s our goal that the Origo integration will be part of the normal
EiffelStudio distribution some time, we were confronted with some restric-
tions. So we wanted to avoid to use any library that was not already used
in the EiffelStudio source code. Because we needed the Goanna library (cf.
[Goa]) for XML-RPC in Eiffel and it is not used in EiffelStudio, this was one
of the major reasons to use an external command line tool to perform the
Origo API calls.

Another restriction was, that EiffelStudio is a single threaded application.
This made the initial idea of a self refreshing workitem list impossible because
we could not start a separated thread which waits for a certain time span
until it gets the data from Origo. Because it can take several seconds until a
workitem list is fully retrieved it would have been unusable even if we found
a way to call a feature periodically.

2.2.2 Visual Studio

Visual Studio provides three levels of extensiblilty (cf. [Visb], [CGE]). The
first level are macros. These are very limited as they can’t create new win-
dows and many other things. Also they are not compiled but interpreted
which is a performance drawback and you can’t protect your code if you
distribute them (although this is not a problem here because our IDE inte-
grations are open source).

The second level are add-ins. They are easy to develop as Visual Studio
2005 provides good wizards to create add-in projects. Add-ins provide you
full control over the Visual Studio automation object model (cf. [Visc]) and
can be written with any programming language that supports COM.

The third and final level are packages. They can do almost anything with
Visual Studio like providing new project types, support of new programming
languages and integrating new debug tools. There is also the Managed Pack-
age Framework (MPF) which enables the developer to write managed code
using C# or VB.NET. Another big advantage of MPF is that it provides
default implementations to use many COM interfaces. But you can mix up
the usage of MPF and the automation model.

4

We decided to use packages as they are the most powerful way to provide
extensions and we did not really knew what exactly we will need. It is also the
best choice if we look to the future if the integration should be extended we
are not limited to certain capabilities. I do not know if the current integration
would have been possible with an add-in, but i do not think so.

2.2.3 Eclipse

Eclipse has the best extension mechanism of the three IDEs as it is built
as a framework and a set of services for building applications from plug-
in components (cf. [Eclb]). Eclipse comes with several standard plug-ins
including the Java Development Tools (JDT) and is mostly used for as a
Java IDE. Although it is written in Java there are plug-ins that include
support for other programming languages such as C/C++. As Eclipse is
not an IDE but a plug-in framework the plug-ins are not limited to software
development related applications.

One of Eclipse’s standard plug-ins is the Plug-in Development Environ-
ment (PDE) which is tailored to the needs of an Eclipse plug-ins developer.
It also contains templates that hook in to the various extension points Eclipse
provides and which build it’s extension mechanism. These templates can be
selected from a menu and are added to the current plug-in project as de-
fault implementations of the corresponding extension point. The PDE also
provides a very simple-to-use way of creating a deployment package.

5

6

Chapter 3

Command Line Tool

3.1 Purpose

The command line tool is an application that is used by the IDE integrations
to perform the communication with Origo (see Section 2.1). This commu-
nication is not limited to the XML-RPC API provided by Origo but also
contains some methods to handle the user’s Origo FTP account.

There were several reasons to create a separate application that commu-
nicates with Origo. This way we only had to use one library for XML-RPC
and FTP in one language instead of three different libraries in three different
programming languages. We also did not have to add a new library to the
EiffelStudio source code which would hinder our ambitions to make our inte-
gration an official part of EiffelStudio (see Section 2.2.1). Furthermore other
programmers can use this command line tool for their own applications to
get rid of the need of finding and using an XML-RPC library.

3.2 Usage

The arguments passed to the command line tool have following format:

<method_name> <arguments>

where <method_name> is the name of the XML-RPC API call or the FTP
method and <arguments> are the necessary arguments. Each argument is

7

preceded by a - as argument sign and the arguments can be given in an
arbitrary order. The command line tool performs the given call and writes
the return values to the standard output stream. If anything goes wrong an
error is printed to the standard error stream. If the command line tool is not
used correctly a usage help is written to the standard error stream.

3.3 Methods

This section describes the various methods the command line tool provides.
The title of each subsection is the <method_name> mentioned in Section 3.2.

3.3.1 login

description Performs a login into Origo.

arguments uk [ak]

uk The userkey consists of 32 capital letters which replaces
username and password and can be requested on the Origo
website1.

ak An optional application key. An application key consists
of 32 capital letters and can be also be requested on the
Origo website. If this parameter is omitted the application
key of the command line tool is used.

output A session ID which consists of 32 capital letters. It is valid
for 1 hour and the timer is reset every time you make an
API call using this session ID.

3.3.2 project list of user

description Returns all projects of which a user is a developer or an
owner.

arguments s u

s A session ID that consists of 32 capital letters and can be
received with the login method.

1http://origo.ethz.ch

8

u The nickname of the user whose project list you want to
see.

output Each output of a line represents a project and has following
format: <project_id> <project_name> <user_group>

where <user_group> 3 denotes that the user is a mem-
ber of this project and <user_group> 4 means the user is
an owner of this project.

