
Origo Home:
Web Interface Design and
Development for Origo

Master Thesis

By: Peter Wyss
Supervised by: Till Bay

Prof. Bertrand Meyer

Student Number: 02-920-544

Abstract

The Origo web interface is the front-end to the Origo Core system and
is based on the Drupal CMS. It provides all main functions to host and
manage a project on Origo. This includes user and project management,
wiki pages, blogs, issue tracker and releases. The Origo Home page is the
central information point for any Origo user. Any changes in own and
bookmarked projects are listed in several different workitems. With these
workitems a user is always informed about what is going on in his project.

ii

Acknowledgments

I would like to thank my coworkers Rafael Bischof and Patrick Ruckstuhl,
who both helped me a lot with Eiffel related problems and with valuable
input on how to improve Origo web.

A special thank goes to my supervisor Till Bay for his effort in acquiring
all the infrastructure and services needed to run Origo, and of course for his
nice graphic design used in many parts of the web.

iii

Contents

Abstract ii

Acknowledgments iii

1 Introduction 1
1.1 Goal . 1
1.2 Overview . 1

2 Design 2
2.1 General . 2
2.2 Workitems . 2
2.3 Drupal Sites . 3
2.4 Scalability . 3

3 Drupal Modules 4
3.1 Origo Auth . 4

3.1.1 User Registration . 4
3.1.2 Session Handling . 4
3.1.3 User Login . 6
3.1.4 User Logout . 6
3.1.5 Password Change . 6
3.1.6 Lost Password . 8
3.1.7 XML-RPC Wrapper 8

3.2 Origo Home . 8
3.2.1 Origo Home . 9
3.2.2 Workitem Subscription 10
3.2.3 Project Bookmarks . 10
3.2.4 Project List . 10
3.2.5 User Key Request . 10
3.2.6 E-Mail Change . 10
3.2.7 Project Settings . 11
3.2.8 Project Creation Request 11
3.2.9 Administration Menu 12

3.3 Issue Tracker . 12

iv

3.4 Developer Pages . 12
3.5 Existing Modules . 13

3.5.1 Captcha . 13
3.5.2 Diff . 13
3.5.3 Form Store . 13
3.5.4 GeSHi Filter . 13
3.5.5 Google Analytics . 13
3.5.6 Google Co-op CSE . 14
3.5.7 Image . 14
3.5.8 Image Assist . 14
3.5.9 Pathauto . 14
3.5.10 PEAR Wiki filter . 14
3.5.11 Tag Query Language 14
3.5.12 Wikitools . 15

4 Workitem Implementation 16
4.1 Issue Workitem . 16

4.1.1 Origo API Call . 16
4.1.2 Drupal Integration . 18

4.2 Release Workitem . 18
4.2.1 Origo API Call . 18
4.2.2 Drupal Integration . 18

4.3 Commit Workitem . 18
4.3.1 Origo API Call . 19
4.3.2 Subversion Integration 19

4.4 Wiki Workitem . 19
4.4.1 Origo API Call . 19
4.4.2 Drupal Integration . 20

4.5 Blog Workitem . 20
4.5.1 Origo API Call . 20
4.5.2 Drupal Integration . 20

4.6 Access Control . 20
4.7 Notification . 21
4.8 Workitem Retrieval . 21

5 Implementation Details 22
5.1 Releases . 22
5.2 Issues . 23
5.3 Project Creation . 24
5.4 Drupal Installation Profile . 24
5.5 Drupal Theme . 24
5.6 Drupal Core Changes . 25

5.6.1 XML-RPC . 25
5.7 Drupal Cron Job . 25

v

6 Deployment 26
6.1 Dependencies . 26
6.2 Installation . 26

7 Future Work 28

List of Figures 29

Bibliography 30

vi

Chapter 1

Introduction

1.1 Goal

The goal of this project is to provide a web interface for the Origo software
development platform [12] which is based on Origo Core [13]. It should pro-
vide all necessary functionality to manage a project in Origo using and ex-
tending use cases in Origo Core. Additionally a workitem system should be
created displaying so called workitems on the Origo Home page. Workitems
can be used by a developer to keep track of changes in his own and book-
marked projects.

1.2 Overview

This thesis is structured in several chapters. Chapter 2 discusses some gen-
eral design concepts. The implementation of the Drupal modules is described
in chapter 3, followed by the workitem implementation in chapter 4. Some
other implementation descriptions can be found in chapter 5. How to deploy
the system is documented in chapter 6.

