VamPeer

JXTA implementation for Eiffel

Beat Strasser <beat@stradax.net>

Master thesis

September 2006 — March 2007
ETH Ziirich, March 3, 2007

Supervisor: Till G. Bay <till.bay@inf.ethz.ch>

Professor: Bertrand Meyer <bertrand.meyer@inf.ethz.ch>

ETH Chair of
Eidgendssische Technische Hochschule Ziirich

Swiss Federal Institute of Technology Zurich SOftwa re E ngl neeri ng

Abstract

The goal of this master thesis is to equip Eiffel with a peer-to-peer framework. The
well-known JXTA protocol was chosen for that purpose.

VamPeer aims to be an Eiffel binding for JXTA, currently offering the essential
services used in a typical edge peer. It thus allows to discover remote peers and to
communicate with other peers through a TCP transport. Implementing the
discovery service, it is possible to query for local and remote entities. The library is
fully compatible with the latest JXTA JSE reference implementation.

Contents

Introduction
1.1 Mission
1.2 Related work
1.3 Chapter overview
JXTA
2.1 Peer groups
2.2 IDs
2.3 Advertisements
2.4 Services e
2.4.1 Endpoint service
2.4.2 Transport modules
2.4.3 Rendezvous service
2.4.4 Resolver service
2.4.5 Discovery serviceo o
2.5 JXTA’s P2P infrastructure and peer roles
Design
3.1 Requirements
3.2 Module structure
3.2.1 Peer groupmodules 0oL
3.3 Defining a peer groupo
3.4 Services
3.4.1 Module choice Lo
3.4.2 Service layers
3.5 Address rewriting
3.6 Rendezvous propagation L.
Implementation
4.1 Development environment
4.2 Used libraries
4.3 Socket extensions
4.4 XML documentso
4.5 Using UUID for JXTAIDs
4.6 Threads

4.6.1 TCP Transport

10
10

11
11
12
13
14
15
16
17
19
20
21

22
22
23
24
25
26
26
27
29
30

Contents

Contents
4.6.2 Rendezvous connection manager
4.6.3 Discovery SRDI
4.7 Advertisement storage
4.7.1 Persistent storageo
472 LRUcache.
4.8 Shared creators
5 Usage
5.1 Platform starting
5.1.1 Private peer groups
5.2 Services
5.2.1 Endpoint service
5.2.2 TCP Transport module.
5.2.3 Rendezvous service
5.2.4 Resolver service
5.2.5 Discovery service
5.3 Writing a P2P application
5.3.1 Writing a user service
54 Examples oL
5.4.1 Endpoint message sender/handler
5.4.2 Rendezvous propagation
5.4.3 Discovery
5.4.4 JXTA JSE rendezvous server
6 Origo with VamPeer
6.1 Origo overview
6.2 Designo
6.2.1 Task
6.2.2 P2P infrastructure
6.2.3 Startup procedure.
6.2.4 Role configurations
6.3 Summary
7 Results
7.1 Benchmark
7.2 Unittestso o
7.3 Summary . o.o.o.o. ..

8 Conclusions

8.1 Futurework
8.2 Acknowledgements

List of Figures

3.1
3.2
3.3
3.4
3.5

4.1
4.2

6.1

Module life cycle oo 23
Module class hierarchy 24
Information flow for an outgoing discovery query 27
Information flow for an incoming discovery response 29
A mangled service handler name 30
XML document class hierarchy 33
ID class hierarchy 34
Origo example P2P class structure 60

List of Listings

2.1
2.2
3.1
4.1
5.1
5.2
2.3
5.4
2.5
2.6
5.7
2.8
2.9
5.10
5.11
5.12
5.13
5.14
0.15
5.16
0.17
7.1
7.2

A sample peer advertisement for a peer in the public NPG 14
A sample resolver query XML document 19
Clusters overview 26
Persistent storage directory layout 38
Configuring the platform instance 41
Loading/starting the platform with the public NPG 42
Creation of IDs for a new peer group 43
Creating a platform configuration for a private peer group 43
Creating a peer group module implementation advertisement 44
Loading a private NPGo 44
Example endpoint message handler 46
Creating and sending an endpoint message 47
Example endpoint message filter 48
Full TCP transport configuration 48
Example rendezvous event handler 50
Public NPG rendezvous seeds 50
Example rendezvous configuration 51
Sending a resolver query 51
Sending a remote discovery query 53
Publishing an advertisement remotely 54
Redefining peer group modules 55
Benchmark outputo 62
Unit test results 63

List of Tables

2.1 UUID ID types in JXTA IDs

3.1 Required services

1 Introduction

Peer-to-peer systems have become very popular in the last few years. They allow
users to share resources (such as calculation power or information) in a distributed
and decentralized way. Peer-to-peer (henceforth called P2P) technology firmly differs
from the client-server model which relies on one central server fulfilling all tasks for the
clients whereas in a P2P system every participant is considered equivalent. [MKL02]
gives a good overview of P2P based on the most important systems and summarizes
the key concepts.

In P2P applications, we often want to perform the same tasks like discovering other
peers, sending and propagating messages and sharing information. While many P2P
applications implement their own solutions, there also exist frameworks which provide
a simple API for most of these common tasks.

1.1 Mission

Unfortunately for the Eiffel programming language, there was no such framework.
This master thesis fills that gap and implements an existing framework: JXTA. We
call our library VamPeer.

The main purpose of our implementation is to have a P2P library available in
Eiffel so that it can be used in Origo, a new software development platform by Till
Bay. The Origo platform is a distributed and very modular as well as an extendable
system integrating the usual facilities like version control, bug tracking and project
web hosting together with a single sign-on solution!. It will use our P2P library so
that the various modules, each residing on another peer, may seamlessly communicate
with each other.

Chapter 6 gives a more detailed introduction to Origo. For now, we would like to
point out that we only supply the P2P library but do not integrate it into Origo. Our
library is generic in so far as it can be used for many purposes and is not coupled to
the Origo platform with respect to the code. But still, our long term goal is to satisfy
Origo’s networking needs with a library.

JXTA is an open source P2P framework created by Sun Microsystems [Pro|. It is
one of the most mature platforms in its field. JXTA (pronounced juzta) is composed
of several modules each implementing a JXTA protocol (for example the discovery
protocol). The protocols are heavily based on XML.

L Single sign-on is an authentication technique allowing a user to authenticate once in order to gain
access to several resources.

1.2 Related work INTRODUCTION

1.2 Related work

In Eiffel, there is currently no P2P library available. As far as we know, we are the
first building such a library. Fortunately, there is a number of general networking
libraries so that we do not have to start from scratch.

The decision to use JXTA was quite simple since it is the only platform independent
framework. This gives us the advantage to port it to Eiffel and to be compatible with
other implementations. While the reference implementation is written in Java JSE,
there also exist other bindings written in C, JXME and others. Most of the other
smaller bindings are not yet ready to use.

Probably one of the most alike project is called Jini. It is unsuited for our purpose
since it only runs on Java. Furthermore, it uses a central server to locate network
services in contrary to JXTA which follows a completely decentralized P2P model.

There is also another framework named OogP2P but since it is a simple study
project and unmaintained since several years, we did not have a closer look at it.

Besides frameworks, there are plenty of P2P networks defining a full protocol for
sharing content (for example GnuNet). Research projects such as Chord usually
provide special algorithms for a distributed hash table. These projects do not meet
our demands since they focus too much on sharing information and lookup algorithms
instead of more general P2P facilities.

We therefore build an Eiffel binding for JXTA because it gets used more and more
in today’s applications (for example Collanos Workplace). A short overview of the
mentioned P2P frameworks and protocols is available at the VamPeer’s website?.

1.3 Chapter overview

We now proceed to present our new library dealing with the following topics:

Chapter 2 introduces the JXTA protocols we are dealing with and explains JXTA’s
key concepts. In chapter 3, we analyze the requirements for Origo and then define how
we designed our library to comply with the JXTA standard. Chapter 4 deals with the
implementation and demonstrates how we mastered the challenges. The subsequent
chapter 5 lists the VamPeer’s possibilities and explains the library API based on
some examples. A larger example is shown in chapter 6 where we demonstrate how
messaging could be done in Origo. Chapter 7 covers the results of our work and its
performance. We finally conclude with chapter 8 where we will have an outlook to
future work.

2The project is hosted on Origo at: http://origo.ethz.ch/index.php/VamPeer

10

http://origo.ethz.ch/index.php/VamPeer

2 JXTA

Before we describe the VamPeer design, we give an introduction to the JXTA world.
We show how the JXTA protocols are designed and present a specifications overview.

The full specification [Pro07], which is available online, mainly covers the basic
ideas around JXTA and specifies nearly only the messages which go over the wire. For
more semantical details, we recommend further literature or to look at the reference
implementation source code.

The paper [TADO3] focuses on the newer release 2 of the JXTA’s protocols and
gives a good overview. The free book by Brendon Wilson [Wil02] explains JXTA
with many Java examples whereas [BGKS02]' goes more into the details of the Java
reference implementation. Unfortunately, the books are slightly out of date.

We will first look at peer groups, define JXTA IDs and advertisements and then
introduce the different services and protocols available. Afterwards, we present the
overall P2P network infrastructure. We do not remain only at the JXTA specification
level but go further and show a few design ideas used in JXTA JSE, the Java reference
implementation?.

2.1 Peer groups

A peer group is a compound of peers agreeing to run the same set of services®. When
a peer joins a peer group, all services needed should be loaded according to the peer
group’s specification. Thus, a peer is always a member of at least one group as there
would not be any running services at all otherwise.

A peer may belong to more than one peer group though. The super peer group
which is loaded first is usually the world peer group (WPG). All other groups are
direct or indirect children of the WPG. This is because only one peer group can
actually handle the network traffic. The specification does not explicitly mention a
parent-child relationship among peer groups but it is handled that way in JXTA JSE
and also in VamPeer.

lyww.samspublishing.com provides a free sample chapter: “Java Implementation of JXTA Pro-

tocols”

2JXTA JSE is currently available in version 2.4.1, see [Pro]. The next release 2.5 follows in March
2007.

3A service is a set of features following a specification either made by the JXTA project or the
user, see section 2.4.

11

www.samspublishing.com

2.2 IDs JXTA

World Peer Group The WPG is defined as the peer group in which all JXTA peers
reside, even if they are not communicating with each other. The WPG is somewhat
a special peer group which is automatically loaded and may not support all services.
In the C implementation, there is actually no explicit WPG whereas VamPeer uses
one for configuration purposes only.

The WPG’s ID* reads urn: jxta: jxta-WorldGroup.

Net Peer Group The WPG’s only direct child is the net peer group (NPG) which
is now a true normally running peer group configured with all JXTA services.

When talking about the NPG, we usually mean the public net peer group with the
ID urn:jxta:jxta-NetGroup. It should only be used for development and testing
purposes (as long as no other group has been created). Sun provides a public in-
frastructure for this peer group—unfortunately, the servers have been unavailable or
under heavy load for the last couple months®.

When using JXTA as a framework for a custom P2P application, one should create
a new private NPG so that the application will not get in contact with peers from
other applications®. It has its own network.

Other peer groups are children of the NPG. Although services can be shared among
peer groups, one should have good reasons to split the application into several groups
as peer communication is only possible within the same group.

2.2 IDs

We already mentioned IDs for peer groups. Also other entities in JXTA have an ID:
peers, modules, advertisements and other resources. A JXTA ID must be a complete
identifier referring to a unique resource.

JXTA IDs are in URN format (see [Moa97]) with the namespace jxta. Addition-
ally, the URN namespace specific string is prefixed with a format ID announcing how
the ID is formatted. The general form looks like this: urn: jxta:format-specificid

Although the format is written explicitly, one should never make any assumptions
about the ID format. Of course, it is allowed to optionally gather some information
from an ID when the format is recognized.

UUID format Most IDs are in the JXTA uuid format. They are in hexadecimal
form representing 1 up to maximal 64 bytes. The last byte (the last two hex digits)

4See section 2.2 for an introduction to JXTA IDs.

5This downtime being cumbersome, it is no problem as one can easily setup an own rendezvous/re-
lay server, see subsection 2.4.3.

6This is not a guarantee however; every JXTA peer may connect as long as it knows the address
and has a purpose.

12

JXTA 2.3 Advertisements

always specifies the type. Each type stands for its own bytes schema. Usually, the
number contains one or two UUIDs’, each 16 bytes long.

Table 2.1 shows the defined types for the uuid format and all the contained infor-
mation.

Sample IDs look like this:

e Peer group ID:
urn: jxta:uuid-822A7C9E6B804759870B81B10070EICI\
59616261646162614A7874615032503302

e Module class ID:
urn: jxta:uuid-261F502615134AA99FDCO9E3751E6B8505

ID byte | Type name Information contained

01 Codat 1D Group UUID, Codat UUID, Codat Hash
02 Peer group ID Group UUID, Parent group UUID

03 Peer 1D Group UUID, Peer UUID

04 Pipe ID Group UUID, Pipe UUID

05 Module class ID Module UUID

06 Module specification ID | Module class UUID, Specification UUID

Table 2.1: UUID ID types in JXTA IDs

2.3 Advertisements

Another important and widely used term in JXTA is advertisement. It is an XML
document advertising any kind of resource. It does not actually contain the real
data, but only metadata. The JXTA protocols are then used to transport and share
advertisements with other peers.

For peers, peer groups and all the other JXTA entities, there are advertisement
schemes defined. It is the JXTA way of creating new types of advertisements for each
used entity. In a file sharing application for example, one would possibly create a file
advertisement containing a codat ID®, the owner’s name, the creation date and the
peer’s ID that hosts the file.

An advertisement has an expiration time, so no old advertisements may be passed
around. As advertisements cannot be withdrawn or deleted on remote peers, one
should not set the expiration time too high; the default expiration is two hours, but

TA “Universally Unique Identifier” (UUID) is a random number (containing also time information)
meant to be universally unique (the probability to create two same UUIDs in the same context
is very small). They are fully defined in [ISO04]. You may more like the corresponding RFC
[LMS05] which describes also the UUID format but focuses more on UUID as a URN namespace.

8 A codat is just a container for any kind of data, for example file content.

13

10

11

12

13

14

2.4 Services JXTA

implementations may vary. When resources are valid for a longer time than the
expiration time, the advertisement has to be recreated and published again.

We would like to show two advertisement types so that you may better understand
its purpose:

Peer Advertisement One of the most important advertisements is the one describ-
ing a peer. This is used for example to discover peers. It contains the peer ID, the
peer group ID and an optional peer name as well as a description. Each service may
additionally add a service parameter with some special configurations.

Listing 2.1 shows a sample peer advertisement. The service parameter hosts the
configuration for the endpoint service: a route advertisement that advertises the
physical endpoint address (IP host and TCP port).