3.3.3 my name

description Returns the username of the user associated with the given
session.

arguments s

s A session ID that consists of 32 capital letters and can be
received with the login method.

output Your username.

3.3.4 my password

description Returns the password of the user associated with the given
session.

arguments s

s A session ID that consists of 32 capital letters and can be
received with the login method.

output Your password.

3.3.5 release

9

description Creates a new release for a project. The files you want to
release must be in the main directory of your Origo FTP
account. You can use the command line tool to upload your
files using the ftp_upload method (see Section 3.3.8). The
files that build the release are deleted form your Origo FTP
account during this call.

arguments s pid n [d] ver fl

s A session ID that consists of 32 capital letters and can be
received with the login method.

pid The ID of the project for which you want to build a release.
This argument is a positive integer.

n The release’s name. You do not have to include the name
of the project. Think of it as a kind of subtitle.

d A description of the release. Most probably you will have
to put it in "". do not pass an empty description because
this will crash the command line tool due to a bug in the
argument parser library in the Eiffel framework.

ver The program version that is associated with this release.
This argument is a string so you can write something like
1.4.7c

fl The list of file which will build this release. The list must
be formatted this way: <file>;<file>;...;<file> where
<file> equals <filename>:<platform>. <filename> is
the name of a file in the main directory of your Origo FTP
account and <platform> is the name of the platform the
given file is compiled for.

output This method does not return anything if it is successful.

3.3.6 workitem list

description Returns the last num workitems for which you are sub-
scribed. You can change your workitem subscription on
the Origo website.

arguments s num [uro]

s A session ID that consists of 32 capital letters and can be
received with the login method.

10

num The maximum number of workitems the list contains. This
argument must be a positive integer.

uro Denotes that only the unread workitems should be re-
turned. This argument does not have a value. If you do
not add this argument you will receive all workitems.

output A list for workitems. One workitem consists of several lines
and the workitems are separated by an empty line. The
detail information for each workitem is not included in the
workitem list. The exact format and content of workitems
is described in Section 3.4.

3.3.7 workitem

description Returns all information about a workitem.

arguments s w

s A session ID that consists of 32 capital letters and can be
received with the login method.

w The ID of the workitem of which you want details.
output The detailed information about one workitem. The exact

format and content of workitems is described in Section
3.4.

3.3.8 ftp upload

description Opens a FTP connection to upload.origo.ethz.ch and up-
loads the file to your Origo FTP account.

arguments u p f

u Your Origo username.
p Your Origo password.
f Path of the file you want to upload.

output This method does not return anything if it is successful.

3.3.9 ftp file list

11

description Returns a list of all files in the main directory of your Origo
FTP account.

arguments u p

u Your Origo username.
p Your Origo password.

output A list of files. Each line contains one filename.

3.3.10 ftp delete

description Deletes a file in the main directory of your Origo FTP
account.

arguments u p f

u Your Origo username.
p Your Origo password.
f Name of the file you want to delete.

output This method does not return anything if it is successful.

3.4 Workitem Format

This section describes the format and content of the workitems returned
by the command line tool. Some data is common to all workitems and is
described in Section 3.4.1. Additionally there is specialized data for each
workitem type and each workitem type can contain additional detailed in-
formation (see Sections 3.3.6 and 3.3.7). The type of the workitem and thus
the way how you can see which information is passed is part of the general
workitem data and thus also described in Section 3.4.1.

3.4.1 General Workitem Data

The data that is common to each workitem has following format

<type>

<workitem_id>

<creation_time>

12

<project_id>

<project_name>

<username>

and is followed by the specialized data of the corresponding workitem type.

<type> An integer that specifies the workitem type and thus
the data following to the general workitem data.
Type 1 is an issue workitem (3.4.2), type 2 a re-
lease workitem (3.4.3), type 3 a commit workitem
(3.4.4), type 4 a wiki workitem (3.4.5) and type 5 a
blog workitem (3.4.6).

<workitem_id> The ID of the workitem. This as a positive integer.

<creation_time> The time when the workitem was created. It is a
unix timestamp2 and thus a positive integer.

<project_id> ID of the project this workitem belongs to.

<project_name> Name of the project this workitem belongs to.

<username> Origo nickname of the user who performed the ac-
tion that created this workitem.

3.4.2 Issue Workitems

Issue workitems are not implemented yet and thus do not hold any additional
information.

3.4.3 Release Workitems

Format of specialized release workitem data:

<name>

<version>

2http://www.unixtimestamp.com

13

<description>

<file_count>

<files>

where

<name> Release name, does not contain the project name.
Look at it as a kind of subtitle.

<version> Version of the program.

<description> Description of this release. The format of
<description> looks like that: <length>:<text>

where <length> is a non-negative integer that is
the number of characters of <text>. This number
ignores all carriage returns (\r in C notation), so
especially Windows users should be careful as Win-
dows adds a carriage return in front of every line
feed (\n in C notation) in the standard output.