1

Chapter 2

Design

2.1 General

The Origo web interface uses the free open-source content management sys-
tem Drupal [1]. Drupal provides a very good extension system with themes,
modules, hooks, etc. It also has a big user community and therefore many
existing modules and a good documentation. Drupal also provides powerful
tools like the Forms API which allows the creation of forms that can be
designed using the theme system.
The Origo theme for Drupal is built using the theme system and an existing
theme. It uses some PHP files defining the structure and CSS files to format
the page.
To add the needed functionality Drupal can be extended with modules.
These modules use hooks to interact with internal Drupal processes. With
this system it is normally not necessary to change code in Drupal Core itself,
however there is one exception (see Section 5.6).

2.2 Workitems

Workitems are some sort of notification, they help a developer to keep track
of changes in his project. They can also be used by other users who want
to be informed about the development of their favorite projects. Workitems
are created on several key events in the system, like wiki page edits or Sub-
version commits. Some of them are triggered in Drupal, some within Origo
Core use cases and some in Subversion hooks. Each workitem has its own
icon which can be seen in figure 2.1.
Workitems are stored and managed within Origo Core and are therefore
not limited to a specific project page. The idea is that a user can access

2

Figure 2.1: Workitem Icons

his workitem list on the Origo Home site no matter what project site he is
currently on. Several Origo Core use cases are available to create, view and
manage the workitems. To distinguish between new and old workitems a
workitem is marked read when the user reads the workitem. For implemen-
tation details see chapter 4.

2.3 Drupal Sites

Drupal provides a sites system to host several sites with only one Drupal
code base. Each project has its own directory in the sites directory and can
have its own modules or themes. Modules that should be available in all
projects are stored in sites/all. The correct site is determined by looking at
the entered URL, if no match is found the default site is displayed. For Origo
we do not have project specific modules, therefore all additional modules are
located inside sites/all. To provide better maintainability the site specific
settings file is modified to use an include file. This makes it easier to make
changes to the settings file. Only the database settings remain in the project
specific file.

2.4 Scalability

Origo Core [13] is designed to be very scalable. The web interface is also built
to provide good scalability. For only a few projects both the web server and
the database server can be on the same machine. To support more projects
the database can be moved to another server. It is even possible to use
several database servers because the database server can be set individually
for each project instance. Another possibility is to use several web servers
on different machines. Either with some sort of load balancing or using
manually assigned servers. The implemented session system can handle
logins over several web and database servers.

3

Chapter 3

Drupal Modules

3.1 Origo Auth

The Origo Auth module handles user registration, login, logout, password
change and password reset. It also has a rewritten session handling and a
XML-RPC wrapper included.

3.1.1 User Registration

When registering a user with the normal Drupal user registration, a user is
created in the Drupal database belonging to the project page the registration
form was filled out. For Origo we need a global user registration which
creates an Origo user by using XML-RPC.

To achieve this we modified the existing user registration. Using the
Drupal hook system this is possible without changing code in any of the
Drupal core modules. First the hook form alter replaces the validate and
submit functions of the registration form. The form now calls our own
functions instead of the functions defined in the user module.
The submit function origo auth register submit then makes an Origo API
call to internal user.add to create a new user. On success the function
origo auth authenticate (see Section 3.1.3) creates the Drupal user and logs
him into the system.

3.1.2 Session Handling

Drupal provides a simple session management using PHP session. This
system works of course fine for single Drupal instances, but does not meet

4

all requirements for Origo.
For one thing we would like to keep the user logged in not only in the local
project. If he goes to another project (ie. another Drupal instance) he is still
within Origo and should be logged in. One way would be to store the PHP
session ID in a cookie accessible in all projects. While this is possible for
a single server environment, it does not work with multiple servers because
the session itself would have to be transfered to the other server. Because of
security reasons neither the storage of the session on the client is a solution.
Another problem is that each Drupal instance has its own user database.
So if a user is logged in into one project we cannot simply log him into
another project instance because the user might not exist in the other user
database. Using just one user database would limit scalability, and keeping
them synchronized would be very complicated.
The third problem is that Origo itself also has a session system. If an Origo
session expires we have to relogin to get a new session. Therefore we need
the username and the password.

The solution we came up with is to store an additional cookie on the
client. This cookie stores the Origo username and the encrypted password.
With this information available in all Drupal instances we can simply log in
the user in every instance using the login function.

The Origo session system is an extended Drupal Session System using
PHP sessions and the additional cookie. The green part in figure 3.1 shows
the session system in a flowchart. When accessing a page the system checks
if the Drupal cookie and/or the Origo cookie are available.