<7xml version="1.0" encoding="UTF-8"7>
<jxta:PA xmlns:jxta="http://jxta.org">
<PID>urn: jxta:uuid-59616261646162614E50472050325033\
1A227980E5924E80A3FD8ECD73D4C31803</PID>
<GID>urn: jxta:jxta-NetGroup</GID>
<Name>My sample peer node</Name>
<Desc>Development test peer</Desc>
<Svec>
<MCID>urn:jxta:uuid-DEADBEEFDEAFBABAFEEDBABE0000000805</MCID>
<Parm><jxta:RA><Dst>
<jxta:APA><EA>tcp://129.132.105.170:32725</EA></jxta:APA>
</Dst></jxta:RA></Parm>
</Svc>
</jxta:PA>

Listing 2.1: A sample peer advertisement for a peer in the public NPG

Peer Group Advertisement The peer group advertisement announces the existence
of a group. It contains the group ID, the module specification ID? and optionally again
a name, description and service parameters.

2.4 Services

Until now, we have just introduced peer groups and the general terms ID and adver-
tisement. In this section, we will look at services and what JXTA protocols they are
providing.

JXTA is very modular. Each feature or protocol is available as a service module.
Thus, a peer group can disable unneeded modules.

9See section 2.4 for an introduction to modules and their specifications.

14

JXTA 2.4 Services

Module definition JXTA modules can be loaded dynamically. This means that a
JXTA peer could theoretically load module code from another peer. For specifying
and identifying modules, there exist several module advertisements:

A class of modules providing the same local behavior and API is identified by a
unique module class ID (MCID) and announced with a module class advertisement.

Specifications for a module class are identified with a module specification ID
(MSID). Its module specification advertisement includes a version number and a URI
where a human-readable description can be found. The specification focuses on the
remote behavior and the protocol.

All modules implementing a module specification can be advertised with a module
implementation advertisement. This specifies the targeted environment and it may
provide the entire code or only a package name and a description where the code can
be fetched.

The three module definition layers allow to have various specification versions for
a single module class and also any number of module implementations for each envi-
ronment.

We will now present the main services we have focused on in VamPeer:

2.4.1 Endpoint service

The endpoint service is actually the core service where messages are redirected to
when coming from the network (through the transport modules) and where messages
can be sent to other peers. For the received messages, its job is therefore to route the
messages to the services that are interested.

Endpoint messages The endpoint service is dealing with endpoint messages. Each
transport module must be able to send them over or read them from the wire.

A message is basically just an ordered list of key/value pairs (elements). The key is
restricted to a namespace whereas the empty namespace and the jxta namespace are
predefined for user respectively JXTA internal purposes. You may have any number
of namespaces and keys'°.

An element may additionally define a MIME type!! and a signature element which
is rarely used though.

The endpoint service adds some elements to outgoing messages, for loopback de-
tection and for addressing.

Endpoint addresses The message’s source and particularly the destination address
must somehow be defined: an endpoint address can be used for various forms of

10T here are however some restrictions by the transport modules but beyond of what you will ever
need. ..

1See [FB96] for a general introduction to MIME types and [MLKO1] for the XML type, which is
used very often in JXTA message elements.

15

2.4 Services JXTA

addresses. The string format looks like this:
protocol://address/service/param

The protocol part specifies the transport module to use: tcp, jxta, http, ... The
address is protocol specific: For TCP and HTTP for example, it is of the form:
ip:port, for JXTA it is simply a peer ID in URN format.

For destination addresses, service defines the final service; param is an optional
parameter for the given service.

Thus to send messages to a peer, one may either create a destination endpoint
address directly with the destination’s IP and port number or alternatively just set the
peer ID, which is the preferred way (because dealing with IP addresses is discouraged
in higher level services). It is the endpoint router’s task to resolve the peer ID to the
real endpoint address as described in the next section.

2.4.2 Transport modules

The transport modules are responsible for sending endpoint messages to another peer
and for reading incoming messages from the network. Therefore, they register them-
selves as available transport module in the endpoint service, each for its own protocol.
They provide support for sending a single message to a peer, to ping a peer (looking
if the remote peer is online) or to propagate a message'?.

Each transport specifies its own wire representation.

There is no required transport module and protocol but the low level transport
TCP is usually enabled together with the HT'TP transport. It would also be possible
to send messages via SMTP or anything else. Whereas the TCP transport is simple
and fast, HT'TP has the great advantage to break firewalls since many firewalls allow
HTTP traffic.

The transport modules do not guarantee message delivery even when TCP is used.
This is very important. The original message sender cannot be sure that his message
has arrived at the destination.

The message transport is usually not secured except for the jxtatls transport
which uses TLS to encrypt data. It is based on top of the endpoint router to provide
a secure path from the source to the destination peer.

Endpoint Router A special transport is the endpoint router. It is not used to
transport messages over the wire but to route messages with a peer ID as destination
address to the correct gateway. For this, it rewrites the destination address and passes
the messages again to the endpoint service, which is then able to send the message
using a real transport.

A message cannot be sent directly to the peer because there is no direct connection
to it. So called router peers may then forward messages to other networks. This

12Propagating is only available with UDP multicast.

16

JXTA 2.4 Services

module’s task is to query for routes and to send the message to the first route gate-
way. It will try to connect using the fastest transport module around (whenever a
connection to that peer is already opened, the related transport is considered fast).

Whenever the module, respectively the peer, is configured as router, it will accept
and forward messages from other peers. It would also maintain a route cache to be
able to do its job faster (without always having to first seek for routes).

2.4.3 Rendezvous service

The rendezvous service is used for propagating messages through the peer group
and /or the local network. This is a very fundamental service and many other services
rely on it (e.g. for sending queries to all peers).

The module has basically two modes: server and client. An edge peer would
only implement and run as rendezvous client.

Rendezvous lease protocol A rendezvous client has to subscribe to a rendezvous
server to be able to send messages for propagation and also to receive propagated
messages. Therefore, a lease protocol is defined which manages this.

When the client peer joins a peer group, it tries to connect to a rendezvous server.
There are several ways to find one:

e The peer’s platform configuration contains some endpoint addresses (addressing
the peer directly with TCP or HTTP). Such addresses may also be hard coded
in the user’s peer application.

e The peer’s platform configuration specifies a seeding URL where a rendezvous
server list is published. This is actually the most common and simple way. It
is also very useful for maintenance because only one list has to be updated to
point all the new peers to other servers.

e As soon as a peer got contact with other peers, it may send them discovery
queries for rendezvous peers. It may also cache rendezvous advertisements'?, so
it does not have to find new servers when starting up every time.

e Maybe the chance is high that other peers reside in the same local network.
Therefore, a peer may send a discovery query via multicast to the local net.

Once a rendezvous'® gets a lease request, it may send back a lease granted mes-
sage—a lease which is always restricted for a certain amount of time, usually 30
minutes. During this time, messages are also propagated to the subscribed peer
which is allowed to send a propagation message to the rendezvous.

BA rendezvous advertisement promotes a peer’s rendezvous server capability.
14GQpeaking about a rendezvous, we always mean a rendezvous server or the service depending on
the context.

17

2.4 Services JXTA

As leases are not eternally valid, a client has to send lease renewal requests until
it gets another lease. Renewal and initial lease requests actually do not differ. JXTA
JSE asks for lease renewal when the lease’s first half has passed.

When a peer leaves a peer group, it should send a lease cancel message so the
rendezvous does not try to propagate messages to that peer anymore.

A rendezvous client should only be registered with at most one rendezvous and
should always send a lease cancel message to peers which send propagation messages
without being the used rendezvous.

For further details on lease messages, please consult the specification [Pro07].

Message propagation protocol The message propagation protocol is used to propa-
gate messages. It adds a message element!® which has an XML document containing
a unique message 1D, a TTL, a path and the final destination service’s name and

parameter.

The protocol makes sure that duplicated messages get discarded as well as messages
that are too many hops away from the source peer. This can be done by means of
the message ID and the TTL respectively. Every hop decrements the TTL value, so
the message can be filtered out when the value reaches zero.

The protocol is also responsible for loop detection. Every hop adds its peer ID to
the message’s path and detects when a message already passed by earlier.

Based on the given service name, the rendezvous service is able to pass the message
to the correct service, for example by using the endpoint service.

Unlike older JXTA versions, a rendezvous service should not repropagate every
incoming message and thus flood the network. FEach service decides individually
whether to repropagate a message or not—of course only as long as the peer is a
rendezvous server.

Hence, a rendezvous server should have some knowledge about the network and
which peer may have which information. It is able to direct messages only to those
peers that may have use for the propagated message. Of course, this heavily depends
on the actual service and the message’s type.

Peerview protocol Rendezvous servers need as mentioned earlier a good knowledge
of the peer network infrastructure. They also need to stay in contact with other
rendezvous servers to share propagated messages because there may be any number
of rendezvous (not just one) and propagated messages are expected to reach eventually
every node in the peer group (not just the subscribed peers of one’s own rendezvous).

To manage and share this knowledge, the peer view protocol is used. Nowadays,
only rendezvous servers should actually run it.

15The element name is the peer group ID prefixed with RendezVousPropagate.

18

10

11

12

JXTA 2.4 Services

2.4.4 Resolver service
The resolver service!® is our first user of the rendezvous service as it has to propagate
queries. Its task is to provide a query-response system.

It is able to recognize received responses to a sent query by adding meta information
to queries like a handler name and a query ID. It attaches also the peer’s route
information, so remote peers have the possibility to respond even if they do not know
the querying peer. The actual query can be any string.

The resolver service creates an endpoint message and combines the query together
with all the meta information to a XML document as shown in listing 2.2. Unlike in
the example, it is common to use the service module class ID as handler name.

<?xml version="1.0" encoding="UTF-8"7>
<jxta:ResolverQuery xmlns:jxta="http://jxta.org">
<SrcPeerID>urn: jxta:uuid-59616261646162614E50472050325033\
1A227980E5924E80A3FDSECD73D4C31803</SrcPeerID>
<HandlerName>BeerFinder</HandlerName>
<QueryID>1</QueryID>
<HC>0</HC>
<Query>Got a beer?</Query>
<SrcPeerRoute><jxta:RA><Dst>
<jxta:APA><EA>tcp://129.132.105.170:32725</EA></jxta: APA>
</Dst></jxta:RA></SrcPeerRoute>
</jxta:ResolverQuery>

Listing 2.2: A sample resolver query XML document

The hop count, which is incremented on each hop, ensures that the query is not
sent to far away. Although the rendezvous service already does such a check, we have
to do it here again because the resolver does not always need to use the rendezvous
propagation mechanism.

Queries and responses may be propagated or sent directly to a specified peer. The
resolver service is not necessarily dependent on the rendezvous service but would of
course be limited to local network propagation and single message dispatching in a
situation without rendezvous.

A resolver response looks basically the same as a query. The actual response is also
a string. There is no hop count as it does not make any sense here. Also the source
peer ID and route are dropped but there is a response peer 1D, so the recipient knows
from which peer the response originates.

A client service sending a query should be able to register a listener for related
responses, so it does not have to check itself if the response matches the query. That
is one of the main tasks of the resolver service.

16The service name is a little confusing: it means actually to resolve queries to responses. ..

19

2.4 Services JXTA

2.4.5 Discovery service

Whereas the resolver does not maintain much data and only serves as an intermediate
message layer for other services, the discovery service is a fundamental part in JXTA
and much information passes it.

The discovery service is dealing with all sorts of advertisements, so it knows about
all peer resources (as advertisements are promoting resources). On one hand, it serves
as an advertisement storage and on the other hand, it is responsible for finding remote
advertisements and for letting other peers know about the locally stored ones.

Discovery queries and responses Whenever a service needs an advertisement, it
does a local discovery query which is equivalent to a storage lookup.

Generally, we distinguish between peer, peer group and other advertisements, so we
specify the advertisement type in a query. A query may restrict the search additionally
with a key and a value name. The key is a XML tag name. It is allowed for the value
to contain the wild char * in the beginning and /or at the end. The number of answers
may also be limited by setting a threshold.

Querying remote peers is actually the same but one may choose to send a query to
a single peer or to propagate the message in the group. In both cases, the resolver
service is actually used for sending the messages.

The discovery query is an XML document specifying query type, key, value, thresh-
old and optionally also the source peer advertisement. Looking at the final endpoint
message, we see a resolver element containing a resolver query XML document which
contains the quoted discovery query XML data!”.

A peer is not obliged to respond to any remote discovery query. Peers which have
sent a query should expect no, one or multiple responses. They cannot expect that
the threshold is respected, neither as minimum nor maximum.

A discovery response message may contain several matching advertisements. It
may additionally also contain the responding peer advertisement.

Discovery responses are not only used to respond to queries. It is also allowed
to publish advertisements to other peers, especially the rendezvous server, using a
“response” message.

To feed the local storage with advertisements, one just publishes them locally.

Shared Resource Distributed Index As we have already seen, a rendezvous server
will not propagate every message. In the case of discovery queries, the rendezvous
makes use of a shared resource distributed index, henceforth called SRDI (see [Pro06]).

The SRDI is an advertisement index containing certain keys and values together
with peer IDs enabling the rendezvous to lead queries to peers which actually should
have matching advertisements. This monumentally reduces network traffic as peers
that do not have the needed information are not queried.

1TThe discovery query is quoted because the resolver service currently expects a simple query string.

20

JXTA 2.5 JXTA’s P2P infrastructure and peer roles

Note that the SRDI does not contain the entire advertisements but only has some
important keys and their values for every advertisement a peer has.

But how does the rendezvous maintain its SRDI? Every edge peer sends its SRDI to
its rendezvous. When newly joining the group, it sends the full index. Later, it sends
regularly (for example every minute) a SRDI delta, that means only the key/values
for newly discovered, created or updated advertisements. When a rendezvous lease
is canceled, the peer’s SRDI entries are removed automatically by the rendezvous.

There exists a generic SRDI XML document used for pushing SRDI entries to the
rendezvous. It contains also a TTL, so an SRDI entry is not valid for ever (like the
advertisements themselves).

The current JXTA implementations do not index each advertisement’s XML tag.
When creating a new advertisement type, one should specify which elements are
important and should therefore be indexed. When speaking in database terms, one
should at least index the primary key attributes.

2.5 JXTA’s P2P infrastructure and peer roles

To bring some clarification into the partly insufficiently introduced peer roles, we
would now like to show now a short overview of the entire JXTA P2P infrastructure:
Although JXTA may use central rendezvous server lists when starting up, we can
definitely see JXTA’s structure as a true P2P system. It does not rely on central
servers for any core task and uses the P2P structure for all purposes.
However, there are various peer roles in the network although there may also exist
combinations:

Edge peer Whenever traffic or CPU power is expensive, an edge peer is surely the
right role for a peer. Such a peer heavily relies on other peers and consumes parts of
their attention. Most peers would actually choose this kind of role.

Rendezvous peer A rendezvous peer is providing a rendezvous server and enables
edge peers to make contact with other peers. In a JXTA network, we need at least
one rendezvous server because we usually want to discover other peers and do not
have the physical locations hard coded of other peers that we want to communicate
with.

Router peer A router peer enables peers to communicate with others to which they
cannot connect directly. This is used for peers behind a NAT gateway or a firewall.
Therefore, router peers may have to manage all their clients message traffic in one or
both directions.