<file_count> This part of the detailed information.
<file_count> shows how many files a release
has.

<files> This is part of the detailed information. <files>

consists of <file_count> lines of which each
looks like this: <filename>:<platform> where
<filename> is the files name and <platform> the
name of the platform the file belongs to.

3.4.4 Commit Workitems

Format of specialized commit workitem data:

<revision>

<log>

<diff>

where

14

<revision> Revision of the commit. <revision> is a positive
integer.

<log> Commit log. This is formatted the same way as
<description> in Section 3.4.3.

<diff> This is part of the detailed information. <diff>

contains the SVN commit diff and is formatted the
same way as <description> in Section 3.4.3.

3.4.5 Wiki Workitems

Format of specialized wiki workitem data:

<title>

<URL>

<diffURL>

<revision>

<old_revision>

<diff>

where

<title> Title of the wiki page.

<URL> URL of the wiki page.

<diffURL> URL of the changes to the last revision. If it is a
new wiki page, this line is empty.

<revision> This is part of the detailed information. It is the
wiki page revision and thus a positive integer.

<old_revision> This is part of the detailed information. The revision
number of the wiki page before the change. If it’s a
new wiki page <old_revision> is 0. Together it’s a
non-negative integer.

15

<diff> This is part of the detailed information. <diff> is
the difference between the two revisions of the wiki
page. If it’s a new wiki page it’s the difference be-
tween the new page and an empty page. It is for-
matted the same way as <description> in Section
3.4.3.

3.4.6 Blog Workitems

Format of specialized blog workitem data:

<title>

<URL>

<diffURL>

<revision>

<old_revision>

<diff>

where

<title> Title of the blog entry.

<URL> URL of the blog entry.

<diffURL> URL of the changes to the last revision. If it is a
new blog entry, this line is empty.

<revision> This is part of the detailed information. It is the
blog entry revision and thus a positive integer.

<old_revision> This is part of the detailed information. The revision
number of the blog entry before the change. If it’s a
new blog entry <old_revision> is 0. Together it’s
a non-negative integer.

<diff> This is part of the detailed information. <diff> is
the difference between the two revisions of the blog
entry. If it’s a new wiki page it’s the difference be-
tween the new entry and an empty entry. It is for-
matted the same way as <description> in Section
3.4.3.

16

3.5 Code Design

3.5.1 Overview

The command line tool is written in the Eiffel programming language. It uses
the Goanna library (cf. [Goa]) to perform the XML-RPC calls and Eposix
(cf. [dB]) to handle the FTP methods. Additionally the arg parser of the
EiffelStudio framework is used.

The program consists of only three classes which we will shortly de-
scribe: ROOT CLASS (Section 3.5.2), USAGE PRINTER (Section 3.5.3)
and ORIGO CLIENT CONSTANTS. The last one only contains several con-
stants.

3.5.2 ROOT CLASS

The ROOT CLASS class performs everything except printing the usage of
the command line tool if it’s not used correctly (see Section 3.5.3 for that).
The creation feature make has an exception handler that catches all excep-
tions and writes it’s content to the standard error stream. The first impor-
tant feature is select call which reads the first passed argument and calls the
corresponding feature to handle the method and the remaining arguments.

The features mentioned above are named call <method name> and han-
dle the complete API call. First they parse the remaining arguments, perform
the API call and finally write the results to the standard output. If anything
goes wrong they write an error message to the standard error stream.

3.5.3 ORIGO USAGE PRINTER

The ORIGO USAGE PRINTER class contains several features to write the
usage of the command line tool to the standard error stream. The feature
usage prints the whole usage and is called when an unrecognized method
name or no method name at all is passed as an argument to the command
line tool.

For each method the program provides, there are two different features:
usage <method name> and usage <method name> arguments. The first one
writes the method’s name, the arguments it expects and a short description

17

what it does. The second feature lists all arguments together with a descrip-
tion of each argument. Both these features are called if a correct method
name is passed to the command line tool but the arguments do not fit.

There are also are several helper features such as usage calls that prints
the usage of all calls or the usage argument <argument name> features that
write a description for the corresponding argument to the standard error
stream.

18

Chapter 4

IDE Integration

4.1 Overview

The integration of all three IDEs provide the the same functionality in the
same way in principle. This chapter describes the general features the inte-
grations provide and shows how to use them. If there are differences to the
standard integration described here we will go into detail in the Chapter of
the corresponding IDE.

4.2 Preferences

The integrations contain some parameters that must or can be configured.
They can be found in the preferences of their respective IDE. Before you can
use any features of the integration you have to set two of the parameters. The
first one is the complete path of the command line tool (see Chapter 3). With-
out this the integration can’t find it and thus it’s impossible to perform the
API calls. Because all Origo API calls require a login it is also necessary that
you set your Origo user key, which is a substitute for your username and pass-
word. You can get one at http://origo.ethz.ch/origo home/settings/userkey.