• If both cookies are missing the user is just an anonymous user.

• If the Drupal cookie is missing and we only have the Origo cookie a
login using sess load origo user() is performed.

• If the Drupal cookie is available and the Origo cookie is missing we
remove the PHP session and log out the user in this instance. This
means deleting the Origo Cookie performs a logout on all projects.

• If both cookies are available we check if they are valid and both for the
same user. If so a login using the PHP session and the normal Drupal
session system is performed. If the user data does not match a login
using the Origo session and sess load origo user() is performed.

The above mentioned function sess load origo user() extracts the user
and the encrypted password from the cookie. After decrypting the password
internal user.login is called using XML-RPC to log in the user into Origo and
get the Origo session. The Origo session is stored in the Drupal user object.
After the Origo login the user has to be logged in into Drupal. A check on

5

the local user database shows if the user is already available. If so, his data is
updated, otherwise he is added to the database. To assign the correct access
rights it is then determined if the user is an administrator, a project owner, a
project member or just a normal Origo user. See the orange part in figure 3.1
for a graphical representation of the function sess load origo user().
Because at the time the session code is executed most of the Drupal code is
not yet loaded, we cannot use the integrated xmlrpc() function. We use the
functions from the PEAR package XML RPC [10] instead.

3.1.3 User Login

To intercept the Drupal login system the form validate callback for the login
form is changed using the hook hook form alter. We use the validate handler
instead of the submit handler in this case because the XML-RPC request
validates the entered data and because we do not want to overwrite the rest
of the login performed in the submit handler. The new validate handler
calls origo auth authenticate function to perform the login on Origo. First a
XML-RPC request to internal user.login is executed. This call returns the
Origo session which is stored in the Drupal user session. After the successful
call the role of the user is determined using authorization.is allowed project
XML-RPC requests. Finally the Origo cookie containing the username and
encrypted password is created.

3.1.4 User Logout

As described in section 3.1.2 the complete logout in all project instances is
performed by destroying the Origo cookie. Therefore we use hook user to
hook into the user logout and destroy the Origo session.

3.1.5 Password Change

The Origo Auth module also overwrites the Drupal password change. The
existing password change would only change the password in the project
specific Drupal database. For Origo we need to change the password directly
in Origo using a XML-RPC request. Drupal has a password change field on
the user edit page. This page also has some fields that cannot be used with
Origo, so we use the hook hook menu to intercept the original edit menu and
create a new one currently only containing the fields that allow changing the
password. The corresponding submit function sets a new password calling
internal user.change password over XML-RPC.

6

Figure 3.1: Session Handling and User Login

7

3.1.6 Lost Password

If the user forgets his password he needs a way to reset it. As for the
user registration (see Section 3.1.1) we use the hook hook form alter to
change the form validate and submit handlers of the existing password reset
function. The new submit handler starts a XML-RPC request to inter-
nal user.reset password. This call starts the USER RESET PASSWORD
use case in Origo Core which takes care of generating a new password and
sending it to the user in an email. This generates also the password for all
the external applications like SVN and FTP that the user belongs to.

3.1.7 XML-RPC Wrapper

Many of the Origo API calls require a valid session. This session is returned
by the internal user.login XML-RPC request and is only valid for a limited
amount of time. If the session expires each request that requires a session
will return an error. A relogin with internal user.login is necessary to get
a new session. To provide an automated relogin if a session is expired the
Origo Auth module provides a wrapper to the Drupal xmlrpc() function.

There are two functions available: origo auth xmlrpc() which basically
is the same as the original xmlrpc() and origo auth xmlrpc session() which
is used for API calls that require a session.
origo auth xmlrpc session() adds the current Origo session as first argument
and calls the Drupal xmlrpc() function. If this function returns an error
indication the session is not valid, a relogin using sess load origo user()
(see Section 3.1.2) is done. After the relogin xmlrpc() is executed again with
the new session. If there is still an error it has to be a serious problem and
the error is therefore given to the caller.

3.2 Origo Home

The Module Origo Home is the Origo web main module and provides besides
several other functions features for workitems, project settings, releases and
Origo administration.
Functions are organized in groups and moved to include files whenever it
was possible. However all functions are still defined in the hook hook menu
which defines the path a function is available at.

8

Figure 3.2: Origo Home showing the workitems

3.2.1 Origo Home

Origo Home is the main page to view the workitems. A project tab is shown
for each project a user is either developer or has bookmarked. Normally
only the unread workitems are shown and they become read by following
the link or using the checkbox. When selected to show all workitems the
read workitems are shown too.