Note that peer roles may dynamically change. For example, a peer which cannot
find any rendezvous server could automatically become a rendezvous. This is of course
adjustable in the platform configuration.

21

3 Design

Keeping our goal in mind, we focus on the essential parts needed for Origo (see the
requirements in section 3.1) because we cannot port all JXTA protocols to Eiffel
within the given six months of this thesis. See chapter 8.1 for future work and how
VamPeer may be extended to add missing features.

3.1 Requirements

As we are implementing JXTA for Eiffel with regard to support Origo’s network layer,
we state the following demands:

1. The Origo peers may communicate among each other without being disturbed
by messages from other peer applications.

2. An Origo peer is on the one hand able to advertise its existence to the peer
group and on the other hand to discover other peers, especially a “core” peer.

3. An Origo peer is able to send messages to other peers. A message may contain
data of any type and length.

Mapping these ideas to the JXTA world, we specify the following requirements:

To fulfill the first demand, we should be able to support private peer groups. This
means also that we need to be able to run an own JXTA infrastructure without using
foreign resources on the net. This is exactly what JXTA teaches us to do for peer
applications.

To enable peer discovery in JXTA (second demand), we need a set of services:
Obviously, we need at least the discovery service which allows us to publish and query
for (peer) advertisements. Then, we need the resolver service which the discovery
depends on'.

But to get into contact with unknown peers, we heavily rely on the rendezvous
service. The rendezvous server is the first peer we contact and the advantages of the
discovery service only is possible with the rendezvous’ help.

Whereas a rendezvous server is needed for the entire peer group, not every peer
needs to implement the server part. An Origo peer may be a rendezvous client
only. Therefore, we concentrate on the client part and note the possibility to run the
rendezvous server as a JXTA JSE peer.

1See subsection 2.4 for a short introduction to the mentioned services.

22

DESIGN 3.2 Module structure

As all discovery messages (and also messages from the resolver and rendezvous)
are based on normal JXTA messages, we clearly need the endpoint service together
with a transport module. Having these, we honor also the third demand requesting
a message transport.

There is still a missing service: the endpoint router. Peers are addressed with peer
IDs (see subsection 2.2) so we need the endpoint router to resolve the IDs to addresses
that specify the transport protocol and the exact address. This is only a small task
of the router. There is no urgent need for the other functionality enabling us to have
peers behind firewalls and NAT gateways.

Summing up the set of required services, we get the list shown in table 3.1. The
requirements are fairly vague but we will enlighten the details later in this section
and show the resulting challenge when presenting the implementation in chapter 4.

Service module Functionality

Endpoint service Message layer abstraction

A transport module (e.g. TCP) Message sending and receiving over the wire

Endpoint router (parts) Routing messages to available gateways select-
ing a fast transport

Rendezvous service (client) Connection to peer group

Resolver service Query-response system

Discovery service Advertisement querying and publishing

Table 3.1: Required services

We now move on to the VamPeer’s design. By first introducing the module struc-
ture, we see how the entire platform works.

3.2 Module structure

The JXTA structure is very modular; every service and every peer group, even the
platform (the world peer group) itself, is a module.

A module is an entity which can be started, suspended and stopped. This enables
the VamPeer platform to perform the entire start up process without knowing every

modules’ internal details.

START_FAILED

Figure 3.1: Module life cycle

23

3.2 Module structure DESIGN

Figure 3.1 shows a module’s life cycle. After successful loading where usually the
basic initialization like creating data structures is done, a module can be started. The
suspended mode is available to temporarily stop a service in order to make it rest
for a while in standby. The start method has to take care of the two possible calling
states. To permanently shutdown a module, one can call stop in suspended mode.
A stopped module should not and cannot be started again. If you really need to do
this, you have to create a new module instance.

There are also some states indicating fatal errors. When one of them has occurred,
a module should not be touched again. Only the constructive operations init and
start are allowed to produce errors. suspend and stop are always expected to
function properly.

A module is represented in VamPeer with the deferred class P2P_MODULE. Figure 3.2
gives an idea about the classes which effect it2. Also, we already see how the peer
groups are related with modules; that is what we will look at in the next subsection.

P2P_ENDPOINT_SERVICE P2P_PEERGROUP

P2P_MODULE %

P2P_MESSAGE_TRANSPORT

P2P_GENERIC_PEERGROUP

T

P2P_PLATFORM

P2P_RENDEZVOUS_SERVICE

LL

P2P_RESOLVER_SERVICE

P2P_DISCOVERY_SERVICE

Figure 3.2: Module class hierarchy

3.2.1 Peer group modules

As a peer group specifies the available services for its group, it makes sense to make
a peer group responsible for managing its services. So we just have to start the peer
group when we would like to start the application’s P2P support with all services.
Therefore, the peer group is also a module which can be started and stopped (P2P_-
PEERGROUP).

Unfortunately, it is not that easy to start the entire P2P platform. To load a module
we need a parent peer group, an ID and a module implementation advertisement?® used
for configuration. Thus, we need a bootstrapping process that handles the loading of
our main peer group—usually the net peer group.

This is exactly the purpose of our world peer group (P2P_PLATFORM). In VamPeer,
it is not used for anything else but loading the NPG. As the WPG is itself a peer

2A deferred class in Eiffel is like an abstract class in Java; to effect such a class means to implement
deferred features (abstract methods).
3See sections 2.2 and 2.3.

24

DESIGN 3.3 Defining a peer group

group, it is also a module but with a different creation procedure. This allows us to
retrieve the needed data like the configuration directory path and the logger object.

It is not yet clear enough why we do not just adapt the net peer group to man-
age the platform creation. At the moment, only one real peer group can be run
in VamPeer but this could more or less easily be changed. By then, generic peer
groups (represented through P2P_GENERIC_PEERGROUP) should not be involved in the
bootstrapping process. See section 3.3 for more details about how peer groups are
defined in VamPeer.

In JXTA JSE, the entire P2P application is also a module controlled by the JXTA’s
module loader. We do not go so far in VamPeer: The P2P environment should only
be a part of the user’s application and should not dominate everything.

3.3 Defining a peer group

Defining a peer group implies to prepare several requirements:

As a peer group is in the first place a normal module, we first have to establish
the module configuration. This requires to have a module class ID (MCID) and
a module specification ID (MSID) which identify the local and remote behavior as
already pointed out in section 2.4.

Another part of the group definition is built by the group ID, a name and a descrip-
tion. Together with the MSID, we are now able to build the peer group advertisement.

Modules are loaded by the MSID. This means that the module loader gets a MSID
(besides an arbitrary ID and a name) in order to load the correct module code. Hence
when loading a peer group, we have to provide its MSID.

As peer groups define which services (modules) they provide, the peer group module
code is responsible to load these modules. The group module therefore somehow
contains a list of needed module MSIDs. In our standard group implementation
P2P_GENERIC PEERGROUP, this list is called modules and define modules is the method
that initializes it. As we use a parent-child relationship between groups, the group
services are usually inherited by a child group but one may easily redefine them.

When we inherit group services, we share the module instance. This clearly makes
sense for certain services which are not group context sensitive. The top group which
defines such a service is responsible for it (it is the only authorized group to load,
start and stop this module). To respect this rule, the group’s module list also has to
keep track of whether a module is inherited or newly defined.

When a module is loaded, the loader and later also the module itself should be
able to access the module implementation advertisement. The loader may need the
advertisement to know what module code to load for the given MSID. The module
itself may use the advertisement to lookup some configuration parameters. Thus, the
module implementation advertisement has to be available for each used module.

Conventionally, the group module implementation advertisement contains all ad-
vertisement of its modules. The peer group module will then extract these and make
them singly available.

25

3.4 Services DESIGN

There is one open issue with module loading: a running module has itself an ID.
We speak thereof of the assigned ID because the module loader assigns an arbitrary
ID to the module. Usually, we assign the MCID but it is not necessary to do so.
The module uses its ID to create a unique handler name when registering with other
services.

Summarizing, we need for each module an implementation advertisement where
the one for the group contains all advertisements for its services. Additionally, we
should provide a peer group advertisement to declare the group module as a JXTA
peer group.

The entire module loading procedure is quite generic because of the dynamic mod-
ule loading. Although Eiffel does not provide this, we choose to stick to the convention
and provide also these implementation advertisements even if we only may use it to
parametrize modules.

Unhappily, we need code in Eiffel where we specify which classes have to be loaded
for a given MSID. To create a peer group with user services, we therefore have to
heir from P2P_GENERIC PEERGROUP, adapt the modules list and redefine load extern -
module to be able to specify the Eiffel class which should be used. To load a private
net peer group, the platform P2P_PLATFORM provides the possibility to specify a net
group loader in terms of an agent.

3.4 Services

With the strict module structure, we are basically done with presenting the Vam-
Peer’s design because everything is bundled into a module and therefore every service
looks quite similar. Nevertheless, we have to describe some particularities, especially
how services interact among each other.

3.4.1 Module choice

Each module resides in its own Eiffel cluster together with its related classes, namely
the XML document types. Module unspecific classes are located in the main vampeer
cluster. See figure 3.1 for a clusters overview.

vampeer/ (38 classes)
|-- discovery/ (3 classes)
| -- endpoint/ (4 classes)
|-- pipe/ (2 classes)
| -- rendezvous/ (5 classes)
| -— resolver/ (5 classes)
‘-- transports/ (7 classes)

|-- router/ (4 classes)

‘-- tcp/ (5 classes)

Listing 3.1: Clusters overview

26

DESIGN 3.4 Services

The pipe service? is not actually implemented but the module specification adver-
tisement depends on the pipe advertisement.

Until now, we have mostly spoken of generic transport modules but finally we
implement only one, the TCP transport.

TCP is actually a dumb name as most of the other transports indirectly are TCP
based too. But with the TCP transport, we directly lie on top of TCP using the
JXTA’s wire representation for messages. It is the most simple but also the fastest
transport, which explains our choice.

3.4.2 Service layers

We would like to clarify how all the JXTA services are related to each other. Particu-
larly, how messages are passed through. We do so by looking at two examples which
cover all services implemented in VamPeer. We first treat an outgoing and later an
incoming message.

Outgoing message Lets look at a discovery query which is sent out to be propagated
in the group. It could be a general query to find new peers. Figure 3.3 shows the
UML sequence diagram hiding the exact operation signatures. We will comment each
method call:

: P2P_DISCOVERY. SERVICE‘

} . P2P_RESOLVER SERVICE‘

\ H : P2P_RENDEZVOUS SERVICE‘
\

| 1: propagatel query() H : P2P_ENDPOINT SERVICE |

—_—
} 2: propagate() | H . P2P_TCP_TRANSPORT H . P2P_ENDPOINT ROUTER
—_—

3a: propagatk() | |
—| 3al: propag#ate()
P

\
\
3b: send_mejssage() ‘ ‘
| 3bl: send_+1essage() }
\
\
|
|

\
| 3b2: send_ﬁmessage()

I
} 3b3: send_message()
‘%\

Figure 3.3: Information flow for an outgoing discovery query

1 When the discovery service is called with remote_query_advertisements, it
creates a P2P_RESOLVER_QUERY containing the discovery query string and a han-
dler name (see the incoming message example for its use). It then passes it to

4The pipe service implements the pipe binding protocol and provides virtual communication chan-
nels among several peers.

27

3.4 Services DESIGN

3a

3al

3b

3bl

3b2

3b3

the resolver which is requested to propagate the query (instead of just sending
the message to a single peer).

The resolver service then creates a P2P_ENDPOINT MESSAGE with a message ele-
ment containing the resolver query string. It passes the message together with
the resolver’s service name to the rendezvous service.

The rendezvous adds another message element with some meta data to the mes-
sage. This informs the recipients that the message was propagated (important
when they do repropagation). The rendezvous then first propagates the message
in the local network by simply calling the endpoint’s propagation service.

The endpoint service now passes the message and the service name to each
transport’s propagation method. Actually, it makes only sense for the TCP
transport, as it supports IP multicast (other transports just ignore the call).
However, multicast is discouraged® and mostly turned off in the platform con-
figuration.

When the peer is connected to a rendezvous server, it is able to do propagation
via this server. So the rendezvous service sends the message to the server’s peer
ID by calling the endpoint service’s send message. For this, it has to create a
P2P_ENDPOINT_ADDRESS with the jxta protocol and the server’s peer IDS.

To resolve the endpoint address, the endpoint service passes the message to the
endpoint router which is the registered transport module for the jxta protocol.

The endpoint router does a (local) lookup for the given destination peer ID
(querying for peer and route advertisements). As soon as a gateway and a
transport protocol is chosen, it calls the endpoint service again to deliver the
message with a rewritten, specific destination address’.

The endpoint service now passes the message to the specified transport protocol
which tries to connect to the specified peer and writes the message to the
wire. Note that there is neither a feedback to the caller whether the message
dispatching has been successful or not, nor an acknowledgment message from
the other peer. The TCP transport is therefore seen as an unreliable transport.

Incoming message The path for incoming messages is somewhat shorter. We will
continue our example and let the peer receive a discovery response. To explain the
three method calls, we first look at figure 3.4 which presents the calling sequence.

SMulticasting should not be used because it causes much network traffic and may stress some
smaller edge peers. It poses also a risk for developers that test in local networks only because
things may work locally with multicast but maybe will not with remote peers.

5E.g.

jxta://rdv-peer-id/rsv-service-name (while rsv-service-name is the resolver service

module class ID).
"E.g. tcp://129.132.105.170:9700/rsv-service-name

28

DESIGN 3.5 Address rewriting

: P2P_TCP TRANSPORT‘

| ‘ : P2P_ENDPOINT SERVICE‘

\
\ }
| 1: demux() | : P2P_RESOLVER SERVICE

|
| | | |1 P2P_DISCOVERY SERVICE

| 2: process_response_messe%ge() ‘
i |

| 3:process_response() }
| ‘

Figure 3.4: Information flow for an incoming discovery response

1 As soon as the message transport has received a message and the message
parsing from the wire has been successful, it calls the endpoint service’s demux
method with a P2P_ENDPOINT_MESSAGE object.

2 From the delivered message, the endpoint service extracts the destination ad-
dress and therefrom the service name. Then it calls the registered agent for this
server name which is owned in our case by the resolver service.

3 The resolver interprets the resolver message element and is able to extract the
response string and a handler name. It then calls the registered agent for this
handler name and passes a P2P_RESOLVER RESPONSE object.

The discovery service will finally parse the resolver response string and create a
P2P_DISCOVERY RESPONSE. From there, the delivered advertisements (responses)
are either published locally or they may be passed to a further agent registered
by a user service.

3.5 Address rewriting

To stay compatible with other JXTA implementations, we have to pay attention
to a special and a little cumbersome topic: address rewriting (address mangling).
The problem is that messages may not be directed to the correct service in other
implementations since they may have a slightly other peer group hierarchy.

In a JXTA platform, only one module can actually handle network traffic (one
module per transport protocol). But generally, it is possible to run multiple peer
groups at a peer such that each group has its own endpoint service. Hence, the
question is where we register the transport module(s).