The remaining three preferences, number of workitems, refresh interval
and unread only, are used for the workitem display and will be explained
further in Section 4.3).

19

Figure 4.1: Eclipse workitem display

4.3 Workitem Display

The workitem display is a tool window (or a view in Eclipse, but that’s the
same thing with a different name) which can be opened by the IDE’s menu
and contains a list of workitems. The list shows the date when the workitem
was created, the project it belongs to, the user that created it, it’s type and a
short description (see Figure 4.1). You can doubleclick on a an list entry and
a dialog opens that displays more detailed information about the workitem
(see Figure 4.2). If it’s a wiki- or a blogworkitem there are links that you can
click on to open your standard browser and show the corresponding website.

The workitem displays a certain number of workitems. First, you can only
see the workitems you have submitted on the Origo website. Furthermore
you may only see the workitems that are not marked as read. This option can
be set in the IDE preferences. There you can also set the maximum number
of workitems you want to see in the workitems display. The list is periodically
refreshed in an interval that can also be set in the IDE’s preferences.

4.4 Release Dialog

The release dialog (see Figure 4.3) can be opened using the IDE’s menu.
Before the dialog is usable it receives some necessary information from Origo,
so this can take a few seconds. On the top you have a combo box where you
can select the project for which you want to build a release. The content of

20

Figure 4.2: Visual Studio wiki workitem detail dialog

21

(a) EiffelStudio upload tab

(b) Visual Studio 2005 release tab

Figure 4.3: Release dialog

22

this project list is received from Origo and contains all projects of which you
are owner and hence are allowed to publish releases for. It also contains two
tabs which we will describe now.

4.4.1 Upload Tab

In the upload tab of the release dialog (see Figure 4.3(a)) you can upload
files to your Origo FTP account instead of using a fully-fledged FTP client.
With the open files button you can select the files you want to upload. If
you decide that you do not want to upload some of them you can simply
uncheck the checkbox in front of the filename. The upload button uploads
all checked files in the file list.

4.4.2 Release Tab

The release tab (see Figure 4.3(b)) is a bit more complicated. The list con-
tains the files on your Origo FTP account. If you select some of them and
press the delete button you delete them from the FTP server, so be careful
with it.

With the add platform button you can add a platform to your release.
Each file that should be released must be assigned to a platform. To do
this, you have to select the files in the list and then select the platform you
want to assign them to. If you have assigned a platform to all files that
should build the release you can click the release button and are asked to
enter some additional information about your release. Before the release is
really published you are asked for a confirmation. The files that made up
the release will be deleted from your Origo FTP account and moved to the
Origo download area.

23

24

Chapter 5

EiffelStudio 6 Integration

5.1 Differences to the Standard Integration

As mentioned in Section 2.2.1 EiffelStudio does not have an extension mech-
anism and is not multi threaded. This leads to mainly one big difference
to the ”standard integration” described in Chapter 4 which causes to many
small changes: It is not possible to periodically refresh the workitem display
list. This means of course, that you do not have a preference that specifies
the refresh interval. And you have to force a refresh by yourself by pressing
the refresh button in the bottom right corner of the workitem display tool
window.

Another difference is, that Vision2, the Eiffel widget library, does not
have a link enabled label. Even if it had one, there is no easy way to open
the system’s standard browser, according to the Eiffel developer mailing list.
So the feature that you can click on a link in the workitem detail dialog
of wiki- and blogworkitems is missing in the EiffelStudio integration. As a
replacement for that the two URLs are part of the textbox that contains
the diff. This way you can select the URLs, copy and past them into your
browser.

5.2 Installation Instructions

To install EiffelStudio with Origo integration download the command line
tool from http://origo.ethz.ch/download if you do not already have it some-

25

where on your hard disk. Copy it into any directory you like. Also download
the EiffelStudio with Origo integration and copy the downloaded archive
into the directory where you installed EiffelStudio and unzip it there. The
path structure inside the archive should be identical with the one in your
EiffelStudio directory.

Remember to set the preferences (Tools–>Preferences–>Tools–>Origo)
as described in Section 4.2 after you started EiffelStudio for the first time
upon installing the Origo version.

To open the release dialog select Project–>Origo Release Dialog respec-
tively View–>Tools–>Origo workitems to open the workitem display tool
window.

5.3 Code Documentation

5.3.1 Menu Commands

The release dialog can be opened by selecting Project–>Origo Release Dialog.
The class that handles this is EB ORIGO COMMAND and is used in feature
build project menu of EB DEVELOPMENT WINDOW MENU BUILDER.
where the real menu entry is added. In the same class in the feature build tools
the feature build workitem tool is called that creates and adds the Origo
workitem display tool window to the View–>Tools menu.

5.3.2 Preferences

EB ORIGO DATA holds the Origo preferences. If you want to add a new set-
ting simply add it there similarly to the ones already existing, but be careful
that you do not forget anything. It is added to the EB GUI PREFERENCES
class so the Origo preferences can be found in Tools–>Preferences–>Tools
–>Origo.