This page makes several XML-RPC requests to Origo Core. First the
own and the bookmarked projects are retrieved using project.list of user
and user.list bookmark. With workitem.list projects the workitems for these
projects are retrieved (see Section 4.8) and listed in a table for each project.
Depending on the workitem type the information shown in the table is ex-
tracted and displayed.
To enable the fast tab switch a JavaScript is used. Drupal has the JavaScript
library jQuery [6] included, which makes it quite easy to add fancy effects
or AJAX to the page. A JavaScript together with an AJAX request is also
used to set the read state of a workitem. A click on the checkbox fires an
asynchronous request which sets the state in Origo using XML-RPC. As
soon as this request completes the style of the workitem is changed to look
greyed out or if marked unread to look bold and black again.

9

The Origo Home page also has a link to mark all workitems of the project
as read. This function calls workitem.set read status project.

3.2.2 Workitem Subscription

The Workitem Subscription Settings provide a simple way to manage the
workitem notifications (see Section 4.7). Using calls to project.list of user
and user.list bookmark the own and the bookmarked projects are retrieved.
For each of these projects user.list workitem subscription retrieves the cur-
rently set notifications. After submitting the form an XML-RPC request
with user.set workitem subscription sets the new notifications.

3.2.3 Project Bookmarks

Origo Home module provides a list of all bookmarked projects which it gets
by a XML-RPC request to user.list bookmark. There are also two menu
paths defined in the hook hook menu to add and remove bookmarks. These
paths can be used as links to quickly add or remove a bookmark and are
implemented by calling user.add bookmark or user.remove bookmark XML-
RPC. Both adding and removing also sets or removes all the workitem sub-
scriptions (see Section 4.7) for the corresponding project.

3.2.4 Project List

The project list simply lists all projects hosted on Origo. This list uses
the internal API call internal project.list to get the projects because the
list should also be available to anonymous user which do not have session.
Projects flaged hidden are not shown in this list. Most of the hidden projects
are empty student projects created in courses.

3.2.5 User Key Request

External software using the Origo API requires the user to enter a user key
instead of his password. This page provides a way to request a key using
the API function internal user.generate key.

3.2.6 E-Mail Change

This page allows a user to change his e-mail address and is implemented
using a XML-RPC request to internal user.change email.

10

Figure 3.3: Project Request Table

3.2.7 Project Settings

On the Project Settings page a project owner can manage some project
settings.
The members page allows adding and removing project members or owners.
This is done by calling project.change group with XML-RPC.
The description page allows changing the project description using the XML-
RPC methods project.retrieve and project.change description.
Changing the logo is possible on the logo settings page. Adding a logo
uploads the picture to the local Drupal instance and uses the Drupal theme
system to display the logo. Additionally the executed XML-RPC method
project.change logo updates the logo filename in Origo.

3.2.8 Project Creation Request

Every Origo user can request the creation of a new project. The project
creation itself is done manually by an administrator for security reasons.
However several features are implemented to automate this process.
A user can request a project on the Create Project page. He has to pro-
vide the name, a description and if it is a closed or open source project.
A XML-RPC request to project.request add checks if the project name is
valid and still available and adds the project to a request table in Origo (see
Figure 3.3). Using the Drupal mail function a mail to the administrators is
sent including the entered data and a link to a creation form. This creation
form defined in origo admin create project form request page is only avail-
able to administrators and loads the details for the requested projected with
the XML-RPC request to project.request retrieve. The administrator may
now make changes to the entered data and the confirmation mail. Send-
ing the form starts the project creation process which includes the project
creation (see Section 5.3), adding the requesting user as project owner (see
Section 3.2.8) and sending a mail to the user informing him about the cre-
ated project.

11

3.2.9 Administration Menu

The admin menu provides an interface to the XML-RPC methods reserved
for administrators.
There is a project list like the one open for all users (see Section 3.2.4).
The difference to the open project list is the usage of the external API call
project.list and that is also shows the hidden projects.
To send newsletters or important information to all users an administra-
tor can use the mass mail function defined in origo admin massmail page()
which starts a XML-RPC request to origo system.mail all.
A project creation form allows the direct creation of a project (see Sec-
tion 5.3) without using the request mechanism described in Section 3.2.8.
Finally the function origo admin status page shows the result of the XML-
RPC request to origo system.status which returns some information about
the running nodes.