As the JXTA protocol does not specify this, each implementation can do as it likes.
While in JXTA JSE the WPG owns the transport modules, JXTA-C and VamPeer
settle them in the NPG. The reason for that is that in Java, the WPG is a real peer
group whereas JXTA-C does not have a WPG and we VamPeer guys only use it for
platform configuration purposes.

With multiple endpoint services and in order to receive messages, services have
also to be registered in the top peer group that owns the transport modules. Such an

29

3.6 Rendezvous propagation DESIGN

indirect registration, which is automatically done behind the scenes, is done with a
mangled address which includes the original peer group ID where the service is reg-
istered in the first point. Figure 3.5 shows how such a mangled address is assembled.

EndpointService: jxta-NetGroup /service name/service_parameter

Mangling prefix Service’s group id Original service name/parameter

New service name New service parameter

Figure 3.5: A mangled service handler name

With such a mangling scheme, it is clear that also the message destination address
has to obey this rule. To send a NPG discovery message to a Java peer, we have
to mangle the address before because the discovery is in the NPG but the Java’s
transports are in the WPG. Sending the same message to a VamPeer peer, we would
not have to mangle the address because its transport modules are also in the NPG.

That is really bad, but it gets worse when we look at the reverse direction: A Java
peer will send discovery messages always mangled and we would discard the message
because we have no mangled address registered for it as our discovery service already
runs in the top group NPG.

To overcome these troubles, we always register our services also with the mangled
address in order to not loose any messages from Java peers. And to send messages, we
may always need to mangle the destination addresses but we do not force it; hence,
it is still possible to speak with other VamPeer peers without group mangling.

3.6 Rendezvous propagation

In P2P networks, propagation is a central service because for many messages we do
not know which peer exactly may use the information. So, we just propagate the
message to everyone and hope that some peers may use or process it. As we have
already seen, propagation with group scope (instead of local network only) is done
by the rendezvous service.

When we hear about message propagation, we might be tempted to classify it as
flooding the network. While this may be a solution (actually, previous versions of
JXTA JSE did this), it is rather traffic consuming and extremely inefficient.

We already mentioned in section 2.4.3 that the rendezvous today just passes the
messages to the appropriate services which decide based on some gathered knowledge
if the message should be repropagated or not.

But this means that we have to get away from the idea that we may only place a
JSE rendezvous somewhere and propagation just works. Either, we design our peer
application to use only standard services or we implement the user services also in
Java on the rendezvous peer. The third and best solution would be of course to have
an FKiffel rendezvous implementation but this is not possible due to lack of time.

30

4 Implementation

In this chapter, we go into the implementation matter and describe solutions for the
most important tasks. The library code is rather described in the chapter 5 showing
how we should use the VamPeer library.

4.1 Development environment

During the design step, UML class and sequence diagrams were used by means of
the open source tool Umbrello [Hen06], which laudably supports diagram exports to
a vector-based graphic format, namely EPS.

During development, we used FiffelStudio 5.7 [Eif06b] and therefore the ISE com-
piler. The new introduced configuration file format ECF would be a mercy but it is
quite cumbersome to integrate older libraries because ECF is (currently) not widely
accepted.

As we stumbled around a lot with networking stuff, we used Ethereal [Com06] (now
renamed to Wireshark) to sniff packets sent on the network.

For testing, we used the standard Gobo tool getest, which provides a very easy and
comfortable way to write unit tests.

4.2 Used libraries

VamPeer is of course using several software libraries. For the first, it is obvious
that we use Gobo [Bez07], in the current release 3.5. We need it for data structures,
date/time and its XML generation and parsing support.

As we are mainly dealing with remote peers, we need a networking library. We
looked for a simple solution and got to the FiffelNet code [Eif06a]. Unfortunately,
the library is not used by many people resulting in an API which is not always useful
for each task. Therefore, we wrote an extension to it, see subsection 4.3.

To support various independent tasks at the same time, we use the FiffelThread
library [EifO6¢c] and therefore switch the multithreaded flag on.

For the logging task, we make use of the great Log/E tool [Goa07] which is now
part of the Goanna project. It provides a synchronous logging mechanism similar to
Jakarta’s well-known Log4lJ.

We provide ECF and XAce files for all used libraries in the contrib/ directory.

31

4.3 Socket extensions IMPLEMENTATION

4.3 Socket extensions

The main problem we have with EiffelNet is the missing support for timeouts. When-
ever we wait for network data, we do not like to wait eternally. Generally, there are
two kinds of interrupts in these situations in which we like to quit the reading/waiting
task: first, when a certain time has been passed and second, when we get an internal
request for closing the connection such when the user application is shutting down.

Another lack in FiffelNet is buffering. Usually, we like to assemble a network
message and send it as one packet. The straightforward idea to just use a string does
not really work well because with binary data, we have to append 8-, 16- or 32-bit
integers (respecting the network byte order!)—this results in code which we certainly
never like to see here and there in our application. Additionally, we sometimes have
to know how large a buffer is (for example to specify a message body length).

We therefore wrote a helper class P2P_SOCKET EXTENSIONS which provides exactly
these features: timing and buffering. We did not choose to create a socket heir class
because the helper methods may be used for several types of sockets: TCP and UDP.
We provide methods for writing by using a buffer, for reading and for some socket
checks.

One may fill the buffer with strings and integers (from 8 to 64 bits, using big-endian
format). The buffer is just a string and may be adapted and used at will. As soon
as the buffer is sent, the buffer is emptied again.

For the read methods (returning a string or the various integer types), one has to
set a timeout first. They read and wait until either they got exactly the expected
amount of data, they pass the timeout or a given constraint has become active. The
last two cases raise an exception. Of course for strings, there is also a method reading
up to a given data length (in many cases, we do not know exactly how much data we
are expecting).

The socket checks provide a method to wait until a connect request is successful
within the timeout and a method to check generally whether data is available for
reading.

The timeouts are implemented with the socket’s non-blocking mode. So, the
socket’s read command instantly raises an error when not enough data is available.
We catch it and put our thread to sleep but regularly check for new data. When we
have slept too long, we raise an exception to the user.

Because of the non-blocking mode, we get a lot of exceptions during a VamPeer’s
run. So for development, we should disable exception handling for the following ex-
ception types: 21 (I/O exception), 23 (Retrieve exception), 24 (Developer exception)
and 27 (Runtime I/O exception). Therewith, we are not bothered with the network
latencies.

The mentioned constraint is an agent that can be defined and which is called
every time before a thread waits. When the agent returns True, the actual task is
interrupted as described above.

Creating this socket extensions class, we have mastered a lot of networking troubles
at a single point.

32

IMPLEMENTATION 4.4 XML documents

4.4 XML documents

JXTA makes heavy use of XML documents. Not only every advertisement is in XML,
but also every higher level JXTA message. Therefore, we need a simple way to parse
and generate XML documents.

Figure 4.1 shows our class structure for XML documents. We hide the exact oper-
ation signatures for simplicity and do not list all descendant classes.

P2P_DOCUMENT P2P_ADVERTISEMENT
P2P_XML_DOCUMENT is_valid possible_expiration_time
is_valid parse_from_string() set_lifetime_from()
make_with_root() out() set_lifetime_absolute()
make_from_root_element() set_lifetime_relative()
make_with_unqualified_root() P2P XML CACHE unset_lifetime()
make_with_jxta_root() = = set_expiration_time()
parse_from_string() make_from_element() is_newer_than()
create_child_element() parse_from_string() expiration_time()
create_content() validate() has_expired()
create_root_child_element() clear_document() unique_id()
add_child_element() 1 1] renew document() describe_same_identity()
out() match() index_elements()
element_by name() document() attribute_handler()
handle_root_attributes() out() initialize()
handle_elements() initialize()
element_handler()
attribute_handler()
P2P_CONFIGURATION > root_element_name() || P2P_PEER_ADVERTISEMENT
does_element_match()
element_text()

Figure 4.1: XML document class hierarchy

The class P2P_XML _DOCUMENT manages most handling with the Gobo XML interface.
It is not an abstraction so that the underlying XML library could easily be replaced;
it rather provides helper methods just to simply build an XML tree from elements, to
get the content as a string and to build a tree parsed out of a string. When parsing,
we let Gobo build the full tree and we afterwards provide callbacks for each root
element and root attribute.

Its main client class is P2P_XML_CACHE (deferred) where all XML document classes
are inheriting from. It mainly declares central document methods, such as creation,
validation, output and element matching. It inherits from P2P_DOCUMENT which pro-
vides an interface for very generic documents. The XML tree is not built until out is
called the first time. Further calls return a cached XML string unless any element has
been changed (renew_document should always be called internally in element setters).

To create a new XML document type, we just need to inherit from P2P XML -
CACHE, define some setters/getters for the actual content elements and implement
match, root_element name, attribute handler, element handler (to gather data
after the parsing process) and document (to create the XML elements). We may also
redefine initialize and validate and add additional creation methods.

Whereas this interface is appropriate for general XML documents, we require an
additional interface for advertisements: P2P_ADVERTISEMENT. Each advertisement has

33

4.5 Using UUID for JXTA IDs IMPLEMENTATION

a unique ID used for the advertisements store in the discovery service. It should
also define its lifetime and the remote expiration time. For SRDI, an advertisement
should also define some elements which can be indexed.

Hence, we declare a unified interface for advertisements as shown in figure 4.1. All
advertisement classes (such as P2P_PEER_ADVERTISEMENT) should effect it.

4.5 Using UUID for JXTA IDs

For VamPeer, we use JXTA IDs in the UUID format as it is the case in JXTA JSE.
Look at figure 4.2 to get an overview of the ID class hierarchy.

P2P_UUID_TOOLS P2P_ID_UUID P2P_PEER_ID
create_random_uuid() bytes make()
)) Format()]

parse_uuid_from_string() . .)) make_new_with_group()
.) is_unique_id_valid() ;
uuid_string() . Flag_id_type()
Uuid_bytes_count() uuid() eer_group_id()

DYtes flag_id_type() peer_group_

P2P_ID

is_valid

make_from_urn()
make_with_id()
format()
hash_code()
is_equal()

Flags_bytes_count()
Maximal_bytes_count()
Minimal_bytes_count()
initialize_bytes()
build_uuidformat()
parse_unique_id()
parse_bytes()
characteristic_uuid_msb()
characteristic_uuid_Isb()

P2P_PEERGROUP_UUID

make()
make_with_uuid()
make_new_with_parent()
make_from_urn()
Flag_id_type()
parent_peer_group_id()
is_netgroup_id()
is_worldgroup_id()

is_unique_id_valid()

P2P_NULL_ID

make()
Format()
is_unique_id_valid()

P2P_PEERGROUP_ID

P2P_WORLDGROUP_ID

is_netgroup_id()
is_worldgroup_id()

P2P_GENERIC_ID

make()
format()

make()

Uuid()

Format()
parent_peer_group_id()
is_unique_id_valid()
Is_netgroup_id()
Is_worldgroup_id()

Figure 4.2: ID class hierarchy

P2P_ID is the main interface for an ID. Such an ID can be parsed out of and written
as a URN string. It is comparable and hashable. Direct heirs that can be instantiated
are P2P_NULL_ID (for referencing no resource, actually never used in VamPeer) and
P2P_GENERIC_ID which may contain any valid ID in any format.

We support the uuid format using the deferred class P2P_ID UUID. It parses the
unique ID part and creates a byte array. For each ID type (such as peer, peer group,
codat ID...), there is an effecting class defining the byte interpretation. Figure 4.2
evinces only two of them. Each such type also defines the characteristic UUID bytes,
made available through the feature uuid®.

'While the peer group UUID in a peer ID is just meta information, the peer UUID is the charac-
teristic part.

34

IMPLEMENTATION 4.6 Threads

P2P_UUID_TOOLS is actually not related to the ID class structure but provides helper
methods to create a random UUID and to parse/write a UUID. In VamPeer, UUIDs
are everywhere seen as ARRAY [NATURAL 8] with a capacity of 16 bytes.

For peer group IDs, there is a special interface P2P_PEERGROUP_ID. It is independent
on the uuid since we use other formats as well for peer group IDs, for example the
jxta format for the net and the world peer group. The uuid version P2P_PEERGROUP -
UUID is therefore an heir of two classes, P2P_PEERGROUP_ID and P2P_ID UUID.

It may be confusing that the jxta peer group IDs also provide a uuid feature. It
is used to generate child peer group IDs because children point to the parent group
uuid. The following examples try to clarify these ID relationships:

World peer group ID: urn:jxta:jxta-WorldGroup
Implicit UUID: 59616261646162614A787461503250332

Private net peer group ID:
urn: jxta:uuid- 822A7C9E6B804759870B81B10070E9CY 59616261646162614A78746150325033 02

Group UUID WPG’s characteristic UUID

Peer ID, member of the private net peer group:
urn: jxta:uuid- 822A7COEE6B804759870B81B10070E9CI 2F3F01367359485B95D5C6CFA82B9775 03

Group’s characteristic UUID Peer UUID

4.6 Threads

We spend an own section to the thread handling in VamPeer because we would like to
present which threads exist and because users have to pay attention to some details.

Threads are an absolute must when dealing with the network. But threads are also
a source for many software bugs because we cannot rely on all contracts anymore in
a multithreaded environment. Other threads may change something in the course of
time. This is why we have to use locking mechanisms to lock other threads out for a
certain amount of time.

While we have synchronized environments in Java, Eiffel currently does not sup-
port such a mechanism in the language itself®>. We therefore have to use the possi-
bilities from FiffelThread which provides read/write locks (for multiple readers, one
writer), mutexes (simple locking) and condition variables (for thread synchroniza-
tion).

To gain a solid peer application, we had to identify the shared objects between the
various threads and to introduce appropriate locks. We wanted our application also

2In ASCII, the 16 bytes stand for “YabadabaJxtaP2P3”. Actually, the last byte was an error; it
should be a “I” but they looked up the wrong number in the ASCII table (decimal instead of
hex). ..

3SCOOP will be a good solution but it is still a research topic and the current version not stable
enough.

35

4.6 Threads IMPLEMENTATION

to terminate correctly which furthermore means to appropriately destroy a lock at a
single place. This took us a considerable amount of time. ..

In VamPeer, we are using at least four threads besides the main thread which we
will all describe now.

Main thread First, we will look at what the main thread is used for. It is the thread
which starts the platform and is in full control by the user application.

Thus, the entire platform starting is done and all the other threads are created by
the main thread. Since VamPeer does not provide an event loop, the user application
has to handle its main thread itself.

Usually, the main thread is also used to shutdown the platform.

4.6.1 TCP Transport

Most of the threads are created by the TCP transport and its related classes.

Server thread The first thread created is the server thread. P2P_TCP_SERVER binds a
server port and listens for incoming connections. When a new connection is accepted,
it passes the socket to the main tcp class (P2P_TCP_TRANSPORT) which will handle the
connection with another thread.

The server thread can be closed by calling shutdown (from another thread). The
socket will be cleaned up which causes the server thread to terminate instantly.

Connection threads Each tcp connection gets its own thread. As soon as a socket
is passed from an incoming connection, or when a new socket has to be created, the
connection object P2P_TCP_CONNECTION launches a new thread.