5.3.3 API Calls

All API and FTP methods, namely everything concerning the command line
tool, are handled in the class EB ORIGO API CALLS. The standard output
and standard error of the command line tool that is called with the correct

26

arguments are appended to respective strings. After each call last error is
assigned to the output of the standard error stream, so if it is empty no
error occurred. Several helper features help to parse the standard output to
construct a correct output. Because workitems are pretty complex there are
several helper features of which each parses the string that was attached to
the standard output stream and creates a corresponding workitem object out
of it.

5.3.4 Tool Window

Class EB ORIGO WORKITEM TOOL implements the workitem display
tool window by inheriting from EB TOOL so there is not much that has
to be done to make it a working tool window. The class is pretty straight
forward. If the refresh button is pressed refresh workitem list is called that
performs the API calls to login and receive the workitem list from Origo
and then calls fill workitem grid which loops through the workitem list and
fills an EV GRID. A double click on a grid row calls display workitem details
which opens an EB ORIGO WORKITEM DETAILS DIALOG.

show information label hides the EV GRID that contains the workitem
list and shows a label to display some information instead. On the other
hand hide information label hides the label and shows the workitem list.

5.3.5 Release Dialog

The release dialog is implemented in the class EB ORIGO DIALOG which
contains an EV NOTEBOOK which itself contains two tabs represented by
EB ORIGO UPLOAD TAB and EB ORIGO RELEASE TAB. The classes
itself are not very complex. One important thing to not is that in the FTP
file list on the release tab the currently selected platform of a file is stored as
a string in the list item’s data. If data is Void then the list item is part of a
group header.

27

28

Chapter 6

Visual Studio 2005 Integration

6.1 Installation Instructions

To install the Visual Studio package download the command line tool from
http://origo.ethz.ch/download if you do not already have it somewhere on
your hard disk. Copy it into any directory you like. Also download the Visual
Studio package installer. Close all open instances of Visual Studio, start the
installer and select the directory where you want to install it to. If you do not
already have installed the ProjectAggergator2 or the Visual Studio SDK leave
the checkbox at the end of the installation and the ProjectAggregator2 will
also be installed. Remember to set the options (Tools–>Options–>Origo)
as described in Section 4.2 after you started Visual Studio for the first time
upon installing the package.

You will have two new menu commands in your Tools menu, one opens
the release dialog and the other the workitem display tool window.

6.2 Code Documentation

6.2.1 Package

The main class of the Visual Studio package is OrigoVSIntegration found in
VsPkg.cs. It contains several attributes that configure things like new prefer-
ence entries or tool windows. Some additional information like the image that
is shown on the splash screen are also defined in this class by overriding meth-

29

ods inherited from Microsoft.VisualStudio.Shell.Interop.IVsInstalledProduct.

6.2.2 Menu Commands

The menu commands are added in OrigoVSIntegration.Initialize() which is
inherited from Microsoft.VisualStudio.ShellPackage. Both of the menu com-
mands simply call a method that open the release dialog or the tool window
respectively. Some additional information like the picture that is shown is
configured in CtcComponents/OrigoVSIntegration.ctc. The image itself is
defined in VSPackage.resx.

6.2.3 Options

The options pages are registered by the ProvideOptionPage attribute on the
OrigoVSIntegration class. They are represented by the two classes OrigoSet-
tings and OrigoWorkitemSettings which are very simple and self explaining
and inherit from Microsoft.VisualStudio.Shell.DialogPage.

6.2.4 API Calls

The class XmlRpcCalls handles all calls to the Origo API or Origo FTP
server by using the command line tool (see Chapter 3). It is almost the same
as the Eiffel implementation for EiffelStudio which is described in Section
5.3.3. But instead of setting a member variable of the class for the last error
an ApplicationException is thrown if an error occurs.

Although it is possible to directly read the standard output and standard
error streams from the command line tool process we had to read them into
a string and then parse the resulting strings. The reason for that is, that we
have to wait until the process has finished until we try to parse the stream.
But as soon as there are 4096 characters (at least on Windows XP SP2) in
the stream’s buffer the process can not write more into the stream and waits
until some characters are read. Because we have to wait until the process
has finished this lead to a deadlock.

30

6.2.5 Tool Window

The workitem display tool window is implemented in class OrigoWorkitem-
ToolWindow. Its base class is Microsoft.VisualStudio.Shell.ToolWindowPane.
It almost does not contain anything but defines that its content is a control of
type OrigoWorkitemControl which is the real implementation of the tool win-
dow’s functionality and inherits from System.Windows.Forms.UserControl.

An object of the class System.Threading.Timer waits for a given interval
and then gets the workitem list from Origo by calling GetWorkitems. But
because this feature runs in another thread it is not allowed to edit the
System.Windows.Forms.ListView that represents the workitem list. For this
reason a delegate is invoked which calls RefreshWorkitems which causes that
the method is run in the thread where the control and hence the ListView
was created.