3.3 Issue Tracker

The issue tracker module is the web front-end to the Origo issue system
described in section 5.2. Issues are implemented in Drupal as a new node
type and issue replies are simple comments.
The hook hook insert is used to intercept node insertion and make a call
to release.add via XML-RPC. This call returns the project specific issue id
which is stored in an additional table issues in the Drupal database. The
standard comment system is also modified in the hook hook form alter to
execute the XML-RPC method release.comment

3.4 Developer Pages

The Developer Pages module is a simple module that adds the possibility to
flag pages as private. Private pages can only be accessed by project members
and can be used to store project internal information. Workitems created
from private pages are also only visible to project members.
This module is a Drupal node access module and uses several hooks to
perform its task. hook node grants is used to define the node access rights,
hook nodeapi is used to keep track of node inserts and changes to update the
table containing all private pages. hook form alter is used to add a checkbox
at the end of a node edit form (see Figure 3.4) giving the possibility to mark
this node private.

12

Figure 3.4: Checkbox to flag a page private

3.5 Existing Modules

3.5.1 Captcha

Because spam bots are everywhere nowadays it is necessary to protect all
functions that can be accessed without a valid login. This includes user
registration and password reset. The Captcha module provides a simple
math challenge a user has to answer. The protection is not as strong as
it would be with an image captcha, but the image captcha module had
several bugs which made it impossible to use. Fortunately at the moment
the current system suffices.

3.5.2 Diff

Diff shows differences between node revisions. It adds a new tab on top of
nodes like wiki pages and shows all changed word in a colored view.

3.5.3 Form Store

Provides form information to other modules and is needed by the Captcha
Module. (see Section 3.5.1)

3.5.4 GeSHi Filter

A filter to highlight sourcecode using GeSHi. [2]

3.5.5 Google Analytics

The Google Analytics module is used to gather advanced web statistics using
Google Analytics [3]. It works by including a JavaScript on top of each page
and can therefore retrieve information that is not available in web server
logs. The included JavaScript is hosted on www.google-analytics.com which
turned out to be a bottleneck, therefore we modified the module.

Instead of including the script from www.google-analytics.com we used
a local copy on our local server. A simple daily cron job (see Figure 3.5) is

13

wget http://www.google-analytics.com/urchin.js -q
-O /data/www/origo/static/urchin.js

Figure 3.5: Cron Job Command for Google Analytics

scheduled to download the script to make sure the script is up to date in
case Google releases a new version.

3.5.6 Google Co-op CSE

Google Custom Search Engine [4] is a service to include Google search on
your on website. We use this service to provide an Origo wide search over
all projects.

3.5.7 Image

Allows uploading, resizing and viewing of images.

3.5.8 Image Assist

This module allows users to upload and insert inline images into posts. It
automatically generates an Add image link below text fields.

3.5.9 Pathauto

Provides a mechanism for modules to automatically generate aliases for the
content they manage. This is used to generate wiki links.

3.5.10 PEAR Wiki filter

Filter which uses the PEAR Text Wiki [9] package for formatting.

3.5.11 Tag Query Language

A nice tag query language. This can be used to write queries to retrieve
nodes with specific tag. For example one could to write a query for all open
issues assigned to him.

14

3.5.12 Wikitools

Provides helper functionality to have wiki-like behavior.

15

Chapter 4

Workitem Implementation

workitem id The workitem ID, unique in the system

type The workitem type (1=Issue, 2=Release, 3=Commit, 4=Wiki,
5=Blog)

creation time Timestamp when the workitem was created

project id ID of the project this workitem belongs to

project Name of the project this workitem belongs to

user Name of the user responsible for the workitem creation

is read 1 if the user has already read this workitem, 0 otherwise

4.1 Issue Workitem

Issue workitems are created for new issues and issue replies. The following
additional information is included:

project issue id The issue ID, unique in the corresponding project

title The title of the issue

description Detailed description or text provided in the issue

is new 1 if this is a new issue, 0 if it’s a reply

url Link to the issue web page

4.1.1 Origo API Call

Issue workitems are created after inserting the issue itself in the ISSUE ADD
and ISSUE COMMENT use cases, which are started by the XML-RPC
methods issue.add and issue.comment. Because issues are already stored in

16

Figure 4.1: Workitem Tables

17

Origo (see Section 5.2) only the issue revision id needs to be stored in the
table workitem issue. Figure 4.1 shows this relation.