The thread manages waiting during connection setup and waiting for incoming
messages via its socket. It is important to know that message processing (for received
messages only) is handled by the connection thread. This means, a service should
never do extensive work in a processing agent.

It is therefore not possible for a message handler to wait for another message
retrieved with the same connection. However, sending messages is allowed in such a
handler (see next paragraph).

A connection thread terminates itself after a certain time but can of course also be
destroyed by calling close.

Message queue thread Because services should not be affected by the slow message
delivery, outgoing messages are queued. The calling service thread returns instantly
and without result as soon as the message has been successfully stored in our message
queue.

P2P_TCP_TRANSPORT manages a message queue thread which waits for and gets trig-
gered on new messages. It then looks up a possible existing connection or tries to

36

IMPLEMENTATION 4.7 Advertisement storage

open a new one. As soon as a connection state is in a valid mode, it sends the message
and removes it from the queue. It tries several times when the dispatching fails.

Summarizing, we have two fix threads for the TCP transport plus a thread per
connection.

In suspend mode, all connections are closed and the server as well as the queue
manager thread are stopped.

4.6.2 Rendezvous connection manager

The rendezvous service owns another thread. It is only used to stay in contact with
rendezvous servers meaning to renew connection leases. Hence, this thread is mostly
sleeping.

The thread is launched when the service is started and is stopped when the service
gets suspended. During start, we have a bootstrapping problem because not all
services are started yet and the system may only partially be functional. We cannot
fire off sending messages in this state and have to wait until the platform is started
entirely.

That is the reason why the peer group is offering a method when fully started
returning True as soon as all group services are started successfully or False on a
failure. The rendezvous connection manager thread therefore calls this method before
it begins to contact a rendezvous server to get a lease.

4.6.3 Discovery SRDI

The discovery service creates a thread to manage SRDI pushes. It regularly looks for
new local advertisements and propagates its index changes.

Like the rendezvous connection manager, it waits with index pushing until the
platform has been started fully. The thread is stopped also in suspend mode.

4.7 Advertisement storage

Probably one of the most important part in the entire platform is the advertisement
storage. Services and user applications should not have to store advertisements itself
but should be able to access a central storage.

That is what the discovery service provides with its local query methods. We would
like to describe its advertisement storage here. The storage can be divided into two
parts, persistent and memory storage.

4.7.1 Persistent storage

When starting the platform, a configuration directory must be declared. This is used
to store the platform configuration and some advertisements.

37

10

11

12

13

14

15

16

17

18

19

4.7 Advertisement storage IMPLEMENTATION

|-- Modules/
| | -— jxta:uuid-DEADBEEFDEAFBABAFEEDBABEOO0000010206 .xml
| |-- jxta:uuid-DEADBEEFDEAFBABAFEEDBABE000000020106.xml
| | -- jxta:uuid-DEADBEEFDEAFBABAFEEDBABEOO0000030106.xml
| | -— jxta:uuid-DEADBEEFDEAFBABAFEEDBABEOO0O000060106 .xml
| |-- jxta:uuid-DEADBEEFDEAFBABAFEEDBABEOO0O000080106 .xml
| | --— jxta:uuid-DEADBEEFDEAFBABAFEEDBABEOO0O000090106 .xml
| ‘-- jxta:uuid-DEADBEEFDEAFBABAFEEDBABEOOOOOOOB0106.xml
|-- jxta:jxta-NetGroup/

| |-- Advs/

| | -- Peers/

| | ‘--jxta:uuid-59616261646162614E504. . .3D4C31803.xml
|
|
|
|
|
|
¢

¢=— PeerGroup.xml

-- jxta:jxta-WorldGroup/
|-- Advs/
| -- Peers/

| ‘--jxta:uuid-59616261646162614E504. . .3D4C31803.xml
¢—— PeerGroup.xml

-— PlatformConfig.xml

Listing 4.1: Persistent storage directory layout

The file hierarchy layout is very simple as shown in listing 4.1. Mainly, for each peer
group there exists a directory containing its group advertisement, one directory for
general and one for the peer advertisements. Each advertisement is stored as a single
XML file with its shortened unique ID as file name. For the module implementation
advertisements, a special modules directory is maintained.

The persistent cache is only used when the platform is loaded. During the initial-
ization process, configuration will be read from disk or it will be created and stored.
When the configuration directory is not present, it will be created.

All the advertisements will be loaded into memory once the discovery service has
been started. This enables the peer application to have advertisements permanently
available.

The class P2P_CACHE MANAGER is responsible for accessing and managing the persis-
tent cache. As soon as a platform instance is disposable, the cache manager is ready
for access too.

However, the cache currently suffers from a drawback: It cannot handle advertise-
ment lifetimes and expiration times. A stored advertisement will never be discarded
because the lifetime is not part of the XML document itself and therefore cannot be
stored to disk. That is the reason why new advertisement are never written back to
the cache. Of course, the peer application may itself write some chosen advertisements
to disk using the cache manager.

The persistent cache is thus only used for really permanent advertisements. By
default, these are the module implementation, the peer group and the own peer
advertisement(s).

38

IMPLEMENTATION 4.8 Shared creators

4.7.2 LRU cache

The memory cache is implemented with a Least Recently Used (LRU) cache in the
class P2P_ADVERTISEMENTS_LRUCACHE. It is inspired by the JXTA JXME project which
is used for mobile applications with limited memory.

The LRU cache may have a maximal capacity so that the oldest, never used entries
are discarded. Furthermore, expired advertisements will be removed automatically.

The discovery protocol is designed to always differ between peer, group and other
types of advertisements. We therefore have three LRU cache objects defined in the
discovery service, one for each such type.

Advertisements can be accessed by their unique ID or by a key/value search which
make use of the advertisements’ match method. It is also possible to get a number of
random advertisements (or all of them).

Advertisements are identified by its unique ID defined in the advertisement. When
creating a new advertisement type, it is important to define a good scheme for the
unique ID. While it is not always possible to create a unique ID because the advertise-
ment information is too common, we have to be aware that an advertisement cannot
be stored in the cache without having a unique ID.

The cache itself provides also the possibility to extract an SRDI for all or for
advertisements as of a certain point in time. For this, it uses the advertisements’
index_elements method.

No capacity limits There is a general drawback regarding the limited capacity in
the cache in combination with the minimal implementation of the endpoint router.

Because the endpoint router is not able at the moment to automatically query for
route advertisements*, the advertisements cache gets useless when it removes seldom
used peer and route advertisements from time to time. After all, the peer application
should not always have to check whether the recipient’s route advertisement is avail-
able or not. It should be possible to query once for a peer advertisement® and then
to just send messages without worrying about the route.

Therefore, we have abolished the capacity limit for the moment. Of course, the
challenge with advertisement expiration remains. The peer application has to guar-
antee that advertisement updates are published regularly to the peer group.

4.8 Shared creators

There are some important creators (also called factories) in VamPeer. All creators
can be accessed using the class P2P_CREATORS _SHARED:

4The router needs the recipient’s route advertisement in order to resolve the peer ID to a transport
address.
5The peer advertisement contains also the peer’s route advertisement.

39

4.8 Shared creators IMPLEMENTATION

ID creator The ID creator represented by P2P_ID_CREATOR provides globally unique
instances for the null, NPG and WPG ID and provides the possibility to parse an 1D
string and to create the appropriate ID object out of it.

It knows and can handle the jxta and uuid format types. Custom creators may
be registered. Such an agent gets a generic ID and has to return a specific ID object
or Void if the ID is not recognized. The custom creators can override the VamPeer’s

types.

XML document creator Specific XML documents are also derived with a shared
creator: P2P_XML_DOCUMENT_CREATOR. There are mainly two methods to create XML
documents. Both expect the XML root element.

The first method document _from element returns a P2P_XML_CACHE object or Void
whenever the creation was not successful. If the document type cannot be detected,
it returns a valid P2P_UNKNOWN_XML_DOCUMENT.

It is used by the second method advertisement from element which simply tries
to cast the result to an advertisement (P2P_ADVERTISEMENT).

The document creator is also useful for user services as custom document types
can be registered too, similar to the ID creator.

Wire message creator The last creator is used for the endpoint message’s wire
representation. Currently, there is only one mime type used (application/x-jxta-
msg). Thus, the wire representation is always in binary format, handled with 2P _-
WIRE_MESSAGE BINARY.

40

1

2

3

N

5 Usage

In this chapter, we are looking at the API and present how the VamPeer library can
and should be used. While we first list all the possibilities, we describe also some
examples which are all supplied with the library. The next chapter then focuses on a
bigger example, a simple Origo cluster.

5.1 Platform starting

For starting and stopping the platform, we always deal with a P2P_PLATFORM instance.
To get the instance, we call make passing the configuration directory path and a logger
(LAE_LOGGER). The platform automatically reads the configuration file PlatformCon-
figuration.xml, if available, and sets the is_configured variable appropriately. If
it is false, we have to provide a new P2P_CONFIGURATION as shown in listing 5.1.

configure_platform is
-- Configure VamPeer platform instance

require

Logger_valid: logger /= Void
local

conf: P2P_CONFIGURATION
do

create platform.make (".vampeer", logger)
if not platform.is_configured then
conf := platform.default_configuration -- New NPG Peer
conf.set_name ("Peer name")
conf.set_description ("Peer node description")
platform.configure (conf)
end
ensure
Platform_set: platform /= Void
end

Listing 5.1: Configuring the platform instance

The default configuration returns the settings for a new NPG peer: A new peer
ID is created, the TCP settings are set to automatic interface/port detection and the
rendezvous is set to client mode with the standard NPG rendezvous servers. Before
the configuration is fed into the platform, we set an appropriate peer name and a
description.

41

1

2

3

© oo ~ [=2]

10

11

12

13

14

15

5.1 Platform starting USAGE

The next step is to load the NPG. For the public NPG, this is easily done with
the standard net_peergroup method which takes care of module implementation
advertisement creation and group loading.

start_platform is
-- Load and start net peer group
require
Platform_configured: platform /= Void and platform.is_configured
do

npg := platform.standard_net_peergroup -- Load NPG

if platform.module_status /= platform.init_failed then
platform.start -- Start Platform/NPG

end

if platform.module_status /= platform.start_ok then
npg := Void

end

ensure

Npg_set: npg /= Void implies npg.module_status = npg.start_ok
end

Listing 5.2: Loading/starting the platform with the public NPG

Modules can make use of start parameters which are provided with the platform’s
start_with arguments command (expecting an ARRAY [STRING]). All started mod-
ules will receive the same arguments. However, the JXTA services do not actually
use them.

When the platform is successfully started, we may access the services via the NPG
peer group instance. Note that at this point of time, the rendezvous client may not yet
be connected to a server and propagated messages will be lost. See subsection 5.2.3
to see solutions to this problem.

We should not forget to maintain an event loop when we are done with initializing,
or the application will quit instantly. The platform does not provide such a feature.

To stop the platform again, we just call platform.stop. If you just like to pause
the P2P activity, you will like the suspend command (see section 3.2).

5.1.1 Private peer groups

It is somewhat more complicated to load a private peer group since we have to provide
and create more specific settings. The entire process looks very similar but we have
to create another configuration and load the private NPG differently.

Creating new IDs The very first step is to create all the IDs used for the new peer
group. Please read the introduction in section 3.3 at page 25 to get an overview about
the definition of a peer group.

Listing 5.3 shows how to generate the three IDs used for a new private NPG: a
MCID and a MSID for the peer group module and finally the peer group ID. A private
NPG is always a child of the WPG, so we use the WPG UUID as parent ID.

42

1

2

3

ot

10

11

12

13

1

10

11

12

13

14

15

16

17

USAGE 5.1 Platform starting

create_peergroup_ids is
—-- Create all IDs used for a new peer group
local
mcid: P2P_MODULE_CLASS_ID
msid: P2P_MODULE_SPECIFICATION_ID
gid: P2P_PEERGROUP_ID
wpgid: P2P_WORLDGROUP_ID
do
create mcid.make_new
create msid.make_new_with_class (mcid.uuid)
create wpgid.make
create gid.make_new_with_parent (wpgid.uuid)
end

Listing 5.3: Creation of IDs for a new peer group

You will not use that code in your peer application; the creation of the new IDs is
a one-time process. You will hard code the new IDs in your application afterwards.
Instead of using this example above, you would better use the idcreator example
which generates all the different kinds of IDs.

Creating a configuration To create an appropriate configuration, we have to set the
peer ID, name and description in a P2P_CONFIGURATION object as shown in listing 5.4.
Additionally, we have to add service configurations for the tcp and the rendezvous
module. For the TCP configuration, you may safely choose the default one with
default_tcp_configuration. The rendezvous configuration needs to be adapted to
the groups rendezvous servers, see subsection 5.2.3 for more details.

new_configuration: P2P_CONFIGURATION is

-- New configuration for a private peer group

require
Group_id_valid: gid /= Void and gid.is_valid

local
pid: P2P_PEER_ID
rdvconf: P2P_RENDEZVOUS_CONFIGURATION

do
create pid.make_new_with_group (gid.uuid) -- New peer ID
create rdvconf.make -- Rendezvous client configuration
rdvconf.add_seed_uri ("http://stablehost.org/rdvs.cgi")
create Result.make_with_id (pid)
Result.add_service_parameter (transport_tcp_mcid,

default_tcp_configuration)

Result.add_service_parameter (rendezvous_mcid, rdvconf)

ensure
Result_set: Result /= Void and Result.is_valid

end

Listing 5.4: Creating a platform configuration for a private peer group

43

5.1 Platform starting USAGE

The constants for the TCP and rendezvous MCIDs can be found in P2P_CONSTANTS.

Creating a module implementation advertisement A module implementation ad-
vertisement for the group should be created when it is not available in the cache yet.
Listing 5.5 shows how we first can get a standard advertisement containing already
all advertisements for the JXTA services. We then add a user service and store the

en

tire document to disk using the cache manager.

1 set_peergroup_implementation_advertisement is

10

11

12

13

14

15

16

17

18

19

-- Make sure that peer group implementation advertisement exists
require

Platform_valid: platform /= Void
local

params_doc: P2P_XML_DOCUMENT

pg_mia, smia: P2P_MODULE_IMPLEMENTATION_ADVERTISEMENT
do

if not platform.cache_manager.has_module_implementation_advertisement (

pg_msid) then

pg_mia := platform.peergroup_implementation_advertisement (pg_msid, "
PG_CLASS", "group description")

params_doc := Result.parameter.document

-— Add user service impl adv

smia := platform.default_implementation_advertisement (service_msid,

"SERVICE_CLASS", "service description")
params_doc.create_root_child_element ("Svc", namespace_empty)
params_doc.add_child_element (params_doc.last_element, smia.document.

document.root_element)

-- Store group impl adv
platform.cache_manager.store_module_implementation_advertisement (
pg_mia)
end
end

Listing 5.5: Creating a peer group module implementation advertisement

Loading a private NPG To load a private peer group, the platform provides the
method load net_peergroup which expects the group ID, the specification ID and
an agent for instantiating the group.