6.2.6 Release Dialog

The release dialog is implemented in class OrigoMainDialog. There is not
much to explain as this class is pretty simple although it is relatively large.
Because System.Windows.Forms.ListViews support grouping by themselves
we did not have to take special care about that. One thing to mention may be
that the necessary data is received from Origo in the Shown event, because
the dialog is at least partially visible at that time.

31

32

Chapter 7

Eclipse 3.3 Integration

7.1 Installation Instructions

To install the Eclipse plug-in download the command line tool from the
origo download page (http://origo.ethz.ch/download) if you do not already
have it somewhere on your hard disk. Copy it into any directory you like.
Also download the Eclipse plug-in and unzip it into the plugins folder in the
folder you have installed Eclipse. Remember to set the preferences found in
Window–>Preferences–>Origo as described in Section 4.2 after you started
Eclipse for the first time after installing the plug-in.

To open the workitem display view select Window–>Show View–>Other.
In the dialog that opens up select Origo–>Origo workitems. To open the
release dialog select Window–>Origo Releases.

7.2 Code Documentation

7.2.1 Plug-in

If you open plugin.xml with the Plug-in Development Environment (PDE)
you see a very nice overview about the plug-in. You do several things very
easily, like changing the version number, adding new extensions or building
a deliverable. This file is the heart of the plug-in.

33

7.2.2 Menu Commands

The menu command is implemented as an action set. Its menu path is set
in the Extensions tab of the PDE view of plugin.xml at the extension point
org.eclipse.ui.actionSets. This also allows to have the command not only as a
menu but also as icon in the toolbar. If the command is launched the method
run of class DialogLauncher is called.

Adding an action set for the workitem display view is not necessary as
an appropriate menu command automatically added by using the extension
point org.eclipse.ui.views. That’s also the place where you can set up some
things about this menu entry.

7.2.3 Preferences

The preference pages use the org.eclipse.ui.preferencePages extension point
and can be set up there using plugin.xml. The real implementation is found
in the package ch.ethz.origo.ide.eclipse.preferences and contains three files.
The class PrefrenceInitializer simply sets the default values and OrigoPrefer-
encePage which is the implementation of the preference page is also straight
forward if you take a look at the source code.

7.2.4 API Calls

Class OrigoApiCalls handles all API calls and FTP methods by using the
command line tool (see Chapter 3). The implementation is almost identical
to the Visual Studio implementation described in Section 6.2.4. We also
faced the same problem with the standard output stream buffer limitation
which is also mentioned there.

7.2.5 View

Views are registered at the org.eclipse.ui.views extension point and our view
is implemented class WorkitemView. The periodical refresh is implemented
as inner class RefreshTimer. Because of the same problem as in Visual
Studio described in Section 6.2.5 the timer has to call classes derived from
java.lang.Runnable, namely the inner classes TableFiller and ErrorShower.
The workitem list is implemented using a org.eclipse.jface.viewer.TableViewer

34

and the inner class TableMouseListener handles double clicks on a workitem
and shows the workitem detail dialog. This dialog is implemented in class
OrigoWorkitemDetailDialog. The rest of the class is self explaining.

7.2.6 Release Dialog

The release dialog is implemented in class OrigoReleaseDialog. The class is
not very complicated although it is pretty large. The file lists are repre-
sented by org.eclipse.swt.widgets.Tables. Because they do not provide some
functionality that we expected we had to write some helper functions like
moveTableItem or indexOfTableItem. The platform of a file in the release file
list can be retrieved by using getData on the table item. If it returns null it
is a header separator item.

35

36

Chapter 8

Origo Tutorial

8.1 Introduction

This chapter will show you step by step how you can use some features of
Origo. We will request a new project, set some basic project settings, use
the workitem list and the issue tracker and create a release of the project.

8.2 Creating a User Account

Before we can do anything else except downloading or reading some stuff
about a project we have to create a user account. To do so visit the Origo
website on http://origo.ethz.ch and you will see a Register in the top right
corner. Fill in all the information you are asked for (see Figure 8.1) and click
on Create new account. Your are now signed in with your new user account.

8.3 Creating a Project

The next thing we have to do is to create a project. Click on Home -
<username> in the menu at the left. In the case of this tutorial it’s called
Home - Naryoril, we will refer to it as Origo home in the rest of the tutorial.
There isn’t much to see there for now, but that will change later on. For
now, click on Create Project which is displayed in the menu now.

Now you see the project request form (see Figure 8.2). Think carefully

37

Figure 8.1: Origo user account creation page

Figure 8.2: Origo project request form

38

about your project name, as it will also be your project’s URL. You can also
choose that your project should be closed source, this means that nobody who
is not added as a project member can access the project’s SVN repository or
receive commit workitems. If everything is filled in, click on Send request.

Please note that the projects are activated manually, so it can take a few
hours. We hope that we can activate a project within 24 hours, although we
can’t guarantee it. So you will have to wait now until you receive an e-mail
that tells you that your project was created.