4.1.2 Drupal Integration

The issue workitems are created on new issues and issue comments in the
Issue Tracker module. (see Section 3.3)

4.2 Release Workitem

A release workitem is created on each new release. It contains the following
information:

name The name of this release

description Detailed description

version Version of this release

url Link to the download page

file count Number of files included in this release

file name X Filename of file X (X = {1 .. file count})
file platform X Platform for file X

4.2.1 Origo API Call

When adding a release with the release.add API call Origo starts the RE-
LEASE ADD use case. After inserting the release itself it takes the ID
of this releases and inserts a new workitem into the tables workitem and
workitem release as shown in figure 4.1.

4.2.2 Drupal Integration

When using the website for releasing files the workitem (and release) creation
is triggered inside origo home create release form submit in the origo home
module.

4.3 Commit Workitem

A commit workitem is created for each commit in the Subversion repository.
It contains the following information:

18

revision The SVN revision associated with this commit

log Log describing the commit

url Link to the WebSVN page for this revision

diff Diff for committed files (this is truncated for large commits)

4.3.1 Origo API Call

Commit workitems are created in the internal XML-RPC method inter-
nal commit.add which starts the COMMIT ADD use case. As shown in
figure 4.1 all data is stored in the table workitem issue.

4.3.2 Subversion Integration

The commit workitem creation is triggered by a SVN post-commit hook.
The used script is an adaptation of the standard commit mail script which
uses XML-RPC instead of mailing the changes. The script gets the user,
project, revision, commit log and generates a diff of all changes which are
then used to call internal commit.add.

4.4 Wiki Workitem

Wiki workitems are created for new and changed wiki pages and contain the
following information:

title Wiki page title

diff Diff of wiki changes

revision Drupal node revision after change

old revision Drupal revision before change

url Link to the wiki page

diffurl Link to the diff page for this wiki page

4.4.1 Origo API Call

The use case WIKI ADD started in the XML-RPC method internal wiki.add
adds wiki workitems into the workitem wiki table (see Figure 4.1). Besides
a diff between the revisions which is generated using the PEAR Text Diff
class [8] the old and new node revision is stored.

19

4.4.2 Drupal Integration

Adding or editing wiki node types is intercepted in the Origo Home module
(see Section 3.2) within the hook hook nodeapi.

4.5 Blog Workitem

Blog workitems are created for new and changed blog posts and contain the
following information:

title Blog title

diff Diff of blog changes

revision Drupal node revision after change

old revision Drupal revision before change

url Link to the blog entry

diffurl Link to the diff page for this blog entry

4.5.1 Origo API Call

Adding blog workitems in Origo is similar to adding wiki workitems. It
uses the API call internal blog.add to store blog workitems in the table
workitem blog.

4.5.2 Drupal Integration

Adding or editing a blog node type is intercepted with the hook hook nodeapi
like for wiki workitems.

4.6 Access Control

While blog and release workitems are accessible for everyone, commit, wiki
and issue items have an access control mechanism. Commit items for closed
source projects are of course only visible for project developers to keep the
source closed. Wiki pages and issues can be set private so we have to do the
same with their workitems. If the corresponding wiki page or the issue is
private the workitem is only visible for project developers.

20

4.7 Notification

Origo provides different ways to notify users about new workitems. First
there is the workitem list on Origo Home (see Section 3.2.1). New workitems
can also be queried via the API and there is a mail notification available.
A user can set how and for which workitem types he wants to get notified.
This is done using the web interface (see Section 3.2.2) or directly using the
API. The XML-RPC method to be used is user.set workitem subscription.
The core use case USER SET WORKITEM SUBSCRIPTION then adds
the subscriptions into the table user workitem subscription. There is also
a call user.list workitem subscription available to read out the current sub-
scriptions.

4.8 Workitem Retrieval

To retrieve the workitems there is either the XML-RPC method workitem.list
or workitem.list projects. The workitem list on Origo Home is implemented
with a call to workitem.list projects which retrieves a given number of the
newest workitems for each own and bookmarked project. The parameter
unread only is used to retrieve only unread workitems, otherwise read and
unread will be retrieved. The method workitem.list also lists a given number
n of workitems, but this method just returns a total maximum of n newest
workitems in all own and bookmarked projects. If five workitems are re-
quested and the first project already has ten new workitems then only five
workitems of this project are retrieved and none from any other project.
A detailed single workitem is retrieved with a call to the XML-RPC method
workitem.retrieve.
All retrieve calls implement the access control described in section 4.6 and
the subscription settings described in section 3.2.2. So only workitems a
user wants to see and is allowed to see are retrieved.

21

Chapter 5

Implementation Details

5.1 Releases

Releases are managed within Origo Core. A release consists of some general
data and a number of files, where each file has a filename and a platform.
This information is held in the two tables shown in figure 5.1. The files are
stored on a web server.