We do not like to load the peer group module directly because we want to have a

unified access through the platform object. This also allows the platform to be up to
date with its module status.

lo

44

ad_peergroup is
-- Load a private net peer group
do
npg 7= platform.load_net_peergroup (gid, pg_msid, agent
peergroup_loader)

=]

oo

10

11

=
»

13

14

16

17

18

USAGE 5.2 Services

if npg /= Void and npg.module_status /= npg.init_failed then
npg.group_advertisement.set_name ("Group name")
npg.group_advertisement.set_description ("group description")
platform.cache_manager.store_peergroup_advertisement (npg.
group_advertisement)
end
end

peergroup_loader (a_pg: P2P_PEERGROUP; an_id: P2P_ID; a_mia:

P2P_MODULE_IMPLEMENTATION_ADVERTISEMENT): P2P_MODULE is
-- Private NPG loader

do
if a_pg = platform and an_id.is_equal (gid) and pg_msid.is_equal (a_mia

.specification_id) then
create {PG_CLASS} Result.init (a_pg, an_id, a_mia)

end

end

Listing 5.6: Loading a private NPG

5.2 Services

After starting the platform, we will only work with the peer group instance and
its services. All modules are registered in the peer group, so we may access them
through our NPG. While the JXTA services have an easy access method (for example
npg.endpoint_service), we have to access user services through their module name:
npg. lookup module("servicename").

5.2.1 Endpoint service

The endpoint service is very central because all other services rely on it, directly or
indirectly. This is true on the one hand for all services and on the other hand also
for the transport modules.

Receiving endpoint messages We shall first look how services may use the endpoint
service. When they are ready to receive endpoint messages, they register a service
name, an optional service parameter and a handler using extend_service. The
service name is usually the assigned module ID of the registering service, therewith
we get a unique ID.

The actual, internal handler name is the combination of the service name and
the parameter. When we specify also a parameter, we get only those messages that
match exactly the service name and the parameter. If no such handler exists, the
handler matching only the service name will be called. Note that we can only have

45

1

10

11

12

13

14

5.2 Services USAGE

process_message (a_msg: P2P_MESSAGE; a_source, a_destination:
P2P_ENDPOINT_ADDRESS) is
-- Process incoming endpoint message
require
Message_valid: a_msg /= Void
Source_valid: a_source /= Void
Destination_valid: a_destination /= Void and a_destination.service_name
.is_equal (sname)

local
msgel: P2P_MESSAGE_ELEMENT
do
msgel := a_msg.element_by_namespace_and_name (a_msg.namespace_user, "
dummy")

if msgel /= Void then
print (msgel.content)
end
end

Listing 5.7: Example endpoint message handler

one handler per service; when a handler is registered, a possibly old handler for the
same service name/parameter is silently replaced.

Message handlers get an endpoint message together with the extracted source and
destination endpoint address. Handlers should not do long processing jobs and should
return as soon as possible!.

See listing 5.7 for an example message handler. It prints out the content for the
message element with name “dummy” from the user namespace.

Reaching remote peers For actively reaching other peers, there are three possibil-
ities:

1. send message and send message mangled,
2. propagate and propagate mangled and
3. ping.

To send a message, we simply call one of the send message methods passing an
endpoint message together with an endpoint address. The endpoint address should
use the protocol jxta with a peer ID. Listing 5.8 shows a simple example for this.

To learn if you need the “mangled” version or not, you may revert to section 3.5 on
page 29. However, using send message mangled is usually the safer way, but requires
us to pass the group ID of the calling service.

1See section 4.6.1 about the thread handling in our TCP transport.

46

1

10

11

12

13

14

15

USAGE 5.2 Services

send_endpoint_message (a_dest: P2P_PEER_ID) is
-- Send endpoint message to ‘a_dest’
require
Dest_valid: a_dest /= Void and a_dest.is_valid
local
ea: P2P_ENDPOINT_ADDRESS
msgel: P2P_MESSAGE_ELEMENT
msg: P2P_MESSAGE
do
create ea.make_with_id (a_dest, "pingservice", Void)
create msg.make
create msgel.make_string (msg.namespace_user, "Data", Void, "Ping")
msg.extend (msgel)
peer_group.endpoint_service.send_message (ea, msg)
end

Listing 5.8: Creating and sending an endpoint message

The propagate methods pass the message to all transports which should make
use of transport specific propagation techniques. Currently, only the TCP transport
can handle this request by sending a UDP multicast packet?. However, our TCP
module only implements outgoing multicast and cannot read any incoming multicast
messages. Thus, multicast is virtually useless at the moment.

Using the endpoint’s propagation method will at best reach peers in the local
network, never the entire peer group. To propagate a message, we do not pass a full
destination address because it is protocol and destination unspecific; we just pass the
destination’s service name and parameter.

While the methods for sending or propagating messages are normally asynchronous,
the ping command is a time-consuming call as it waits for a remote answer. We do not
send messages with ping, we just like to check whether the given endpoint address
is valid and available to us or not. The TCP transport for example tries to open a
connection and to do a handshake with the remote peer.

Transport handling Transport modules also register with the endpoint service but
using the method extend message_transport. Transports may either be responsible
for incoming (P2P_MESSAGE RECEIVER TRANSPORT) or outgoing messages (P2P MESSAGE -
SENDER_TRANSPORT) or both; the endpoint service is able to deal with these types.

Transports may induce messages by calling the demux command which analyzes the

message and passes it to the appropriate service. The endpoint service will simply
ignore messages for which no service handler exists.

2The message size is therefore limited to 16KB.

47

5.2 Services USAGE

Message filtering The endpoint service has the feature to filter messages out. It
is possible to extend filters for incoming or outgoing messages. Filters may not only
decide whether a message is discarded or not but may also change the messages.
Listing 5.9 shows how such a filter handler could look like.

1 message_filter (a_msg: P2P_MESSAGE; a_src, a_dest: P2P_ENDPOINT_ADDRESS):

10

11

12

13

14

15

P2P_MESSAGE 1is

-- Discard incoming messages, if ‘ignore_all’ is set
require

Message_valid: a_msg /= Void

Source_valid: a_src /= Void

Destination_valid: a_dest /= Void

do
if ignore_all then
logger.info ("Discarding message from: " + a_src.out)
else
Result := a_msg -- feed message back to other filters and services
end
ensure
Result_set: ignore_all = (Result = Void)
end

Listing 5.9: Example endpoint message filter

5.2.2 TCP Transport module

For the TCP transport module, we will not show its interface because a user never
gets into direct contact with the module’s features. But we like to show how the user
may configure the transport.

The TCP transport looks for its service parameter in the platform configuration.
The configuration must be existent or the module will not start. There are currently
three values to set: the Port, the InterfaceAddress and the MulticastOff flag.

<Parm type="jxta:TCPTransportConfiguration">
<MulticastOff></Multicast0ff>
<Port>9701</Port>
<InterfaceAddress>129.132.105.170</InterfaceAddress>
</Parm>

Listing 5.10: Full TCP transport configuration

When the MulticastOff flag is set, the TCP module will disable propagating via
multicast. When the flag is not set, only sending of multicast messages is supported.
The module currently does not support listening for multicast messages. We should
therefore disable multicast.

The port specifies the server port. If it is not set, the module will automatically
choose a port in the range 1024-65’535.

48

USAGE 5.2 Services

The interface address also concerns the TCP server. When the address is set, the
module will only accept messages for the given address. We may use this in combi-
nation with VPN (virtual private network) to lock out messages from unauthorized
sources.

When the interface address is not specified, the module tries to detect the interface
and only listens on this interface. It is important for the platform to know its own
IP, namely to create the peer advertisement which includes the route information.

The platform can not always detect its IP correctly. It has to use a connection to
find out the local IP. This is done when the rendezvous seed URL is resolved when
the platform is started (see the next sub section). When the platform does not need
to get the rendezvous seed list, it will set the local IP to 127.0.0.1.

5.2.3 Rendezvous service

The essential rendezvous service interface is rather small as it only has to provide
methods to propagate messages®. The main part of the entire server connection
handling is done internally and is not really of interest for a user.

Message propagation When propagating a message, one has to provide the end-
point message, the destination’s service name/parameter and a TTL.

The TTL is an integer value meaning the maximal number of hops the message
can be forwarded. Usually, we just set the maximum Tt1l max (50).

There are several propagation methods: propagate_in_group sends the message
to all connected rendezvous servers whereas propagate_to_neighbours uses the end-
point’s propagation method (propagating to the local network). propagate is usually
the preferred method as it calls both methods above. We provide also the possibility
to propagate messages to a given list of peers with propagate to_peers.

The rendezvous service is only responsible for sending messages, the recipient’s
endpoint service will pass the message directly to the specified service, the rendezvous
service is not touched at the recipient side.

When we repropagate a message (meaning to propagate a received propagated
message), the rendezvous service is able to detect this and automatically reuses the
meta data stored in a special rendezvous message element.

Rendezvous events As many services rely on message propagation, they would like
to make sure that the current peer is connected to a rendezvous so that message
propagation is guaranteed. However, just at the time when the platform has started,
the rendezvous connection is not available yet. So, it is rather useless at this time to
use the service.

We therefore need a way to know when the connection will be of use to the services.
That is what rendezvous events are designed for. Interested parties may register
for such events. Current supported rendezvous types are only the connection and

3See section 2.4.3 for a detailed rendezvous service description.

49

5.2 Services USAGE

disconnection events to a rendezvous server as we currently just implement an edge
peer.

To receive these events, we register an agent with extend rendezvous event -
handler. The agent should expect a P2P_RENDEZVOUS_EVENT which provides the event
type and the involved peer ID (e.g. the rendezvous server). An agent should not do
time consuming processes as it would stall incoming messages from the rendezvous.
Listing 5.11 shows how to publish the peer advertisement as soon as we are connected
to the group.

process_rendezvous_event (an_event: P2P_RENDEZVOUS_EVENT) is
—-— Publish our peer advertisement to group when connected to rdv

require
Event_valid: an_event /= Void
do
if an_event.type = {P2P_RENDEZVOUS_EVENT}.type_connected_to_rendezvous
then

peer_group.discovery_service.publish_advertisement_remotely (
peer_group.peer_advertisement, Void)
end
end

Listing 5.11: Example rendezvous event handler

Rendezvous Seeds We somehow have to specify the rendezvous server address (or
multiple addresses) so that a new, isolated peer can contact the group. For a peer
application, one would elect some peers as permanent rendezvous servers and make
their addresses available.

As described in section 2.4.3, there are several ways to do this. The preferred
solution is to maintain a file, accessible through HTTP, with a rendezvous server list.
The peer’s configuration then would be hard coded to this URL. The NPG rendezvous
list can be found at the following address, listing 5.12 shows its content:
http://rdv. jxtahosts.net/cgi-bin/rendezvous.cgi??2

http://209.128.126.120:9700
http://209.128.126.120:9710
tcp://192.18.37.36:9701
tcp://192.18.37.37:9701
tcp://192.18.37.38:9701
tcp://209.128.126.120:9701
tcp://209.128.126.120:9711

Listing 5.12: Public NPG rendezvous seeds

Edge peers then randomly try one of the seed addresses and continue trying until
they get a connection lease.

The rendezvous configuration contained in the platform configuration file is simple
and looks like the one in listing 5.13. VamPeer updates the configuration with known
servers, once it has resolved a seed URL.

50

http://rdv.jxtahosts.net/cgi-bin/rendezvous.cgi?2

1

USAGE 5.2 Services

<Parm type="jxta:RdvConfig" config="client">
<seeds>
<addr seeding="true">http://origo.ethz.ch/rdv.cgi</addr>
<addr>tcp://129.132.105.170:9700</addr>
</seeds>
</Parm>

Listing 5.13: Example rendezvous configuration

5.2.4 Resolver service

Resolver handlers Clients using the resolver service choose a unique handler name
and register a handler agent for processing query and one for response messages.
Queries and responses are thus tightly coupled because when you send a query, you
are interested in replies and a typical peer will perform queries and replies. The
handler registration works with the extend_handler command. The handler name
is usually the client service module ID.

A resolver query handler gets a P2P_RESOLVER_QUERY object containing the query
string with some meta information. The agent should set the repropagate flag in
the query object to specify whether the resolver should repropagate the message
or not. Repropagation is only done by the resolver if the peer is configured as a
rendezvous. The response handlers have the equivalent signature, they expect a
P2P_RESOLVER_RESPONSE object.

Besides queries and responses, the resolver handles also SRDI messages. It is
basically the same as with queries, so we overlook the exact details here.

Querying and responding To send a query, we build a P2P_RESOLVER_QUERY as shown
in listing 5.14*. Beside the query string, it needs the source peer ID, the handler
name and an integer ID. The ID’s purpose is to help identify responses. The resolver
automatically adds the source peer route advertisement so that every recipient is able
to respond directly.

send_resolver_query (a_dest: P2P_PEER_ID) is
—-— Send a resolver query

require

Dest_valid: a_dest /= Void and a_dest.is_valid
local

query: P2P_RESOLVER_QUERY
do

create query.make (peer_group.peer_id, handler_name, 1, "Got a beer?")
peer_group.resolver_service.send_query (a_dest, query)
end

Listing 5.14: Sending a resolver query

4The final query would then look like in listing 2.2 on page 19.

o1

5.2 Services USAGE

The example sends the query to a specific peer but it is also possible to send
messages to the entire group. We just have to use the propagate_query method
which only expects the query.

Responding is equivalent. It is somewhat easier to respond to a received query
because P2P_RESOLVER RESPONSE provides a constructor to create a response out of a
query: make _from_query.

Note that a response does not need to be preceded by a query. This means that a
response can also be propagated in order to publish information to everyone.

5.2.5 Discovery service

As we already know is the discovery service used to deal with advertisements. It
provides methods for querying and publishing, locally and remotely. Most functions
differ between peer, group and other (general) types of advertisements because also
the discovery protocol does.

Querying A query always consists of the advertisement type and possibly a key/
value pair. The value may be unspecified in local queries meaning to find all adver-
tisements that have an element named like the key. Wildchars are also allowed in
values as already described in section 2.4.5.

For local queries, we call one of the local *_advertisements methods (there is one
for each type) passing the key and a value. The return value is a list of all matching
advertisements.

It is also possible to get an advertisement from the store using its unique ID. This
is done with a local *_advertisement command. While you pass an ID for the peer
or group advertisements, you have to specify the exact unique ID as STRING when
looking for an other advertisement type.

Local queries can always be performed except when the discovery module is stopped
or has failed during the start.

Remote queries are done with the query remote_advertisements method. For
this, we need to build a P2P_DISCOVERY QUERY object and possibly specify a single
recipient peer and a response handler. When the recipient peer is not specified, the
query is propagated to the group.

A query object may contain an advertisement type, a key/value pair, a threshold
and a source peer advertisement. We have to pay attention to the different semantics
for some attribute combinations.

Normally, we specify all the attributes which means to search for all matching
advertisements of the given type. The threshold defines how many results we like
to receive in maximum. However, we could receive a lot more since we may receive
answers from various peers. A peer query example is provided in listing 5.15 on the
next page.

Specifying only the type Peer and the threshold 0, all recipient peers should send
a response with their own peer advertisement.