8.4 Basic Project Settings

8.4.1 Project Home

So now we received an e-mail that our project was created and can be
found hat http://<projectname>.origo.ethz.ch which is http://lotro-music-
converter.origo.ethz.ch in our tutorial. When we visit that page, called
project home from now on, we will see a text about minestrone. This is
just a standard text that is added if a new project is created and that can be
changed easily. Just click on Edit right above the text and write whatever
you want in the large text field.

8.4.2 Logo

After writing a new text for our project home we want our own logo at the
top left corner. To change click on Project Settings in the menu and select
the tab Logo. Browse for the image you want to use as a logo and click on
Save. Then wait a moment and you will see your own logo instead of the
Origo logo. Please be careful that you don’t take a logo that’s too large or
it will look really ugly. Take a size that isn’t bigger than 200x110 pixels and
you won’t have any problems. You can also test a bit with other sizes, but
don’t expect too much.

8.4.3 Forums

Next we want to give our users the possibility to communicate with each
other or with us. Origo provides a simple forum for that, but we must create

39

Figure 8.3: Admin view of the forums

them first. Select Forums in the menu (at the left). Let’s say we want to
add 4 forums: General, ABC Questions, ABC Songs and Off Topic.

Select the tab Add forum fill in ”General” and a description, e.g. ”All
about the lotro-music-converter”, and click on Submit. We will be back on
the forum where the new forum was added. Because the next two Forums we
want to create are similar, we pack them together into a container, so select
the tab Add container. A container is created the same way as a forum and
we name it ”ABC”. Back in the list we see that the ABC container is above
the General forum, but we don’t want that. So click on edit container, select
a weight of 1 and click once again on Submit. Once again in the list we see
the forums are ordered now as we wanted to.

The next step is to add the ABC Questions forum inside the ABC con-
tainer. To do so to the same as when we added the General forum but select
ABC in the Parent dropdown list. Repeat that with the ABC Songs forum.
Finally add the Off Topic forum by leaving the Parent on <root> and set
the weight to 2 such that it will be displayed at the bottom.

Now the list should look like in Figure 8.3. You can now click on Forum
at the top (above the search) and you will see that the forum now contains
the ones we added. You can see this view and the rest of he page including
the logo in Figure 8.4.

40

Figure 8.4: User view of the forums with the rest of the page

41

8.4.4 Adding other Developers

We don’t want want to do everything by ourselves and we have friends that
want to help us with our project. Adding other developers is pretty simple,
just click on Project Settings in the menu and you will see the member list.
Now you have to know your friend’s Origo username, type it into the textfield
and click on Add User. Now your friend can create and edit wiki pages and
blogs, read private wiki pages, he can commit on the SVN, or even read it if
it’s a closed source project and he has several additional rights in the issue
tracker. All other special acitivity like creating releases is reserved for project
owners. Please note that it’s possible to have more than one project owner.

8.4.5 Subversion (SVN)

You don’t really have to set up an SVN, but Origo provides you one. You can
find it at https://svn.origo.ethz.ch/<projectname>/ . If you want to know
how to use SVN take a look at their homepage1.

8.5 Using Workitems

Now we come to a special feature of Origo: the Workitems. You can get a
short overview about the workitems in the workitems on the corresponding
wiki page2, so we won’t go into that but describe how you can use them.

We only receive the workitems we have subscribed. To change the sub-
scriptions go to Origo home3 and click on Settings in the menu. There you
will see a list that contains all projects you have bookmarked (we will de-
scribe that in just a little later) or of which you are a member. So you will
most probably see only one project now. For each project you can select
how you want to be notified about which workitem type. There are only two
notification types now: Show on Origo Home (and the IDE plug-ins) and
by Mail Notification. In our case we want to be notified about all types on
Origo Home and about SVN commits and new Issues by mail notification.
Simply check the corresponding checkboxes and click on Save subscriptions.

1http://subversion.tigris.org/
2http://origo.ethz.ch/wiki/Workitems
3http://origo.ethz.ch/origo home or http://<project>.origo.ethz.ch/origo home

42

Figure 8.5: Workitem subscription page

As I mentioned above, you can also receive the workitems of a project
you have bookmarked. Say, we want to be notified about new releases of
the Origo IDE plug-ins, but we are not members of the Origo project we
can do this. First visit the Origo project page (http://origo.ethz.ch) and go
back to the user settings. There select the tab Bookmarks and then click
on [Bookmark this project (origo)] and you will see that Origo was added to
the bookmarked projects. Now select the Workitem Subscriptions tab once
again and you will see that Origo is listed there too now. Here we want to
be notified about releases and blogs on Origo home and about releases by
e-mail. Again, simply check/uncheck the corresponding checkboxes and click
on Save subscriptions. Figure 8.5 shows how it should look now.