To create a release the files have to be copied to a FTP server or uploaded
using the web interface. The XML-RPC core method release.add can then
be used to add the release. It starts the RELEASE ADD use case which
first adds the release to the database and then moves the files from the user
FTP space to the download directory.

The two XML-RPC methods release.list and release.retrieve are used to
get existing releases. Because the files are stored on a web server they can
be downloaded using any available download program.

Figure 5.1: Release Tables

22

Figure 5.2: Issue Tables

5.2 Issues

Issues are stored in the four tables shown in figure 5.2. General issue infor-
mation is held in the table issue, the issue text and each reply is held in is-
sue revision. Issue states are completely handled with tags. Open issues just
have another tag than closed issues. Tags are stored in the tag text table on
their first use and associated to issue revisions with the issue tag association
table.

A call to the XML-RPC method issue.add is used to add a new issue.
The return value is an integer with the assigned issue ID. Issue replies are
added with issue.comment using the given issue ID.
To retrieve issues there are the two methods issue.list and issue.retrieve
available.

23

5.3 Project Creation

Creating a new project includes several steps and is started by execut-
ing a project.add XML-RPC request. This starts the Origo Core use case
PROJECT CREATE in which the project is created in the Origo database
and two scripts are started. Using the config node first a simple shell script
creates the Subversion [11] repository. Then a second script is called to cre-
ate the Drupal project.
This PHP script creates the Drupal project database, a database user and
sets the permissions on the database. Then it creates the directories in the
Drupal sites directory (see Section 2.3) and copies the initial files into it.
The Drupal installer is executed by sending the POST data normally en-
tered in a form directly to the script. As PHP has no built in function to
send POST data with an HTTP request the PEAR package HTTP Request
[7] is used. Finally some modifications to the created project are made. This
includes modifications where the project name and ID are needed and the
modification of the settings file to have all non-project specific information
in an include file.

Two important variables often needed in XML-RPC methods are the
project ID and the project name. These two variables are set in the creation
process and stored in the Drupal variable system as origo project name and
origo project id. The function variable get is used to retrieve these variables
whenever needed.

5.4 Drupal Installation Profile

Drupal provides installation profiles to specify how a new instance is created.
Such a profile is used to create the standard Origo project instance. The file
specifies which modules to load, their settings and some example content.

5.5 Drupal Theme

The Origo theme is based on a standard Drupal theme and modified at a
few points. To create the illusion of a page which has always a height of
100% a background image is used.

24

5.6 Drupal Core Changes

Despite the fact that Drupal has a very good extension system with modules,
hooks, etc it was necessary to make changes to Drupal core code.

5.6.1 XML-RPC

Drupal has a built-in XML-RPC client which can be used to access Origo
Core. It works by calling the function xmlrpc. The return value is either the
result provided by the server or FALSE if an error occured. Drupal docu-
mentation states that one should check xmlrpc errno() or xmlrpc message()
if the return value was FALSE.

Unfortunately there is no way to reset the XML-RPC error object xml-
rpc error. A second call to xmlrpc does only change xmlrpc error if the
XML-RPC call fails, on success xmlrpc error is left untouched in its error
state. Several texts on the Drupal page comment this issue with the fact
that xmlrpc error has only to be checked if the call returned FALSE and in
this case xmlrpc error would be set to a new value anyway. This statement
is not correct for XML-RPC calls returning a boolean value. It is not clear
if a return value FALSE is the correct server return value or indicating an
error. On the first call this is not a problem because xmlrpc error is not set
yet. But if such a boolean call is used after a failed call then we have no
way to say if the FALSE was an error or not, because xmlrpc error is still
set from the first failed call.

The only way to fix this issue was to make a modification to Drupal
Core. We simply created a function to reset xmlrpc error. This call is then
called at the beginning of the function xmlrpc which resets the error with
each new call and therefore solves our problem.

5.7 Drupal Cron Job

Drupal uses a cron job to call a specific PHP script. Modules can then use
a hook which is called in this cron PHP. In the Origo setting there is such
a file for each project. To combine all these scripts a helper script loops
through all projects and calls the PHP script for each project. The project
list is retrieved with an XML-RPC request.