92

1

2

3

ot

10

11

12

13

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

USAGE 5.2 Services

discover_buddy is
—-- Send discovery query for peers named "Buddy"
require
Network_connected: peer_group.rendezvous_service.is_connected
local
query: P2P_DISCOVERY_QUERY
do
create query.make (peer_group.discovery_service.type_peer)
query.set_threshold (10)
query.set_restriction ("Name", "Buddy")
peer_group.discovery_service.query_remote_advertisements (query, Void,
agent response_handler)
end

response_handler (a_response: P2P_DISCOVERY_RESPONSE) is
-- Prints buddy IDs of all results
require
Response_valid: a_response /= Void and a_response.is_valid
local
advs: DS_LIST_CURSOR [P2P_PEER_ADVERTISEMENT]

do
from
advs := a_response.all_peer_advertisements.new_cursor
advs.start
until
advs.after
loop
print (advs.item.peer_id.out + "JN")
advs.forth
end
end

Listing 5.15: Sending a remote discovery query

When the key/value pair is not specified, recipient peers should return a random
advertisement set matching the given type. The set’s count should not exceed the
threshold value.

Response handlers In the discovery service, there are two possibilities to add a
response handler. If we are only interested in our query, we specify a query ID
handler when querying. This handler will only be called when a response for our
query is received. Since multiple responses can be sent, the handler stays registered
until we call remove_queryid_listener.

The other response handler type serves for general responses which can be registered
through extend response_listener. Whenever a response is received, the discovery
calls all response agents (actually, after a possible, specific query ID handler).

53

5.3 Writing a P2P application USAGE

When no response handler is called, the discovery will itself locally publish all
received results. So, whenever we register a handler, we have to handle the results
and publish them, if needed.

It is only possible to register handlers for responses. Queries are always handled
by the discovery service itself. We can not tune the discovery to respond differently
to certain queries.

Publishing Publishing an advertisement locally, using publish _advertisement_-
locally, means to save it in the local advertisements store under its unique ID. An
older advertisement with the same ID is replaced.

On remote publishing, we may either choose to build the discovery response our-
selves or to just pass a single advertisement to publish_advertisement_remotely.
We also may specify a recipient peer, when we do not want the response to be pub-
lished to the group.

A P2P_DISCOVERY RESPONSE contains besides a list of results, the type and the key/
value pair (if it is really a response). A respondent may also provide its peer adver-
tisement.

An advertisement is always published together with its remote expiration time.
When the lifetime is not set, the default expiration time for remote peers is by default
two hours.

Note that remotely published advertisements cannot be revoked. They may be
passed among group peers until they expire. Though, it is possible to delete an
advertisement locally using one of the flush methods which expect the advertisement’s
unique ID.

See listing 5.16 to see a publishing example and how to set the lifetime.

publish_advertisement (an_adv: P2P_ADVERTISEMENT) is
-- Publish an advertisement setting its lifetime to a day from now
require
Advertisement_valid: an_adv /= Void and an_adv.is_valid
do
an_adv.set_lifetime_relative (86400000)
peer_group.discovery_service.publish_advertisement_remotely (an_adv,
Void)
end

Listing 5.16: Publishing an advertisement remotely

5.3 Writing a P2P application

While the VamPeer library offers very basic P2P features, the overlying applications
will have to specialize them and to design their own application messaging protocol
above JXTA.

o4

1

-

0

11

12

USAGE 5.3 Writing a P2P application

For its design, we recommend to rely on the JXTA services, especially on the
discovery. The use of advertisements is a core idea in JXTA and it would be great to
create advertisements for user related entities too.

Unfortunately, there is a problem associated with this endeavour since the ren-
dezvous server has to know all advertisement types it deals with. This means that
we currently either have to bypass the rendezvous or to implement user defined types
in the JSE rendezvous peer too.

5.3.1 Writing a user service

Applications will usually create at least one service which closes the gap between the
application’s logic and JXTA.

To create a module, we just inherit from the deferred class P2P_MODULE and effect
the methods start, suspend and stop®. We usually also redefine the init method
to create needed data structures.

We also have to implement the feature check_dependencies which has the purpose
to identify the required module dependencies used for loading. It is therefore called
in the precondition of init. We are allowed to use also other services but we then
have to check them for existence first.

While it is simple to build a user service, the integration into the peer group involves
several steps.

As the user service is a module, we have to build a MCID, a MSID and a module
implementation advertisement. Listing 5.5 already pointed out how to do this.

Because we change the set of user services in the group, we will certainly have to
build a private peer group as described in section 5.1.1. We now also have to specialize
the peer group implementation by creating a new peer group class which should inherit
from P2P_GENERIC_PEERGROUP. define modules and load_extern module should be
redefined as shown in listing 5.17.

define_modules is

—-- Define Group services in ‘modules_list’

do
-- add standard modules from parent peer group to ‘modules_list’
Precursor
-- add user service to the end of ‘modules_list’
modules_list.put_last (["user_service", service_mcid, service_msid,

parent_is_owner_if_available])
end

load_extern_module (an_id: P2P_ID; a_mia:
P2P_MODULE_IMPLEMENTATION_ADVERTISEMENT; a_name: STRING): P2P_MODULE is
-— Load user module
do
if service_msid.is_equal (a_mia.specification_id) then

5Please read section 3.2 for further details.

95

14

16

17

18

5.4 Examples USAGE

create {SERVICE_CLASS} Result.init (Current, an_id, a_mia)
else
Result := Precursor (an_id, a_mia, a_name)
end
end

Listing 5.17: Redefining peer group modules

The parent_is owner_if available flag means that the module loader will only
create a new module loader if the parent peer group did not define this module. If
each peer group would need its own instance, we would specify current_is_owner.

Using the new private peer group implementation, our user service will be loaded
and managed by the VamPeer’s platform.

5.4 Examples

The current VamPeer release also contains some examples so that new users are able
to get into the code and can test the library. We will describe them here and show
how to run them. There is also a bigger example which we will separately enlighten
in the next chapter.

5.4.1 Endpoint message sender/handler

The first example shows how to use the endpoint service. It was originally created
when the other services were not available yet. Therefore, it does not make use of
the discovery to find other peers.

It consists of two parts, namely two peer roles: the endpoint message _sender and
the endpoint _message_handler, which both run in the public NPG. The sender will
send a simple endpoint message to the handler peer which sends a reply message back.
Both peers log the events to the standard output, so we can see what is currently
happening. While the handler only quits when we shut it down (with Ctrl-C), the
sender terminates as soon as it receives the reply.

The handler’s platform is configured to listen on port 9710 while the sender chooses
its port automatically. To start the sender, we have to specify the handler peer’s 1P
and port. This is of course not the way we would like to deal with other peers in our
application. We just like to limit our example to the endpoint service’s possibilities.

To run the example locally, we first start the endpoint message handler and af-
terwards the sender application with the arguments: localhost 9710. The logging
level is set to INFO, so we can see when the platform has been started and the message
has been sent and received.

Looking at the code, we see how the sender creates and sends an endpoint message
and how it registers the service listener to receive the reply. The handler looks similar
but also uses the endpoint’s filter method to display all incoming messages.

The example is very simple but shows how the minimal configuration for a VamPeer
platform may look like.

56

USAGE 5.4 Examples

5.4.2 Rendezvous propagation

The next example demonstrates the rendezvous propagation mechanism. It resides in
the rendezvous_propagate example directory. The application connects to a NPG
rendezvous and propagates a message every five seconds.

When running multiple instances, we could see the propagated messages from the
others. But it does not work; messages get not propagated to the entire group. The
reason for this is that we would have to adapt the rendezvous server to repropagate
messages for our specific service®.

Thus, this example shows how we can not use the rendezvous service for propagating
any message and it shows how important it is that the rendezvous server is part of
the P2P system and not just a standard JXTA infrastructure peer.

5.4.3 Discovery

The discovery example shows how we can find other peers in the public NPG. We
just run multiple instances and they should be able to discover each other. The
application only expects a configuration directory path as argument.

The details of the discovery procedure are as follows: As soon as we are connected
to a rendezvous, we publish our peer advertisement in the group. We then send one
peer query request and wait one minute for responses. Incoming peer advertisements
are printed out immediately.

When no other peers are known to the rendezvous, we should at least receive the
rendezvous peer and our own advertisement. Note that we may get responses from
multiple peers, not only from the rendezvous because the rendezvous propagates the
query request also to the others.

5.4.4 JXTA JSE rendezvous server

The last two examples make use of the NPG rendezvous servers. But we mentioned
already that the public infrastructure is not accessible at the moment. Hence, we will
have to run our own NPG rendezvous server. The RdvServer example shows how we
can set it up using the JXTA’s reference implementation JSE in version 2.4.1.

The Java application provides a rendezvous and a relay server and is configured
to listen on port 9700 on all interfaces. When we start the script startNPGPeer. sh,
the rendezvous will be started in the NPG. Because we use also a rendezvous peer
for the next example, namely Origo, there exists another script startOrigoPeer.sh
which starts the rendezvous in the private Origo peer group.

To point the discovery example to our new rendezvous server, we have to change its
platform configuration. We normally start the discovery application first to generate
the configuration directory. Then, we are able to change the configuration XML file
by replacing the old seeds and the NPG seed URL with the new destination address.

6See section 3.6 for more details to this problem.

o7

6 Origo with VamPeer

As a case study, we tried to build a P2P application with VamPeer. We supply it as
an additional example.

Because our task was to prepare P2P support for Origo, it was obvious to do a test
application for Origo. We did not implement the real Origo messaging layer because
the full requirements were not yet available at this time!. We did therefore a simple
Origo example which supports some core ideas of Origo, especially regarding the P2P
technology.

We will now give an Origo overview so that we understand what our example deals
with.

6.1 Origo overview

Origo is a PhD project by Till Bay, the supervisor of this master thesis. Origo is a
revolutionary software development, management and distribution platform. While
the main idea exists, the implementation just has started in the last few months;
VamPeer is also a contribution to it. We hope that in a few months, we have a first
Origo release supporting the main features.

Many similar platforms exist (SourceForge, BerliOS, Google Project Hosting, .. .).
The added value by some platform is to provide techniques such that the components
may cooperate. For example when a patch is committed solving a certain bug, the
bug tracker should be able to detect this event and close the corresponding issue (this
could be done by parsing the commit log entry).

While some platforms already support very good services, Origo still is the only
one which will support the following essential features: modularity and extendability.

The traditional platforms like SourceForge are rather monolithic since their various
services are coupled together in a tight, static manner. Thus, it is not a simple task
to add a new version control system or a bug tracker service without having to change
the system essentially.

That is the reason for Origo to support modularity. Very simplified, this is done
by defining a messaging layer which all components will have to use. They share
messages about what features and event types they provide and may thus cooperate
together. This is why each component has some kind of a wrapper which integrates
the component into the Origo system.

IPatrick Ruckstuhl currently writes a master thesis about the Origo Core where he will among
others define and implement the entire messaging layer using VamPeer.

58

ORIGO WITH VAMPEER 6.2 Design

All the resulting Origo services are managed by a central core service. It provides
also an XML-RPC API to the public so that central features as creating a new release
could be integrated into the developer’s environment.

Origo’s main services will be revision control, bug tracker, wiki, single sign-on and
lookup services to find appropriate software components.

Origo wants to scale under heavy load; Origo is therefore designed to run as a
distributed system. When new services are added dynamically to the system, they
must be able to discover and contact the core service. Thus, it is obvious to use P2P
technology for messaging.

As Origo is fully developed in Eiffel, we now can see the impulse for our master
thesis which brings a P2P system, namely JXTA, to Eiffel so that it can be used in
Origo.

6.2 Design

We now look at our Origo example and what features we support. The official Origo
release will be based on another design. We just show how we can handle the network
challenges with VamPeer.

6.2.1 Task

In our example, we focus on the task how services can advertise their existence to the
core service and how the core service may start the Origo infrastructure. We only
have two peers: the core peer and a service peer which provides a lookup service?.

Figure 6.1 shows the example’s VamPeer related classes and their interfaces.

An Origo service in our example is advertised through 0_SERVICE_ADVERTISEMENT.
A service has several roles which are each represented through a 0_SERVICE ROLE -
ADVERTISEMENT.

Services may have several roles because a service itself could be distributed too and
may consist of several components. An 0_SERVICE object is the local representation
of the entire service and manages all the roles that are registered at the current peer.

The lookup service has two roles: a main node responding to queries and a proxy
node which resides on the core node to forward queries to the main node. The
initial idea for the proxy was to hide the real lookup peer from the public network so
that each request must go through the core peer which could also maintain a special
security layer.

The core’s task is to know all services and also the status of all its roles. When
a new service joins the Origo peer group, the core peer looks for all service roles
and when they are all available, a request is sent to all involved peers to start and
integrate the entire service into the Origo system.

2The lookup service implementation is managed by Andrea Grossbauer who writes a semester
thesis about hierarchical lookup queries.

59

6.2 Design

ORIGO WITH VAMPEER

VamPeer classes

O_PEERGROUP

P2P_MODULE P2P_GENERIC_PEERGROUP [|-

O_P2P_MODULE

module_status

init()

is_core

start()
suspend()
stop()

core_peers

discover_core()
register()
unregister()

P2P_XML_CACHE

P2P_ADVERTISEMENT publish_configuration()

A

send_message()
process_message()

O_SERVICE_CONTROL_MESSAGE

service_name
service_type
service_role
control_command
parameters

process_discovery_response()
extend_core_event_handler()
prune_core_event_handler()

O_SERVICE

configuration
roles

O_SERVICE_ROLE_ADVERTISEMENT

p2p_module

start_role()

suspend_role()
extend_role()

prune_role()

register()

unregister()
process_network_message()

peer_id

name

type

role

configuration

status
O_SERVICE_ADVERTISEMENT
type
name
description
addinfo
roles

publish_configuration()

O_LOOKUP_SERVICE_MAIN

O_LOOKUP_SERVICE_PROXY

Figure 6.1: Origo example P2P class structure

6.2.2 P2P infrastructure

The Origo example runs in a private peer group, the Origo group. The RdvServer

example described in section 5.4.4 also supports this group.

The group uses all VamPeer services and additionally introduces a new service
module implemented by the class 0 P2P MODULE. This module is used by the Origo

services® to communicate with other peers or vice versa.

The communication between peers is on the one hand done with discovery messages
to share advertisements and on the other hand with XML control messages (0_-

SERVICE_CONTROL_MESSAGE) based on endpoint messages.

We can use Origo specific advertisements because we do not share them with the

rendezvous server, we pass them directly to the appropriate peers.

3Note the difference between a JXTA/ VamPeer service and a Origo service.

60

ORIGO WITH VAMPEER 6.3 Summary

6.2.3 Startup procedure

The core peer must be started first and publishes its peer advertisement to the peer
group. Other peer nodes just propagate a core discovery query.

When a peer node starts, all Origo services register at the network module, so it
knows what services and service roles are available locally.

As soon as it receives the core’s peer advertisement, it publishes all the registered
service and role advertisements to the core.