Now let’s visit Origo home again (remember, select Home - <username>

43

Figure 8.6: Origo Home - Workitem List

in the menu) and you will see the change on the wiki page we made earlier.
Click on the origo tab and you will see a few releases and blogs (see Figure
8.6). You can mark a workitem as read by checking the checkbox or by
clicking on the workitem, which also forwards you to the corresponding web
page (e.g. the download page for a release or the blog entry).

You will see the same workitems in your IDE plug-ins as in Origo home.
You can read how you install and use the IDE plug-ins in Chapters 4 - 7.

8.6 Issue Tracker

Let’s talk about the issue tracker. Users can submit issues there, with issues
we mean bugs and feature requests, but they are handled exactly the same.
To see the issue go to the corresponding project and click on Issues at the
top. Now you should see a list of them, if there are any (take a look at the
issue tracker of the Origo project itself, there are a lot). First the ones with
a, well... rose background. These are the open issues. Afterwards there are

44

the closed ones which have a light green background color.

To submit a new issue click on Create new issue report at the bottom.
Then just fill in a meaningful (we really mean meaningful) title and a
description that is as exact as possible. These are the only fields you see if
you aren’t a member of a project. But if you are a developer you have three
additional fields. The first is Status which simply tells whether the issue
is open or closed. Next there is Assigned to where you can choose who is
responsible to solve that issue. And finally the Issue Tags. There you can
type in whatever you want like ”feature request” or ”critical” or to which
part of the program it belongs like ”web” or ”ide”. The tags will be shown in
the issue list (you can also see that in the issue tracker of the Origo project).
By replying to an issue (first click on the issue and then on Post Reply) you
can change the fields mentioned above.

8.7 Creating a Release

Let’s say you have programmed for a week and your program is in a state
where you want to release it such that all people can download it from Origo.
The first step is to upload it to your Origo FTP account. One way to do
this is to use a normal FTP client and connect to upload.origo.ethz.ch by
using your normal Origo username and password. The other way is to visit
your project’s Origo page and to select Create Release in the menu. Browse
for your file(s) and click on Next. This (or clicking Upload more) will also
upload the files to your FTP account.

On the next page you have to enter a name for your release version, a
version number and a description. On the bottom there is a list of all files
that are on your FTP space. For each file that is part of a release select the
corresponding platform from the dropdown list. Figure 8.7 shows an example
of how it could look like. 8.6). Then click on Create Release and your release
will be created and the selected files will be deleted from your FTP space.
All that’s necessary to create a release, including uploading, is also possible
by using one of the IDE integrations as described in Chapter 4. Now click
on Download at the top and you see that your release was created and can
be downloaded by anyone.

That’s it, you know now the basics of how Origo can be used. If there are
any other questions don’t hesitate to ask in the forum of the Origo project
or by writing an e-mail at support@origo.inf.ethz.ch

45

Figure 8.7: Create Release Form

46

Chapter 9

Future Work

There are several additional features that could be implemented and we will
implement some of them. The most important would be that you can mark
workitems as read or as unread so that you can really use the ”show only
unread workitems” feature and to fully support issue workitems which is not
possible at the moment because Origo does not provide the needed infor-
mation. Furthermore the possibility to change the workitem subscriptions
directly from the IDE. We could provide a way to display workitems in the
IDE similarly to the way they are shown on the Origo website by using the
workitem.list_projects API call. Additionally in future we could extend
the command line tool such that it implements all API calls that Origo
provides and not only the ones we needed for our integrations. Also an
integration to the Origo issue tracker could be done.

47

48

List of Figures

4.1 Eclipse workitem display . 20
4.2 Visual Studio wiki workitem detail dialog 21
4.3 Release dialog . 22

8.1 Origo user account creation page 38
8.2 Origo project request form . 38
8.3 Admin view of the forums . 40
8.4 User view of the forums with the rest of the page 41
8.5 Workitem subscription page 43
8.6 Origo Home - Workitem List 44
8.7 Create Release Form . 46

49

50

Bibliography

[CGE] CodeGuru: Extending Visual Studio 2005.
http://www.codeguru.com/csharp/.net/net vs addins/visualstudioadd-
ins/article.php/c11835/.

[dB] Berend de Boer. e-POSIX, the complete Eiffel to POSIX binding.
http://www.berenddeboer.net/eposix/.

[Ecla] Eclipse - an open development platform. http://www.eclipse.org/.

[Eclb] Get started with the Eclipse Platform.
http://www.ibm.com/developerworks/opensource/library/os-
eclipse-platform.

[Eif] EiffelStudio - A Complete Integrated Development Environment.
http://www.eiffel.com/products/studio/.

[Goa] Project Goanna, The Eiffel Web Application Framework.
http://goanna.sourceforge.net/.

[Visa] Microsoft Visual Studio 2005. http://msdn2.microsoft.com/en-
us/vstudio/.

[Visb] Microsoft Visual Studio Extensiblilty Portal.
http://www.devx.com/vstudioextensibility.

[Visc] Visual Studio Automation Object Model.
http://msdn2.microsoft.com/en-us/library/za2b25t3(VS.80).aspx.

51