25

Chapter 6

Deployment

6.1 Dependencies

Before Origo Web can be installed a few dependencies have to be fulfilled.
Here is a list of the dependencies:

• Apache web server with mod rewrite

• PHP 5

– PHP memory limit set it to at least 16 MB

• PEAR with the packages:

– HTTP Request ≥ 1.4.1 stable

– Text Diff ≥ 0.2.1 beta

– Text Wiki ≥ 1.2.0 stable

– Text Wiki Mediawiki ≥ 0.1.0 alpha

– XML RPC ≥ 1.5.1 stable

• php-geshi

• php-mcrypt

• working Origo Core system

6.2 Installation

Detailed installation instructions are available in the Origo Wiki. [5]

26

1. Checkout Drupal from CVS

2. Checkout additional Drupal modules CVS

3. Checkout Origo Web

4. Copy Origo Web files into Drupal installation (using examples/release-
files.sh)

5. Edit settings in sites/all/settings.inc

27

Chapter 7

Future Work

The current system as it is now provides a good base for further features
and improvements.

One possible additional feature would be a ranking system for projects.
This ranking could be based on the number of workitems with different
weights according to the workitem type.

Instead of using Google CSE it would be possible to develop an own
Origo wide search, perhaps including the above mentioned ranking system.

There is also the possibility to extend the current theme with new fea-
tures like selectable color for project owners.

28

List of Figures

2.1 Workitem Icons . 3

3.1 Session Handling and User Login 7
3.2 Origo Home showing the workitems 9
3.3 Project Request Table . 11
3.4 Checkbox to flag a page private 13
3.5 Cron Job Command for Google Analytics 14

4.1 Workitem Tables . 17

5.1 Release Tables . 22
5.2 Issue Tables . 23

29

Bibliography

[1] Drupal, open source content management platform. http://drupal.org.

[2] GeSHi - Generic Syntax Highlighter. http://qbnz.com/highlighter.

[3] Google Analytics. http://www.google.com/analytics.

[4] Google Custom Search Engine. http://www.google.com/coop/cse.

[5] Installing Origo web. http://origo.ethz.ch/wiki/installing origo web.

[6] jQuery: The Write Less, Do More, JavaScript Library.
http://jquery.com.

[7] PEAR Package HTTP REQUEST. http://pear.php.net/package/HTTP Request.

[8] PEAR Package Text Diff. http://pear.php.net/package/Text Diff.

[9] PEAR Package Text Wiki. http://pear.php.net/package/Text Wiki.

[10] PEAR Package XML RPC. http://pear.php.net/package/XML RPC.

[11] Subversion, version control system. http://subversion.tigris.org.

[12] Till G. Bay. The origo software development platform. ETH Zürich,
2005.

[13] Patrick Ruckstuhl. Origo core: Middleware and controller for origo.
Master’s thesis, ETH Zürich, July 2007.

30

http://drupal.org
http://qbnz.com/highlighter
http://www.google.com/analytics
http://www.google.com/coop/cse
http://origo.ethz.ch/wiki/installing_origo_web
http://jquery.com
http://pear.php.net/package/HTTP_Request
http://pear.php.net/package/Text_Diff
http://pear.php.net/package/Text_Wiki
http://pear.php.net/package/XML_RPC/
http://subversion.tigris.org

	Abstract
	Acknowledgments
	Introduction
	Goal
	Overview

	Design
	General
	Workitems
	Drupal Sites
	Scalability

	Drupal Modules
	Origo Auth
	User Registration
	Session Handling
	User Login
	User Logout
	Password Change
	Lost Password
	XML-RPC Wrapper

	Origo Home
	Origo Home
	Workitem Subscription
	Project Bookmarks
	Project List
	User Key Request
	E-Mail Change
	Project Settings
	Project Creation Request
	Administration Menu

	Issue Tracker
	Developer Pages
	Existing Modules
	Captcha
	Diff
	Form Store
	GeSHi Filter
	Google Analytics
	Google Co-op CSE
	Image
	Image Assist
	Pathauto
	PEAR Wiki filter
	Tag Query Language
	Wikitools

	Workitem Implementation
	Issue Workitem
	Origo API Call
	Drupal Integration

	Release Workitem
	Origo API Call
	Drupal Integration

	Commit Workitem
	Origo API Call
	Subversion Integration

	Wiki Workitem
	Origo API Call
	Drupal Integration

	Blog Workitem
	Origo API Call
	Drupal Integration

	Access Control
	Notification
	Workitem Retrieval

	Implementation Details
	Releases
	Issues
	Project Creation
	Drupal Installation Profile
	Drupal Theme
	Drupal Core Changes
	XML-RPC

	Drupal Cron Job

	Deployment
	Dependencies
	Installation

	Future Work
	List of Figures
	Bibliography