The core checks on each incoming role advertisement whether all roles for the given
service are available now. When they are complete, the core sends a start control
message to all peers which maintain an involved service role.

Once a peer receives this message, it advises the corresponding service object to
start. The lookup proxy node will register its XML-RPC proxy methods on the local
XML-RPC server whereas the lookup main node will start up the lookup component.

6.2.4 Role configurations

The roles may have to exchange their configuration parameters. Thus, each service
role advertisement can have a configuration XML document attached, for example a
descendant of 0_SERVICE CONFIGURATION.

The lookup service for example uses this configuration to tell the proxy on which
IP address and port the lookup main component is listening to answer XML-RPC
queries.

6.3 Summary

The Origo example shows how we may use VamPeer for messaging. It uses endpoint
messages as well as Origo specific advertisements and documents.

Although the example has a nontrivial background, it serves as a good code repos-
itory where we can look at how we may implement some nifty tasks, for example how
a private peer group is used or how we may create our own XML documents.

61

7 Results

We did several tests for the VamPeer library to show that the code works. There are
some smaller examples, the Origo example, a benchmark and some unit tests. While
we already mentioned all the examples, we would like to present the benchmark and
the test results now.

7.1 Benchmark

Since VamPeer is going to be used for Origo which should be able to process many
messages, we have to show that our library is able to handle much traffic and that it
can process messages correctly.

Thus, we created a benchmark which is also shipped as an example. The benchmark
consists of two peers, a master node and a slave node. The peers reside in the NPG
and use discovery requests to find each other.

The master creates random strings and sends endpoint messages to the slave which
uppercases the message contents and sends them back. The master checks at the end
whether it has received all messages and whether the content was valid.

The master sends by default 1000 messages which is done in few seconds. VamPeer
successfully passes this test as shown in listing 7.1.

2007/02/27 13:54:10.710 - FATAL - benchmark master: creating test data
2007/02/27 13:54:10.844 - FATAL - benchmark master: sending messages now,
count: 1000
2007/02/27 13:54:14.533
completed
2007/02/27 13:54:19.536 - FATAL - benchmark master finished successfully
2007/02/27 13:54:19.759 - FATAL - benchmark slave: gracefully stopped

Listing 7.1: Benchmark output

FATAL - benchmark master: message sending

We see that the application works quite fast. To get such results, we have to
finalize the code and turn the contract checking off. Else, it would last much longer.
Especially the preconditions when parsing XML with the Gobo library take a lot of
time.

7.2 Unit tests

To test some individual classes, we implemented some unit tests. There exist tests for
the data classes that are used everywhere in the library. As it would be very cumber-

62

RESULTS 7.3 Summary

some to have errors in these classes, we implemented tests for some advertisements,
for the endpoint message and for all IDs.
The tests use the getest testing library by Gobo.

1 Test Summary for unit_tests

2

3 # PASSED: 44 tests

4+ # Failed: 0 test

5 # Aborted: 0 test

¢ # Total: 44 tests (1443 assertions)

Listing 7.2: Unit test results

7.3 Summary

In this master thesis, we built an Eiffel binding for JXTA. Although the implementa-
tion is far from being complete, the available parts are functioning and ready to use
within Origo.

Speaking in JXTA terms, our VamPeer library provides the following services:

e The endpoint service handles incoming and outgoing messages and serves as a
central point for other services. When messages are to be sent, the endpoint
passes them to the correct transport module. Received messages from the net-
work are passed from the transport modules to the endpoint service, which leads
them to the appropriate service.

e We implemented a TCP transport module because it is simple and fast. It
maintains a queue for outgoing messages and manages TCP connections with
remote peers. It is able to generate and parse the wire message representation.

e Our endpoint router is very small and only provides the most essential feature:
It resolves peer IDs to real destination endpoint addresses, namely for the TCP
transport. It cannot send remote queries to get a peer’s route information. The
routes have to be available already when sending a message.

e Our rendezvous service implements just parts of the protocol. It only acts as an
edge peer meaning that VamPeer is always in need of an external rendezvous
server to be able to propagate messages within the peer group!'. An edge peer
is able to propagate messages to its rendezvous server.

e The resolver service is fully implemented in VamPeer. It provides a query-
response system and may use the rendezvous to propagate a message.

IBut we do supply such a rendezvous server. It uses the JXTA’s reference implementation and is
therefore written in Java.

63

7.3 Summary RESULTS

e The discovery service serves as an advertisement storage and is used to query
for advertisements, locally and remotely. Our discovery is also able to push
SRDI messages to the rendezvous.

VamPeer is currently only able to run one peer group besides the WPG (which
is only used for platform managing). But it is fully possible to replace the standard
NPG with a private peer group.

Looking at the requirements in section 3.1, we have successfully fulfilled our task.
With VamPeer, we are able to discover other peers and are able to communicate with
them using an own infrastructure.

There is nevertheless the restriction that the user has to ensure the availability of
the recipient peer’s route information when sending a message. This can be easily
done by once sending a peer discovery query and publish the results locally to the
advertisement storage. As advertisements are subject to expiration, we will have to
unset the lifetime before storing or to query again after a certain time.

We have well demonstrated how the library can be used by explaining the coarse
API and by showing some examples: While the endpoint message example only
focuses on the endpoint service, the discovery example describes how to search for
remote peers. We also looked at a bigger example and argued how Origo could
implement its messaging layer.

With these results, we release the first version of VamPeer.

64

8 Conclusions

The implementation of an Eiffel binding for JXTA was quite a challenging task.

As a JXTA novice, it was hard to get into the topic since many books and docu-
mentation about it are out of date.

Originally, we were full of expectations of the JXTA specification [Pro07] but we
had to become aware of the fact that it specifies mainly the various messages’ syntax.
Detailed semantics is ceded to the implementation which makes it impossible to build
a binding compatible to the reference implementation with the specification only. We
therefore had to extensively look at the reference code to find out how the details
really work.

We encountered also many uncertainties when we implemented the modules and
tried to test our code because we did not see all problems during the design process.
We encountered also a few bugs in the reference implementation while testing, which
we could fix and send patches to the community. We are very happy that they all
got, applied rapidly.

While we now have a deeper knowledge in JXTA, we also learnt a lot about Eiffel
software since we actively tried to stick to the FEiffel conventions. This was also
a challenge since we always read the JXTA’s Java code, which complies to other
patterns than state of the art Eiffel code.

We are pleased to have started a new project VamPeer, which may grow in the
future to become a mature and fully usable JXTA implementation.

8.1 Future work

We mentioned at several places before that our new library is incomplete and does not
implement the full JXTA specifications. Although the current release can be used in
Origo and in many others applications, it lacks of some essential features that would
tremendously improve the VamPeer’s experience.

We really should focus first on a rendezvous server implementation because we then
could eliminate the dependency to another JXTA implementation. This task involves
working into the rendezvous’ peer view protocol. While the rendezvous adaptions are
a bigger part, it also involves to enhance the discovery service since this has to fulfill
more tasks when the peer is a rendezvous server. We have to maintain an SRDI for
all rendezvous clients for example.

Another important issue is the endpoint router completion. It should be able to
resolve peer IDs also querying remotely for route advertisements. Another yet un-
available router feature is to forward traffic for other peers residing behind a firewall.

65

8.2 Acknowledgements CONCLUSIONS

JXTA is actually also known for its support to bypass firewalls. The HTTP trans-
port is surely an important contribution to this facility too. Such a transport would
thus be nice.

Our thesis did not treat security issues. In JXTA, we generally own secure com-
munication by using TLS channels. As there is no SSL/TLS library for Eiffel yet, it
is not that easy to implement the jxtatls transport to VamPeer. But wrapping the
SSL C library could lead to a neat TLS transport implementation.

Introducing support for several running peer groups should be an easy task as
most services are ready for it. However, there may be some more challenges with the
current address rewriting issue described in section 3.5.

When multiple peer groups are going to be allowed and secure communication is
available, we may be interested to introduce the membership service which allows
peers to gain access to a certain peer group only with a valid authorization.

The last missing service we would like to list here is the pipe service. Its idea is to
support virtual channels to one or multiple peers. A simple implementation should
not be that much work.

8.2 Acknowledgements

Without exaggerating, this thesis would certainly not have led to success if I had
not get assistance by the JXTA community. The communication by means of mails
and primarily IRC messages with other JXTA developers has really helped out with
good advice. Therefore, I would like to thank Roger Karis and Mike Duigou (Sun
Microsystems) for their great aid.

I like to mention Roger from Holland especially as he was also writing his master
thesis in the JXTA field (writing about “Analysis of a peer-to-peer framework in
uCRL”). We had some great hours in the JXTA’s IRC channel sharing frustration
and exultation.

I would also like to thank my supervisor Till Bay (the main driver behind Origo)
who was always available to give advice and motivated me in my project.

The last six months were a demanding time but I had a good fellow sufferer with
my office neighbour Samuele Lucchini who implemented a single sign-on solution for
Origo. Thank you Samuele for the entertaining time!

Many thanks also to all my friends who did the proof-reading of this document:
thank you Andrea, Mirjam, Nina and Philip!

66

Bibliography

[Bez07]

[BGKS02]

[Com06]

[Eif06a)]

[Eif06b]

[Bif06¢]

[FB96)

[Goa07]

[Hen06]

1S004]

[LMS05]

[MKL02]

Eric Bezault. Gobo FEiffel Project. http://gobosoft.com/eiffel/gobo/,
January 2007. Version 3.5.

Daniel Brookshier, Darren Govoni, Navaneeth Krishnan, and Juan Carlos
Soto. JXTA: Java P2P Programming. Sams, Indianapolis, IN, USA, first
edition, March 2002.

Gerald Combs. FEthereal: A Network Protocol Analyzer. http://www.
ethereal.com/, April 2006. Version 0.99.0.

Eiffel Software. FiffelNet. http://www.eiffel.com/libraries/net.
html, October 2006. Version 5.7.64493.

Eiffel Software. EiffelStudio IDE. http://eiffelsoftware.origo.ethz.
ch/, October 2006. Version 5.7.64493.

Eiffel Software. FEiffelThread. http://www.eiffel.com/libraries/
threads.html, October 2006. Version 5.7.64493.

N. Freed and N. Borenstein. Multipurpose Internet Mail FExtensions
(MIME) Part Two: Media Types. RFC 2046 (Draft Standard), November
1996. Updated by RFCs 2646, 3798.

Goanna. Log4E. https://svn.sourceforge.net/svnroot/goanna/
trunk/logée, January 2007. Revision 537.

Paul Hensgen. Umbrello UML Modeller. http://uml.sourceforge.net/,
April 2006. Version 1.5.2.

ISO (International Organization for Standardization). 9834-8:2004 Pro-
cedures for the operation of OSI Registration Authorities: Generation
and registration of Universally Unique Identifiers (UUIDs) and their use
as ASN.1 Object Identifier components. ITU-T Recommendation X.667,
September 2004.

P. Leach, M. Mealling, and R. Salz. A Universally Unique IDentifier
(UUID) URN Namespace. RFC 4122 (Proposed Standard), July 2005.

Dejan S. Milojicic, Vana Kalogeraki, and Rajan Lukose. Peer-to-Peer
Computing. http://www.hpl.hp.com/personal/Dejan Milojicic/p2p-
o.pdf, July 2002. HP Laboratories, Palo Alto, HPL-2002-57.

67

http://gobosoft.com/eiffel/gobo/
http://www.ethereal.com/
http://www.ethereal.com/
http://www.eiffel.com/libraries/net.html
http://www.eiffel.com/libraries/net.html
http://eiffelsoftware.origo.ethz.ch/
http://eiffelsoftware.origo.ethz.ch/
http://www.eiffel.com/libraries/threads.html
http://www.eiffel.com/libraries/threads.html
https://svn.sourceforge.net/svnroot/goanna/trunk/log4e
https://svn.sourceforge.net/svnroot/goanna/trunk/log4e
http://uml.sourceforge.net/
http://www.hpl.hp.com/personal/Dejan_Milojicic/p2p_o.pdf
http://www.hpl.hp.com/personal/Dejan_Milojicic/p2p_o.pdf

Bibliography Bibliography

[MLKO1]

[Moa97]
[Pro]
[Pro06]

[Pro07]

[TADO3]

[Wil02]

68

M. Murata, S. St. Laurent, and D. Kohn. XML Media Types. RFC 3023
(Proposed Standard), January 2001.

R. Moats. URN Syntaz. RFC 2141 (Proposed Standard), May 1997.
Project JXTA. JXTA JSE Platform. http://platform. jxta.org/.

Project JXTA. SRDI: JXTA Shared Resource Distributed Index Design
Plan. http://platform. jxta.org/java/srdi.html, January 2006.

Project JXTA. JXTA v2.0 Protocols Specification. http://spec.jxta.
org/nonav/vl.0/docbook/JXTAProtocols.html, January 2007. Revi-
sion 2.5.2.

Bernard Traversat, Mohamed Abdelaziz, and Mike Duigou. Project JXTA
2.0 Super-Peer Virtual Network. http://www.jxta.org/project/www/
docs/JXTA2.0protocolsl.pdf, May 2003. Sun Microsystems, Inc.

Brendon J. Wilson. JXTA. New Riders, Indianapolis, IN, USA,
first edition, June 2002. http://www.brendonwilson.com/projects/

jxta-book/.

http://platform.jxta.org/
http://platform.jxta.org/java/srdi.html
http://spec.jxta.org/nonav/v1.0/docbook/JXTAProtocols.html
http://spec.jxta.org/nonav/v1.0/docbook/JXTAProtocols.html
http://www.jxta.org/project/www/docs/JXTA2.0protocols1.pdf
http://www.jxta.org/project/www/docs/JXTA2.0protocols1.pdf
http://www.brendonwilson.com/projects/jxta-book/
http://www.brendonwilson.com/projects/jxta-book/

	Introduction
	Mission
	Related work
	Chapter overview

	JXTA
	Peer groups
	IDs
	Advertisements
	Services
	Endpoint service
	Transport modules
	Rendezvous service
	Resolver service
	Discovery service

	JXTA's P2P infrastructure and peer roles

	Design
	Requirements
	Module structure
	Peer group modules

	Defining a peer group
	Services
	Module choice
	Service layers

	Address rewriting
	Rendezvous propagation

	Implementation
	Development environment
	Used libraries
	Socket extensions
	XML documents
	Using UUID for JXTA IDs
	Threads
	TCP Transport
	Rendezvous connection manager
	Discovery SRDI

	Advertisement storage
	Persistent storage
	LRU cache

	Shared creators

	Usage
	Platform starting
	Private peer groups

	Services
	Endpoint service
	TCP Transport module
	Rendezvous service
	Resolver service
	Discovery service

	Writing a P2P application
	Writing a user service

	Examples
	Endpoint message sender/handler
	Rendezvous propagation
	Discovery
	JXTA JSE rendezvous server

	Origo with VamPeer
	Origo overview
	Design
	Task
	P2P infrastructure
	Startup procedure
	Role configurations

	Summary

	Results
	Benchmark
	Unit tests
	Summary

	Conclusions
	Future work
	Acknowledgements

